时间序列分析论文

合集下载

时间序列分析结课论文

时间序列分析结课论文

- - .时间序列分析结课论文全国社会消费品零售总额的时间序列分析全国社会消费品零售总额的时间序列分析摘要时间序列分析是经济领域研究的重要工具之一,它描述历史数据随时间变化的规律,并用于预测经济变量值。

市场经济中,政府对市场变化的即时反应是各国经济工作的重点。

在我国,随着市场经济的日益成熟,各级政府逐渐认识到短期计划的重要性。

在要求减少对市场干预的同时,政府在经济中的作用主要体现在保证经济运行的正常轨道,由于社会消费品零售总额反映了经济运行中的一个重要环节———消费,尤其是目前我国市场上的消费需求不足现象,使我国经济发展受到外需与内需两方的困扰。

因此对于社会消费品零售总额预测中的研究一直具有积极意义。

本文就以以我国1952年至2011年我国社会消费品零售总额为研究对象,做时间序列分析。

首先,对全国60多年来社会消费品零售总额的发展变化规律,运用SAS软件进行分析其发展趋势。

再则,通过检验说明模型拟合效果的好坏,再利用模型对下一年进行预测。

最后,从国家经济、政策和社会消费品零售市场发展等方面对社会消费品零售总额变化规律及未来走势进行分析。

关键字:社会消费品零售总额SAS软件时间序列分析预测一.引言社会消费品零售总额是指各种经济类型的批发零售业、贸易业、餐饮业、制造业和其他行业对城乡居民和社会集团的消费品零售额和农民对非农民居民零售额的总和。

这个指标能够反映通过各种商品流通渠道向居民和社会集团供应生活消费品来满足他们生活需求的情况,是研究人民生活、社会消费品购买力、货币流通等问题的重要指标。

随着消费环境的逐步改善,人们的消费能力不断增强,人们消费能力的增强直接带动了社会消费品零售总额的发展,“十一五”期间,面对复杂多变的国内外形势,特别是为应对国际金融危机的冲击,国家出台了一系列扩大内需、促进消费等政策措施,消费品市场的稳定发展对我国缓冲金融危机起到了明显的积极作用,消费需求已经成为经济增长的重要组成部分。

时间序列分析学年论文

时间序列分析学年论文

2011-2012学年09级统计学专业学年论文题目运用SAS对中国历年运动员获世界冠军数进行建模并作预报.学生姓名学号成绩运用SAS对历年中国运动员获世界冠军数进行建模并作预测摘要:本文通过选取1978年-2009年中国历年运动员获得金牌数,运用SAS统计软件进行处理分析,选取显著的系数,建立模型,对年我国2010以后运动员金牌数做出预测。

关键字 SAS AR模型参数估计平稳时间序列1、引言在自然现象和经济现象中,人们为了对某些事物或系统的运行规律探索其究竟,需要观测所要研究的某种现象,从而得到一定顺序的数据资料。

通过分析这些数据资料,对事物或系统的未来发展进行预测或控制方法,称为时间系列分析。

从统计学的内容来看,研究数据的统计方法就是时间序列分析。

就此足以看到时间序列分析的重要性及其应用的广泛性。

时间序列的统计解释是某项统计指标按时间顺序记录的指标值数列时间序列的统计意义是某一系统程序运行过程中的不用时间点的响应,是系统行为量化数据的有序客观记录,反映了系统的结构特征和运行规律。

随机时间序列分析就是利用数学的方法描述时间序列的构成因素,具体地说就是对影响时间序列的长期趋势、季节变动、循环波动进行预订和估计;进一步的,将它们从时间序列中分离后,对剩余的一项时间序列的随机波动进行分析和建模;从而实现对时间序列变化规律的认识,预测或控制未来行为。

2、SAS介绍Statisticsl Analysisi System简称SAS,可以用来分析数据和编写报告。

它是美国SAS研究所的产品,在国际上被誉为标准通用软件,在我国深受医学、农林、财经、社会科学、行政管理等众多领域的专业工作者的好评。

SAS采用积木式模型结构,其中的SAS/STAT模块是目前功能最强的多元统计分析程序集,可以作回归分析、聚类分析、判别分析、主成分分析、因子分析、典型相关分析、各种实验设计的方差分析、协方差分析以及时间序列分析。

3、平稳时间序列的基本概念时间序列的统计特征函数,时间序列{Xt,t∈Z}是按时间次序排列的随机变量序列。

时间序列分析课程论文——时间序列分析在我国财政预算支出预测中的应用

时间序列分析课程论文——时间序列分析在我国财政预算支出预测中的应用

时间序列分析在我国财政预算支出预测中的应用时间序列分析是经济领域研究的重要工具之一,它描述历史数据随时间变化的规律,并用于预测经济变量值。

财政支出是一个地区或国家经济指标体系中的一个核心指标,它能综合反映经济活动总量和衡量个地区或国家的工业经济发展水平。

对财政支出进行定量分析并对其作出较为准确的预测则可以为相关部门或者企业制定发展规划、实施相关措施提供可靠的理论预测参考。

本文系统阐述了时间序列分析方法在社会消费品零售总额预测中的应用,运用ARMA模型对我国财政支出进行短期预测,利用2007年到2012年我国财政预算支出数据进行预处理和分析,发现该时间序列既包含趋势性又包含季节性,然后对其进行ARMA建模分析。

一、时间序列的特性分析在建立时间序列模型之前,必须对时间序列数据进行预处理,以便剔除那些不符合统计规律的异常样本,同时还要对这些数据的基本统计特征进行检验,以确保建立的时间序列模型的可靠性和置信度,并满足一定的精度要求。

对时间序列数据进行的预处理包括平稳性检验、纯随机性检验和季节性检验。

(一)时间序列定义所谓时间序列就是按照时间的顺序记录的一列有序数据。

对时间序列进行观察、研究,找寻它的变化发展规律,预测它将来的走势就是时间序列分析。

在统计研究中,常用按时间顺序排列的一组随机变量…,…来表示一个随机事件的时间序列,简记为{)或{)。

用或{}表示该随机序列的n个有序观察值,称之为序列长度为n的观察值序列。

(二)平稳性1、平稳时间序列的定义随机时间序列的平稳性分为严平稳和宽平稳。

严平稳是一种条件比较苛刻的平稳性定义,它认为只有当序列所有的统计性质都不会随着时间的推移而发生变化时,该序列才能被认为平稳。

设{)为一时间序列,对任意正整数m,任取,对任意整数,有则称时间序列为严平稳时间序列。

宽平稳是使用序列的特征统计量来定义的一种平稳性。

它认为序列的统计性质主要由它的低阶矩决定,所以只要保证序列低阶矩平稳(二阶),就能保证序列的主要性质近似稳定。

时间序列分析论文

时间序列分析论文

关于居民消费价格指数的时间序列分析摘要本文以我国1997年4月至2014年4月间每月的烟酒及用品类居民消费价格指数为原始数据,利用EVIEWS软件判断该序列为平稳序列且为非白噪声序列,通过对数据一系列的处理,建立AR(1)模型拟合时间序列,由于时间序列之间的相关关系和历史数据对未来的发展有一定的影响,对我国的烟酒及用品类居民消费价格指数进行了短期预测,阐述该价格指数所表现的变化规律。

关键字:烟酒及用品类居民消费价格指数,时间序列,AR模型,预测引言一、理论准备时间序列分析是按照时间顺序的一组数字序列.时间序列分析就是利用这组数列,应用数理统计方法加以处理,以预测未来事物的发展。

时间序列分析是定量预测方法之一.基本原理:1.承认事物发展的延续性。

应用过去数据,就能推测事物的发展趋势。

2。

考虑到事物发展的随机性.任何事物发展都可能受偶然因素影响,为此要利用统计分析中加权平均法对历史数据进行处理。

该方法简单易行,便于掌握,但准确性差,一般只适用于短期预测。

时间序列分析是根据系统观测得到的时间序列数据,通过曲线拟合和参数估计来建立数学模型的理论和方法.二、基本思想1. 拿到一个观测值序列之后,首先判断它的平稳性,通过平稳性检验,判断序列是平稳序列还是非平稳序列。

2.若为非平稳序列,则利用差分变换成平稳序列。

3。

对平稳序列,计算相关系数和偏相关系数,确定模型。

4.估计模型参数,并检验其显著性及模型本身的合理性.5.检验模型拟合的准确性。

6.根据过去行为对将来的发展做出预测。

三、背景知识CPI(居民消费价格指数),是反映与居民生活有关的商品及劳务价格统计出来的物价变动指标,通常作为观察通货膨胀水平的重要指标.居民消费价格指数,是对一个固定的消费品篮子价格的衡量,主要反映消费者支付商品和劳务的价格变化情况,也是一种通货膨胀水平的工具。

一般来说,当CPI>3%的增幅时我们称为通货膨胀。

国外许多发达国家非常重视消费价格统计,美国、加拿大等国家都计算和公布每月经过季节调整的消费价格指数,以满足不同信息使用者的要求。

时间序列分析论文

时间序列分析论文

时间序列分析在我国居民消费价格指数预测上的引用摘要:时间序列是按照时间顺序取得的一系列数据,大多数的经济时间序列存在惯性,通过这种惯性分析可以由时间序列的历史数值对未来值进行预测。

文章主要利用时间序列的趋势外推方法对我国目前居民消费价格指数(CPI)进行了建模析和预测,以达到合理预期和分析的目的。

关键词:时间序列CPI 趋势预测1.我国居民消费价格指数的现状居民消费价格指数(Consumer Price Index,CPI)是一个反映居民家庭一般所购买的消费商品和服务价格水平变动情况的指标。

一般说来当CPI>3% 的增幅时我们称为通货膨胀;而当CPI>5% 的增幅时我们把他称为严重的通货膨胀。

如果消费价格指数升幅过大,表明通胀已经成为经济不稳定因素,央行会有紧缩货币政策和财政政策的风险,从而造成经济前景不明朗。

从国家统计局公布的2003年5月到2012年3月的数据可以明显的看出我国已经进入通货膨胀期,从2007年3月开始就超过3%的警戒线,然而从2007年7月开始更是每月都超过5%的严重通货膨胀的警戒线。

尽管国家已经采取了紧缩的货币政策如2007年6次上调存贷款基准利率;10次上调存款准备金率;加大央行票据发行力度和频率;以特别国债开展正回购操作等。

但是2011年3月以来我国还是维持在高的通货膨胀水平,因此进行居民消费价格指数的预测分析更显得尤为必要。

2.趋势模型的选择(时间数列分解模型)为了对我国CPI的变化有更加全面和深入的把握和认识,现观测从1994—2011年居民消费价格指数的全部数据,见表1。

表1 中国1994—2011 年居民消费价格指数由以上数据可以看出,因为居民消费价格指数受到如经济增长、特别是国家宏观货币政策等因素的影响,分析我国居民消费价格指数的变动不能简单地用一个线性模型来解释。

但是可以看出在一定的时期内,宏观经济波动不大的情况下,居民消费价格指数基本还是呈线性的。

因此笔者将这时间数列分段用线性模型分别分析居民消费价格指数在1994—1999 年、1999—2004年以及2004—2011 年这三个不同的经济状况下的变动情况。

基于时间序列分析对云南天气预测的本科论文

基于时间序列分析对云南天气预测的本科论文

基于时间序列分析对云南天气预测的本科论文为了科学地分析云南省的经济发展状况,本文基于时间序列分析,选取了居民消费价格指数(Consumer Price Index, CPI)这一衡量经济发展状况的指标,依据以上年同月为100的1998年1月至2021年9月的云南省居民消费价格指数(CPI)的同比月度数据,从实证的角度分析了此期间云南省居民消费价格指数的变化规律,并由此建立了一阶自回归模型(AR(1))。

通过对该模型进行拟合精度的检验后,发现相对误差均很小,因此对云南省2021年10月~2022年2月的CPI 进行了预测。

结果表明,未来5个月云南省的CPI呈现缓慢增长的趋势,并且增长幅度不超过0、105%,说明未来5个月云南省通货膨胀压力较小,物价水平比较稳定,经济前景较为明朗,其经济发展状况受疫情影响较小。

本文对预测未来云南省的居民消费价格指数和经济发展趋势提供了一定的参考价值和理论依据。

1、引言居民消费价格指数(Consumer Price Index, CPI)是一个宏观经济指标,它反映了居民生活中所购买的商品及劳务价格水平的变动情况[1]。

它涵盖了居民衣、食、住、行等各领域,同老百姓的生活水平密切相关。

它也是描述我国是否发生通货膨胀的一项重要指标,如果居民消费价格指数的增长幅度过大,表明当前经济发展状况不稳定,有发生通货膨胀的风险[2]。

政府可以通过分析该指标进行相应的决策分析,从而应对风险挑战。

因此它也是国家进行物价总水平监测与调控以及国民经济核算的重要指标,在整个国民经济价格体系中具有极其重要的地位。

云南省国土资源广袤,具有对外贸易交往的区位优势,接壤三个国家,拥有丰富的动植物资源,独具优势的特色产业,使得它的经济发展方式和经济结构也受到显著影响,随之而来给居民的生活方式和消费水平也带来一定程度的影响。

并且2019年底发生的新冠肺炎疫情给全国乃至全世界的经济发展都造成了巨大影响,本文研究云南省的居民消费价格指数,可以反映居民的实际生活水平和质量,同时还可以利用所建模型来预测和评估未来云南省居民的消费价格指数以及分析此次疫情对云南省的经济发展造成的影响,从而可以判断该地区未来的经济发展趋势,以便各级部门做出相应的分析与决策,居民也可以做好相应准备。

时间序列分析范文

时间序列分析范文时间序列分析是一种用来分析和预测时间序列数据的统计方法。

时间序列数据是按照时间顺序排列的观测数据,如股票价格、气温变化、销售数据等。

通过时间序列分析,我们可以了解时间序列数据的趋势、季节性变化和随机波动,以便做出准确的预测和决策。

首先,我们需要收集并整理时间序列数据。

数据可以通过实地观测、统计报告、调查问卷等方式获得。

数据的质量和准确性对于分析结果的可靠性至关重要。

接下来,我们需要对数据进行预处理。

这包括检查和处理数据中的缺失值、异常值和重复值。

同时,还需要进行数据的平稳性检验,即判断时间序列数据是否具有固定的均值和方差。

如果时间序列数据不平稳,需要进行差分或其他方法将其转化为平稳时间序列。

然后,我们可以选择适当的时间序列模型来拟合数据。

常用的时间序列模型包括移动平均模型(MA)、自回归模型(AR)、自回归移动平均模型(ARMA)和自回归积分移动平均模型(ARIMA)等。

选择合适的模型可以通过观察数据自相关图和偏自相关图,以及对各个模型的性质和参数估计方法的了解。

当模型被拟合后,我们还需要进行模型的检验和评估。

这包括检查模型的残差是否为白噪声序列,即不存在相关性和异方差性;评估模型的拟合优度和预测准确性。

常用的评估指标包括均方根误差(RMSE)、平均绝对百分比误差(MAPE)等。

最后,我们可以使用时间序列模型进行预测和决策。

预测是时间序列分析的主要目的之一,可以通过模型自动完成,也可以通过直观判断和经验方法进行。

预测结果可以用于制定生产计划、调整投资策略、优化供应链等。

时间序列分析在实际应用中有着广泛的应用。

在经济领域,时间序列分析可以用于预测股票价格、GDP增长、通胀率等,帮助决策者做出合理的经济政策。

在气象学中,时间序列分析可以用于预测天气变化,帮助人们做出出行计划。

在市场营销中,时间序列分析可以用于预测销售量、市场份额等,帮助企业做出营销决策。

总而言之,时间序列分析是一种重要的统计方法,被广泛应用于各个领域。

统计学专业优秀毕业论文范本经济数据的时间序列分析与

统计学专业优秀毕业论文范本经济数据的时间序列分析与预测在统计学专业的毕业论文中,经济数据的时间序列分析与预测是一个重要的研究方向。

本文将为大家提供一个优秀的论文范本,以展示在统计学专业中,如何进行经济数据的时间序列分析与预测。

一、引言经济数据是经济学研究的基础,而时间序列分析和预测是处理经济数据的重要方法之一。

时间序列分析旨在通过对历史数据的观察和分析,揭示数据内在的规律和趋势,为未来经济变化提供预测依据。

因此,时间序列分析在经济学中具有重要的研究价值和实际应用意义。

二、数据收集与整理经济数据的时间序列分析首先需要收集和整理相关的数据集。

收集数据的来源可以包括政府部门、研究机构、行业协会等。

在数据整理过程中,需要对数据进行清洗、处理异常值和缺失值,并将数据进行合适的时间区间划分。

三、时间序列模型的选择与建立时间序列模型是进行时间序列分析和预测的数学工具。

在选择时间序列模型时,需要根据数据的性质和特点进行合理的选择。

常用的时间序列模型包括ARMA模型、ARCH模型、GARCH模型等。

根据数据的特征,可以通过模型的拟合度、残差检验等指标进行模型的选择与建立。

四、模型参数估计与检验在时间序列模型建立完成后,需要对模型的参数进行估计和检验。

常用的参数估计方法包括极大似然估计、最小二乘估计等。

而模型的检验则可以通过残差分析、模型拟合度检验、序列平稳性检验等指标进行。

五、时间序列预测与评估时间序列预测是时间序列分析的重要任务之一。

通过对历史数据的观察和模型的建立,可以利用已有的信息对未来的经济发展进行预测。

常用的时间序列预测方法包括平滑法、回归法、ARIMA模型等。

在进行时间序列预测时,需要对预测结果进行评估,包括均方误差、平均绝对误差等指标。

六、实证分析与结果讨论在论文中,应该选取合适的经济数据进行实证分析,并对实证分析的结果进行详细的讨论和解释。

可以对模型的拟合度、稳定性、预测准确度等进行分析,并结合实际情况进行解释和推论。

时间序列分析课程论文

时间序列分析课程论文 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】对70个化学反应数据序列建立时间序列模型班级:统计二班姓名:李灿对70个化学反应数据序列建立时间序列模型一、数据平稳性检验(1)用时序图进行初步判断Xt时序图从时序图可以看出70个化学反应的数据是平稳的,但这个判断比较粗糙,需要用统计方法进一步验证。

(2)用序列相关性进行检验Xt自相关图从相关图看出,自相关系数从二阶后迅速衰减为0,说明序列是平稳的。

(3)对该序列做单位根检验检验结果如下图所示T检验统计量的相伴概率值很显着,说明不存在绝对值大于1的单位根,说明序列是平稳的。

二、对序列进行的随机性进行检验Xt自相关图最后一列白噪声检验的Q统计量和相应的伴随概率表明序列存在相关性,因此序列为非白噪声序列。

我们可以对序列采用B-J方法建模研究。

三、模型识别(即模型定阶)从自相关图可以看出自相关系数前两阶显着异于零外,其他都落入两倍标准差内,所以可以考虑用MA(2)拟合;偏自相关系数除了第一个显着异于零外,其他都落入两倍标准差内,且由非零转变为零的过程非常突然,所以可以尝试用AR(1)进行拟合;还可以考虑用ARMA(1,2)进行拟合。

对原序列做描述统计分析见图1,可见序列均值非0,我们通常对0均值平稳序列做建模分析,所以需要在原序列基础上生成一个新的0均值序列。

新序列的描述统计量见图2,相当于在原序列基础上作了个整体平移,所以统计特性没有发生根本改变。

我们对序列x进行分析。

Xt的描述统计量中心化处理后的Xt的描述统计图四、对模型的参数进行估计(1)尝试用AR(1)进行拟合从表中的数据可以看出T统计量的相伴概率非常显着,且模型的特征根在单位圆内,说明该过程是平稳的。

所以可得到如下AR(1)模型:(2)尝试用MA(2)模型进行拟合从表中可以看出MA(1)和MA(2)的相伴概率在显着性水平为的情况下是显着的,所以可以建立如下MA(2)模型(3)尝试建立ARMA(1,2)模型由参数估计结果看出,各系数均不显着,说明模型并不适合拟合ARMA(1,2) 模型。

时间序列 毕业论文

时间序列毕业论文时间序列是一种研究时间相关数据的统计方法,它在各个领域都有广泛的应用。

作为一种重要的数据分析工具,时间序列分析在经济学、金融学、气象学、环境科学等领域具有重要的研究价值和实际应用。

在经济学中,时间序列分析被广泛应用于经济预测、经济政策制定和经济波动研究等方面。

通过对历史数据进行分析和建模,可以预测未来的经济发展趋势,为政府和企业的决策提供科学的依据。

例如,通过对就业数据的时间序列分析,可以预测未来的就业趋势,为政府制定就业政策提供重要参考。

在金融学中,时间序列分析被广泛应用于股票价格预测、风险管理和投资组合优化等方面。

通过对历史股票价格数据的分析,可以发现价格的规律性和周期性,从而制定相应的投资策略。

例如,通过对股票价格的时间序列分析,可以发现股票价格存在一定的波动规律,从而在适当的时机进行买入和卖出,获取更好的投资回报。

在气象学中,时间序列分析被广泛应用于天气预测、气候变化研究和灾害预警等方面。

通过对历史气象数据的分析,可以预测未来的天气变化趋势,为农业生产、交通出行和防灾减灾提供重要参考。

例如,通过对气温、降水量等气象数据的时间序列分析,可以预测未来的气候变化趋势,为制定应对气候变化的政策提供科学依据。

在环境科学中,时间序列分析被广泛应用于环境监测、环境污染控制和自然资源管理等方面。

通过对历史环境数据的分析,可以发现环境变化的规律性和趋势,从而制定相应的环境保护和治理措施。

例如,通过对大气污染物浓度的时间序列分析,可以了解大气污染的季节性变化和长期趋势,为制定减排政策和改善空气质量提供科学依据。

总之,时间序列分析作为一种重要的数据分析方法,对于预测、决策和规划具有重要的意义。

它不仅可以帮助我们了解数据的变化规律和趋势,还可以为我们提供科学的决策依据。

在未来的研究中,我们可以进一步深化时间序列分析的方法和应用,为各个领域的发展和进步做出更大的贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于居民消费价格指数的时间序列分析摘要本文以我国1997年4月至2014年4月间每月的烟酒及用品类居民消费价格指数为原始数据,利用EVIEWS软件判断该序列为平稳序列且为非白噪声序列,通过对数据一系列的处理,建立AR(1)模型拟合时间序列,由于时间序列之间的相关关系和历史数据对未来的发展有一定的影响,对我国的烟酒及用品类居民消费价格指数进行了短期预测,阐述该价格指数所表现的变化规律。

关键字:烟酒及用品类居民消费价格指数,时间序列,AR模型,预测引言一、理论准备时间序列分析是按照时间顺序的一组数字序列。

时间序列分析就是利用这组数列,应用数理统计方法加以处理,以预测未来事物的发展。

时间序列分析是定量预测方法之一。

基本原理:1.承认事物发展的延续性。

应用过去数据,就能推测事物的发展趋势。

2.考虑到事物发展的随机性。

任何事物发展都可能受偶然因素影响,为此要利用统计分析中加权平均法对历史数据进行处理。

该方法简单易行,便于掌握,但准确性差,一般只适用于短期预测。

时间序列分析是根据系统观测得到的时间序列数据,通过曲线拟合和参数估计来建立数学模型的理论和方法。

二、基本思想1. 拿到一个观测值序列之后,首先判断它的平稳性,通过平稳性检验,判断序列是平稳序列还是非平稳序列。

2.若为非平稳序列,则利用差分变换成平稳序列。

3.对平稳序列,计算相关系数和偏相关系数,确定模型。

4.估计模型参数,并检验其显著性及模型本身的合理性。

5.检验模型拟合的准确性。

6.根据过去行为对将来的发展做出预测。

三、背景知识CPI(居民消费价格指数),是反映与居民生活有关的商品及劳务价格统计出来的物价变动指标,通常作为观察通货膨胀水平的重要指标。

居民消费价格指数,是对一个固定的消费品篮子价格的衡量,主要反映消费者支付商品和劳务的价格变化情况,也是一种通货膨胀水平的工具。

一般来说,当CPI>3%的增幅时我们称为通货膨胀。

国外许多发达国家非常重视消费价格统计,美国、加拿大等国家都计算和公布每月经过季节调整的消费价格指数,以满足不同信息使用者的要求。

经济学家用消费价格指数进行经济分析和利用时间序列构建经济模型。

总所周知,居民消费价格指数是反映一个国家或地区宏观经济运行状况好坏的必不可少的统计指标之一,是世界各国判断通货膨胀(紧缩)的主要标尺,是反映市场经济景气状态必不可少的经济晴雨表。

因此,我国也采用国际惯例,用消费价格指数作为判断通货膨胀的主要标尺。

由于CPI是反映社会经济现象的综合指标,对其定量分析必须建立在定性分析的基础上,因此CPI的预测趋势还要与国家宏观经济政策及我国市场的供求关系相结合。

如果消费价格指数升幅过大,表明通胀已经成为经济不稳定因素,央行会有紧缩货币政策和财政政策的风险,从而造成经济前景不明朗。

因此,该指数过高的升幅往往不被市场欢迎。

基于以上种种,CPI指数的预测对我国各方面显得尤为重要。

本文针对烟酒及用品类居民消费价格指数,分析其时间序列,并进行了相关预测。

模型的建立一、数据的选择:选取2007年4月—2014年4月的各个月份的烟酒及用品类居民消费价格指数,如表1所示:表1 烟酒及用品类居民消费价格指数时间指数时间指数时间指数时间指数2007.4 99.4 2009.2 103.2 2010.12 101.5 2012.1 103.4 2007.5 99.3 2009.3 103.3 2011.1 101.6 2012.11 103.4 2007.6 99.3 2009.4 103.4 2011.2 101.7 2012.12 103.3 2007.7 99.3 2009.5 103.6 2011.3 101.7 2013.1 103.12007.8 99.6 2009.6 103.7 2011.4 101.7 2013.2 103.1 2007.9 99.8 2009.7 103.7 2011.5 101.7 2013.3 102.8 2007.1 99.8 2009.8 103.9 2011.6 101.6 2013.4 102.6 2007.11 99.8 2009.9 103.8 2011.7 101.5 2013.5 102.5 2007.12 100 2009.1 103.7 2011.8 101.4 2013.6 102.4 2008.1 100.2 2009.11 103.4 2011.9 101.3 2013.7 102.1 2008.2 100.3 2009.12 102.9 2011.1 101.3 2013.8 101.7 2008.3 100.5 2010.1 102.8 2011.11 101.3 2013.9 101.8 2008.4 100.8 2010.2 102.7 2011.12 101.3 2013.1 101.7 2008.5 101 2010.3 102.6 2012.1 101.2 2013.11 101.7 2008.6 101.1 2010.4 102.4 2012.2 101.2 2013.12 101.7 2008.7 101.4 2010.5 102.1 2012.3 101.4 2014.1 101.8 2008.8 101.5 2010.6 101.9 2012.4 101.6 2014.2 101.7 2008.9 101.7 2010.7 101.8 2012.5 101.8 2014.3 101.7 2008.1 102 2010.8 101.8 2012.6 102 2014.4 101.7 2008.11 102.4 2010.9 101.6 2012.7 102.42008.12 103 2010.1 101.5 2012.8 102.92009.1 103.1 2010.11 101.4 2012.9 103.2数据来源:中国统计年鉴二、平稳性检验及修正1.时序图利用Eviews软件画出时序图,如图1.平稳的时间序列可以看做一条围绕其均值上下波动的曲线。

若时间序列的统计规律随着时间的位移而发生变化,则为非平稳序列。

X图1 原始数据的时序图由以上时序图可以看出序列上下波动明显,大致可判断不具有平稳性。

2.自相关图图2 序列的自相关图由图可以看出,自相关图呈正弦波指数衰减,为不平稳时间序列。

d进行单位根检验。

3.对原始数据进行一阶差分,并对差分后的序列{})(x一阶差分后的时序图,如图3:图3 一阶差分后的时序图由图3,可大致看出,一阶差分后,序列波动较稳,可能是平稳序列。

图4 一阶差分后的自相关图由上图可以看出,自相关图较快的减少至虚线内,可见,差分后的序列具有平稳性。

为了更加准确的判断一阶差分后的序列是否为平稳序列,下面对差分后的序列进行单位根检验。

图5 一阶差分的单位根检验由单位根检验结果可知,T统计量的值为-3.890147,比置信水平1%、5%和10%的临界值都要小,除此之外,05=p,所以拒绝原假设,不存在单位根,.0<.00032所以,一阶差分后的序列为平稳序列。

三、模型的建立与参数估计由图5的相关图可以看出,序列{})(xd的偏自相关函数具有一阶滞后截尾,自相关系数具有拖尾性,所以选择AR(1)模型并利用最小二乘法进行模拟。

图6 最小二乘法拟合AR(1)模型从拟合的结果来看,AR(1)的参数估计中关于自变量的估计值有0.05=,p<且T统计量的绝对值显著大于2,而AR(1)的参数估计中,0.05=,且T6152p>.0统计量的绝对值大于2,所以常数C的系数不显著,顾去掉常数C后重新建立模型。

图7 改进的拟合AR(1)模型此时,模型的特征值在单位元内,随意模型是平稳的,且模型的参数估计值的T 统计量的绝对值大于2,05.0<p ,所以模型是显著的,得到模型:t t x x ε+=-1688679.0模型的显著性检验一、残差检验下面对拟合后的模型进行残差检验,如图8:图8 残差检验从图8的真值、拟合值和残差图可以看出,模型的拟合效果较好,残差是围绕零均值随机波动的。

二、Q 检验图10 Q检验由残差序列的自相关系数与偏自相关系数的延迟K阶下的Q统计值的P值都显著大于0.05,可以认为该拟合模型的残差序列属于白噪声序列,即该拟合模型效果显著有效。

模型预测一.预测结果通过对AR(1)模型的预测可以得到2014年5月至2014年10月的烟酒及用品类居民消费价格指数预测值。

图11 预测动态图表2 未来6期预测值及置信上下限时间预测值95%置信下限95%置信上限2014.05 101.7268 101.5314709 101.9221219 2014.06 101.7536 101.4773311 102.0298686 2014.07 101.7804 101.4420066 102.1188142 2014.08 101.8072 101.4164208 102.198**** ****.09 101.8341 101.3970587 102.2710466 2014.1 101.8609 101.3821176 102.3396511二.结论分析由预测值可以看出,烟酒及用品类居民消费价格指数呈缓慢增长趋势,但增长幅度不大。

参考文献:[1]庞皓,《计量经济学》第二版,[M].北京.科学出版社出版,2013。

[2]中话人民共和国国家统计局/ 2013.[3]《应用时间序列分析》王燕编著,北京:中国人民大学出版社2005年7月第一版。

相关文档
最新文档