数学分析不定积分
陈纪修主编的《数学分析》(第2版)辅导书-第6章 不定积分【圣才出品】

第6章 不定积分6.1 复习笔记一、不定积分的概念和运算法则1.微分的逆运算——不定积分(1)原函数若在某个区间上,函数F (x )和f (x )成立关系F'(x )=f (x ),则称函数F (x )是f (x )的一个原函数。
(2)不定积分一个函数f (x )的原函数全体称为这个函数的不定积分,记作这里,“”称为积分号,f (x )称为被积函数,x 称为积分变量。
2.不定积分的线性性质若函数f (x )和g (x )的原函数都存在,则对任意常数k 1和k 2,函数k 1f(x )+k 2g (x)的原函数也存在,且有二、换元积分法和分部积分法1.换元积分法(1)在不定积分中,用u=g (x )对原式作变量代换,这时相应地有du=g'(x )dx ,于是,这个方法称为第一类换元积分法,也被俗称为“凑微分法”。
(2)找到一个适当的变量代换x=φ(t )(要求x=φ(t )的反函数t=φ-1(x )存在),将原式化为这个方法称为第二类换元积分法。
2.分部积分法对任意两个可微的函数u (x )、v (x ),成立关系式d[u (x )v (x )]=v (x )d[u (x )]+u(x)d[v (x )],两边同时求不定积分并移项,就有也即这就是分部积分公式。
三、有理函数的不定积分及其应用1.有理函数的不定积分(1)形如的函数称为有理函数,这里和分别是m 次和n 次多项式,n,m 为非负整数。
若m>n ,则称它为真分式;若m≤n,则称它为假分式。
(2)设有理函数是真分式,多项式有k 重实根α即则存在实数λ与多项的次数低于的次数,成立(3)设有理函数是真分式,多项式有l 重共轭复根,即其中则实数和多项式的次数低的次数,成立2.可化成有理函数不定积分的情况(1)类的不定积分。
这里R (u ,v )表示两个变量μ、υ的有理函数(即分子和分母都是关于u ,v的二元多项式)。
对作变量代换,则。
数学分析不定积分知识点总结

数学分析不定积分知识点总结不定积分是数学分析中的一个重要概念,它是微积分学的基础内容之一。
理解和掌握不定积分的相关知识对于进一步学习高等数学以及解决实际问题都具有重要意义。
下面我们将对不定积分的知识点进行详细总结。
一、不定积分的定义如果在区间\(I\)上,\(F'(x) = f(x)\),则称\(F(x)\)是\(f(x)\)在区间\(I\)上的一个原函数。
\(f(x)\)的原函数的全体称为\(f(x)\)在区间\(I\)上的不定积分,记为\(\int f(x)dx\)。
二、基本积分公式1、\(\int kdx = kx + C\)(\(k\)为常数)2、\(\int x^n dx =\frac{1}{n + 1}x^{n + 1} + C\)(\(n \neq -1\))3、\(\int \frac{1}{x}dx =\ln|x| + C\)4、\(\int e^x dx = e^x + C\)5、\(\int a^x dx =\frac{1}{\ln a}a^x + C\)(\(a >0\),\(a \neq 1\))6、\(\int \sin x dx =\cos x + C\)7、\(\int \cos x dx =\sin x + C\)8、\(\int \sec^2 x dx =\tan x + C\)9、\(\int \csc^2 x dx =\cot x + C\)10、\(\int \sec x \tan x dx =\sec x + C\)11、\(\int \csc x \cot x dx =\csc x + C\)这些基本积分公式是进行积分运算的基础,必须牢记。
三、不定积分的性质1、函数的和的不定积分等于各个函数不定积分的和,即\(\int f(x) + g(x)dx =\int f(x)dx +\int g(x)dx\)。
2、常数乘以函数的不定积分等于常数乘以该函数的不定积分,即\(\int kf(x)dx = k\int f(x)dx\)(\(k\)为常数)。
不定积分的概念及运算法则

y=x2
启示 结论
-1
O 1 C2 C3
于是所求曲线方程为
2
x
华东理工大学《数学分析》电子课件(§6.1)
10 / 18
华东理工大学《数学分析》电子课件(§6.1)
11 / 18
基本积分表:
(1) ( 2)
∫ kdx = k x + C ∫x
∫
μ
(8)
( k 为常数)
∫ cos 2 x = ∫ sec
即 Φ ( x) = F ( x) + C0 属于函数族 F ( x) + C .
华东理工大学《数学分析》电子课件(§6.1)
华东理工大学《数学分析》电子课件(§6.1)
4 / 18
5 / 18
定义 2 f (x) 在区间 I 上的原函数全体称为 f ( x) 在 I 上的不定积分, 记作 ∫ f ( x) d x , 其中
dx
2
xdx = tan x + C
例5. 求
dx =
μ +1
1
x μ +1 + C
( μ ≠ 1)
dx (9) ∫ 2 = ∫ csc 2 xdx = cot x + C sin x (10) (11) (12) (13) (14) (15)
12 / 18
∫x3 x .
∫x
4 3 1 3
3 dx = x 4 +C 3 +1
i =1 i i i =1 i i
n
n
ex 5 = 2x +C ln 2 + 1 ln 2
例8. 求 ∫ tan xdx .
2 2 解: 原式 = ∫ (sec x 1)dx
数学分析 不定积分概念与基本积分公式

xdx x1 C . 1
( 1)
启示 能否根据求导公式得出积分公式?
结论 既然积分运算和微分运算是互逆的, 因此可以根据求导公式得出积分公式.
基 (1) kdx kx C (k是常数);
本
积
(2)
xdx x1 C ( 1); 1
分 表
(3)
dx x
说明:
ln x x 0,
C;
dx x
ln
x
C
,
x 0, [ln( x)] 1 ( x) 1 ,
x
x
dx x
ln(
x
)
C
,
dx x
ln
|
x
|
C
,
简写为
dx x
ln
x
C.
(4)
1
1 x
2
dx
arctan
x
C;
(11) csc x cot xdx csc x C;
(12) e xdx e x C;
(13)
a
xdx
ax ln a
C;
(14) sinh xdx cosh x C;
(15) cosh xdx sinh x C;
例 求积分 x2 xdx.
(5)
1 dx arcsin x C; 1 x2
(6) cos xdx sin x C;
(7) sin xdx cos x C;
数学分析不定积分

8.1 不定积分概念与基本积分公式(2学时)【教学目的】深刻理解原函数与不定积分的概念;牢记基本积分表;掌握不定积分的线形运算法则。
【教学重点】不定积分的概念,基本积分表,不定积分的线形运算法则。
【教学难点】求不定积分的技巧。
【教学过程】一、原函数与不定积分(一) 原函数定义1 设函数与在区间)(x f )(x F I 上有定义。
若)()(x f x F =′, I x ∈,则称为在区间)(x F )(x f I 上的一个原函数。
如:331x 是在R 上的一个原函数;2x x 2cos 21−, 12cos 21+x ,,等都有是在R 上的原函数——若函数存在原函数,则其原函数不是唯一的。
x 2sin x 2cos −x 2sin )(x f 问题1 在什么条件下必存在原函数?若存在,其个数是否唯一;又若不唯一,则有多少个?)(x f 问题 2 若函数的原函数存在,如何将它求出?(这是本章的重点内容)。
)(x f 定理1 若在区间)(x f I 上连续,则在)(x f I 上存在原函数。
)(x F (证明在第九章中进行。
)说明:(1)由于初等函数在其定义域内都是连续的,故初等函数在其定义域内必存在原函数(但其原函数不一定仍是初等函数)。
(2)连续是存在原函数的充分条件,并非必要条件。
定理2 设是在在区间)(x F )(x f I 上的一个原函数,则(1)设是在在区间C x F +)()(x f I 上的原函数,其中C 为任意常量(若存在原函数,则其个)(x f数必为无穷多个)。
(2)在)(x f I 上的任何两个原函数之间,只可能相差上个常数(揭示了原函数间的关系)。
证:(i)这是因为[].),()()(I x x f x F C x F ∈=′=′+(ii)设F 和G 是f 在I 上的任意两个原函数,则有[]I x x f x f x G x F C x F ∈=−=′−′=′+,0)()()()()(根据第六章拉格朗日中值定理的推论,知道I x C x G x F ∈≡−,)()(. 口(二) 不定积分定义 2 函数在区间)(x f I 上的原函数的全体称为在)(x f I 上的不定积分,记作:∫dx x f )(其中∫积分号;被积函数; −−−−)(x f −−dx x f )(被积表达式;−−x 积分变量。
《数学分析1》知识点总结:第八章-不定积分

第八章不定积分一、不定积分概念与基本积分公式1.原函数与不定积分①定义1:设函数f 与F 在区间I 上都有定义,若F’(x)=f(x),x ∈I ,则称F 为f 在区间I 上的一个原函数。
②定理8.1:若函数f 在区间I 上连续,则f 在I 上存在原函数F ,即F’(x)=f(x),x ∈I 。
·不连续的函数也可以有原函数③定理8.2:设F 是f 在区间I 上的一个原函数,则(i)F+C 也是f 在I 上的原函数,其中C 为任意常量函数;(ii)f 在I 上的任意两个原函数之间,只可能相差一个常数。
④定义2:函数f 在区间I 上的全体原函数称为f 在I 上的不定积分,记作∫f(x)dx 。
·[∫f(x)dx]’=[F(x)+C]’=f(x);·d ∫f(x)dx=d[F(x)+C];⑤不定积分的几何意义:积分曲线2.基本积分表①∫0dx=C ;②∫1dx=∫dx=x+C ;③)0,1(11>-≠++=⎰+x C x dx x αααα;④)0(||ln 1≠+=⎰x C x dx x ;⑤∫e x dx=e x +C ;⑥)0,1(ln >≠+=⎰a C aa dx a xx α;⑦)0(sin 1cos ≠+=⎰αC ax a axdx ;⑧)0(cos 1sin ≠+-=⎰αC ax a axdx ;⑨∫sec 2xdx=tanx+C ;⑩∫csc 2xd1=-cotx+C ;⑪∫secx ·tanxdx=secx+C ;⑫∫cscx ·cotxdx=-cscx+C ;⑬12arccos arcsin 1C x C x x dx+-=+=-⎰;⑭12cot arctan 1C x arc C x x dx +-=+=+⎰。
⑮定理8.3:若函数f 与g 在区间I 上都存在原函数,k 1,k 2为两个任意常数,则k 1f+k 2g 在I 上也存在原函数,且当k 1和k 2不同时为零时,有∫[k 1f(x)+k 2g(x)]dx=k 1∫f(x)dx +k 2∫g(x)dx二、换元积分法与分部积分法1.换元积分法①定理8.4(第一换元积分法/凑微分法):设函数f(x)在区间I 上有定义,φ(t)在区间J 上可导,且φ(J)⊆I 。
数学分析第八章 不定积分

或 df (x) f (x) C.
精品文档
3 不定积分的几何意义 函数f(x)的原函数的图形称 为f(x)的积分曲线。 函数f(x)的积分曲线有无限 多条。函数f(x)的不定积分 表示f(x)的一簇积分曲线, 而f(x)正是积分曲线的斜率。
结论: 若函数F为f 在区间I上的一个原函数,则 {F(x) c | c R}为f 在I上的原函数全体.
精品文档
(二) 不定积分
1. 定义2:函数f (x)在区间I上的全体原函数, 称 为f 在I上的不定积分,记作
f (x)dx
(3)
积分号 被积函数 积分变量
注1. 符号 f (x)dx 是一个整体记号.
1 (102x 102x ) 2x c 2 ln 10
精品文档
8) sec2 xdx tanx C
8 (tanx)' sec2 x
9) csc2 xdx cotx C 9 (cotx)' csc2 x
10) dx arcsin x C 10 (arcsin x)' 1
1 x2
1 x2
11)
dx 1 x2
arctanx C
11
(f g) = f g + f g ,
(f [ ]) = f [ ] 这些计算方法加上基本初等函数的导数公式, 我们可以解决初等函数的求导问题,即是,若 f 为 初等函数, f 的表达式能求出.
精品文档
我们现在来研究第五章求导问题的逆问题。
问题:在已知 f 的表达式时,f 的表 达式是什么形式呢?
1 (arctanx)' 1 x2
精品文档
数学分析第八章不定积分

数 , 则 k1 f + k2 g 在 I 上也存在原函数 , 且
∫ ∫ ∫ [ k1 f ( x ) + k2 g( x) ] d x = k1 f ( x) d x + k2 g( x ) d x .
( 5)
证 这是因为
∫ ∫ ∫ ∫ k1 f ( x )d x + k 2 g( x) d x ′= k1 f ( x )d x ′+ k 2 g( x) d x ′
知函数 .提出这个逆问题 , 首先是因为它出现在许多实际问题之中
.例如 : 已知速
度求路程 ; 已知加速度求速度 ; 已知曲线 上每一 点处 的切线 斜率 ( 或斜率 所满 足
的某一规律 ) , 求曲线方程等等 .本章与 其后两 章 ( 定 积分与 定积 分的 应用 ) 构 成
一元函数积分学 .一 原函数与不定积分源自(2 , 5) .3 . 验证
y=
x
2
sgn
x
是
| x| 在
∫ v( t) = ad t = at + C .
若已知 v( t0 ) = v0 , 代入上式后确定积分常数 C = v0 - at0 , 于是就有
v( t ) = a( t - t0 ) + v 0 . 又因 s′( t) = v( t ) , 所以又有
∫ s( t) = [ a( t - t 0 ) + v 0] d t
2 (-
1 cos 2x
都是 )′=
sin 2 x 在 ( - ∞ , + ∞ ) 上的原函数 ( - 1 cos 2 x + 1)′= sin 2 x .
, 因为
2
2
如果这些简单的例子都可从基本求导公式反推而得的话
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八5章不定积分教学要求:1.积分法是微分法的逆运算。
要求学生:深刻理解不定积分的概念,掌握原函数与不定积分的概念及其之间的区别;掌握不定积分的线性运算法则,熟练掌握不定积分的基本积分公式。
2.换元积分公式与分部积分公式在本章中处于十分重要的地位。
要求学生:牢记换元积分公式和选取替换函数(或凑微分)的原则,并能恰当地选取替换函数(或凑微分),熟练地应用换元积分公式;牢记分部积分公式,知道求哪些函数的不定积分运用分部积分公式,并能恰当地将被积表达式分成两部分的乘积,熟练地应用分部积分公式;独立地完成一定数量的不定积分练习题,从而逐步达到快而准的求出不定积分。
3.有理函数的不定积分是求无理函数和三角函数有理式不定积分的基础。
要求学生:掌握化有理函数为分项分式的方法;会求四种有理最简真分式的不定积分,知道有理函数的不定积分(原函数)还是初等函数;学会求某些有理函数的不定积分的技巧;掌握求某些简单无理函数和三角函数有理式不定积分的方法,从理论上认识到这些函数的不定积分都能用初等函数表示出来。
教学重点:深刻理解不定积分的概念;熟练地应用换元积分公式;熟练地应用分部积分公式;教学时数:18学时§ 1 不定积分概念与基本公式( 4学时)教学要求:积分法是微分法的逆运算。
要求学生:深刻理解不定积分的概念,掌握原函数与不定积分的概念及其之间的区别;掌握不定积分的线性运算法则,熟练掌握不定积分的基本积分公式。
教学重点:深刻理解不定积分的概念。
一、新课引入:微分问题的反问题,运算的反运算.二、讲授新课:(一)不定积分的定义:1.原函数:例1填空: ; ( ;; ; ;.定义. 注意是的一个原函数.原函数问题的基本容:存在性,个数,求法.原函数的个数:Th 若是在区间上的一个原函数, 则对,都是在区间上的原函数;若也是在区间上的原函数,则必有. ( 证 )可见,若有原函数,则的全体原函数所成集合为{│R}.原函数的存在性: 连续函数必有原函数. ( 下章给出证明 ).可见, 初等函数在其定义域有原函数; 若在区间上有原函数, 则在区间上有介值性.例2. 已知为的一个原函数, =5 . 求.2.不定积分——原函数族:定义;不定积分的记法;几何意义.例3 ; .(二)不定积分的基本性质: 以下设和有原函数.⑴ .(先积分后求导, 形式不变应记牢!).⑵.(先求导后积分, 多个常数需当心!)⑶时,(被积函数乘系数,积分运算往外挪!)⑷由⑶、⑷可见, 不定积分是线性运算, 即对, 有( 当时,上式右端应理解为任意常数. )例4 . 求 . (=2 ).(三). 不定积分基本公式:基本积分表. [1]P180—公式1—14.例5 .(四).利用初等化简计算不定积分:例6. 求.例7.例8.例9.例10 ⑴; ⑵例11 .例12 .三、小结§2换元积分法与分部积分法(1 0 学时)教学要求:换元积分公式与分部积分公式在本章中处于十分重要的地位。
要求学生:牢记换元积分公式和选取替换函数(或凑微分)的原则,并能恰当地选取替换函数(或凑微分),熟练地应用换元积分公式;牢记分部积分公式,知道求哪些函数的不定积分运用分部积分公式,并能恰当地将被积表达式分成两部分的乘积,熟练地应用分部积分公式;独立地完成一定数量的不定积分练习题,从而逐步达到快而准的求出不定积分。
教学重点:熟练地应用换元积分公式;熟练地应用分部积分公式;一、新课引入:由直接积分的局限性引入二、讲授新课:(一). 第一类换元法——凑微分法:由引出凑微公式.Th1若连续可导, 则该定理即为:若函数能分解为就有.例1 .例3常见微分凑法:凑法1例4例5例6例7由例4—7可见,常可用初等化简把被积函数化为型,然后用凑法1.例8⑴. ⑵.凑法2 . 特别地, 有.和 .例9 .例10例11 .例12=.例13 ⑴⑵例14例15 .例16凑法4 .例17凑法5例18凑法6.例19.其他凑法举例:例20.例21例22.例23 .例24 .例25例26 .三、小结(二)第二类换元法——拆微法:从积分出发,从两个方向用凑微法计算,即= ==引出拆微原理.Th2 设是单调的可微函数,并且又具有原函数. 则有换元公式(证)常用代换有所谓无理代换, 三角代换, 双曲代换, 倒代换, 万能代换, Euler代换等.我们着重介绍三角代换和无理代换.1. 三角代换:⑴正弦代换: 正弦代换简称为“弦换”. 是针对型如的根式施行的, 目的是去掉根号. 方法是: 令, 则例27解法一直接积分; 解法二用弦换.例28.例29.⑵正切代换: 正切代换简称为“切换”. 是针对型如的根式施行的, 目的是去掉根号. 方法是: 利用三角公式即令. 此时有变量还原时, 常用所谓辅助三角形法.例30.解令有. 利用例22的结果, 并用辅助三角形, 有==例31⑶正割代换: 正割代换简称为“割换”. 是针对型如的根式施行的, 目的是去掉根号. 方法是: 利用三角公式令有变量还愿时, 常用辅助三角形法.例32解.例33.解法一(用割换)解法二(凑微)2.无理代换:若被积函数是的有理式时, 设为的最小公倍数,作代换, 有.可化被积函数为的有理函数.例34 .例35.若被积函数中只有一种根式或可试作代换或. 从中解出来.例36 .例37例38 (给出两种解法)例39.本题还可用割换计算, 但较繁.3.双曲代换:利用双曲函数恒等式 , 令 , 可去掉型如的根式. . 化简时常用到双曲函数的一些恒等式, 如:例40.本题可用切换计算,但归结为积分, 该积分计算较繁. 参阅后面习题课例3.例41解.例42.解4.倒代换: 当分母次数高于分子次数, 且分子分母均为“因式”时, 可试用倒代换例43.5.万能代换: 万能代换常用于三角函数有理式的积分(参[1]P261). 令,就有,,例44.解法一 ( 用万能代换 ) .解法二( 用初等化简 ) .解法三 ( 用初等化简, 并凑微 )例45解=.代换法是一种很灵活的方法.三、小结(三). 分部积分法:导出分部积分公式.介绍使用分部积分公式的一般原则.1. 幂X型函数的积分: 分部积分追求的目标之一是: 对被积函数两因子之一争取求导, 以使该因子有较大简化, 特别是能降幂或变成代数函数. 代价是另一因子用其原函数代替( 一般会变繁 ), 但总体上应使积分简化或能直接积出. 对“幂”型的积分, 使用分部积分法可使“幂”降次, 或对“”求导以使其成为代数函数.例46 (幂对搭配,取对为u)例47 (幂三搭配,取幂为u)例48 (幂指搭配,取幂为u)例49 (幂指搭配,取幂为u)例50例51 (幂反搭配,取反为u)例522建立所求积分的方程求积分:分部积分追求的另一个目标是: 对被积函数两因子之一求导, 进行分部积分若干次后, 使原积分重新出现, 且积分前的符号不为 1. 于是得到关于原积分的一个方程. 从该方程中解出原积分来.例53例54 求和解解得例55解 ==(参阅例41)解得例56 =,解得 .例57==,解得 .三、小结§ 3 有理函数和可化为有理函数的积分( 2学时 )教学要求:有理函数的不定积分是求无理函数和三角函数有理式不定积分的基础。
要求学生:掌握化有理函数为分项分式的方法;会求四种有理最简真分式的不定积分,知道有理函数的不定积分(原函数)还是初等函数;学会求某些有理函数的不定积分的技巧;掌握求某些简单无理函数和三角函数有理式不定积分的方法,从理论上认识到这些函数的不定积分都能用初等函数表示出来。
教学重点:使学生掌握化有理函数为分项分式的方法;求四种有理最简真分式的不定积分,学会求某些有理函数的不定积分的技巧;求某些简单无理函数和三角函数有理式不定积分的方法,从理论上认识到这些函数的不定积分都能用初等函数表示出来。
一、新课引入:由积分应用的广泛性引入二、讲授新课:(一)有理函数的积分:1. 代数知识: [1]P190例1 [1]P190,2. 部分分式的积分: [1]P192例2 [1]P192例3 [2]P260 E3.(二). 三角函数有理式的积分: [1]P194 万能代换.例4—5 [1]P195——(三)某些无理函数的积分: [1]P195——198(四)一些不能用初等函数有限表达的积分:等.习题课 ( 2学时 )一. 积分举例 :例1 .例2 .例3例4 已知求例5 求例6设且具有连续导函数. 计算积分例7 , 求积分二.含有二次三项式的积分:例8 ==.例9==.。