概率统计-习题及答案(7)
北邮版概率论标准答案(7)

习题七1.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩法估计.【解】1(),(),E X np E X A X ===因此np =X所以p 的矩估计量 ˆXpn= 2.设总体X 的密度函数f (x ,θ)=22(),0,0,.x x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为其样本,试求参数θ的矩法估计. 【解】23022022()()d ,233x x E X x x x θθθθθθθ⎛⎫=-=-= ⎪⎝⎭⎰令E (X )=A 1=X ,因此3θ=X 所以θ的矩估计量为 ^3.X θ=3.设总体X 的密度函数为f (x ,θ),X 1,X 2,…,X n 为其样本,求θ的极大似然估计.(1) f (x ,θ)=,0,0,0.e x x x θθ-⎧≥⎨<⎩(2) f (x ,θ)=1,01,0,.x x θθ-⎧<<⎨⎩其他【解】(1) 似然函数111(,)ee eniii n nx x nn ii i L f x θθθθθθ=---==∑===∏∏1ln ln ni i g L n x θθ===-∑由1d d ln 0d d ni i g L n x θθθ===-=∑知 1ˆnii nxθ==∑所以θ的极大似然估计量为1ˆXθ=.(2) 似然函数11,01nni i i L x x θθ-==<<∏g,i =1,2,…,n.1ln ln (1)ln ni i L n x θθ==+-∏由1d ln ln 0d ni i L nx θθ==+=∏知 11ˆln ln nniii i n nxx θ===-=-∑∏所以θ的极大似然估计量为 1ˆln nii nxθ==-∑求这批股民的收益率的平均收益率及标准差的矩估计值. 【解】 0.094x =- 0.101893s = 9n =¶0.094.EXx ==- 由222221()()[()],()ni i x E X D X E X E X A n==+==∑知222ˆˆ[()]E X A σ+=,即有 ˆσ=于是 ˆ0.101890.0966σ=== 所以这批股民的平均收益率的矩估计值及标准差的矩估计值分别为-0.94和0.966. 5.随机变量X 服从[0,θ]上的均匀分布,今得X 的样本观测值:0.9,0.8,0.2,0.8,0.4,0.4,0.7,0.6,求θ的矩法估计和极大似然估计,它们是否为θ的无偏估计. 【解】(1) ()2E X θ=,令()E X X =,则ˆ2X θ=且ˆ()2()2()E E X E X θθ===, 所以θ的矩估计值为ˆ220.6 1.2x θ==⨯=且ˆ2X θ=是一个无偏估计.(2) 似然函数8811(,)i i L f x θθ=⎛⎫== ⎪⎝⎭∏,i =1,2, (8)显然L =L (θ)↓(θ>0),那么18max{}i i x θ≤≤=时,L =L (θ)最大,所以θ的极大似然估计值ˆθ=0.9. 因为E(ˆθ)=E (18max{}i i x ≤≤)≠θ,所以ˆθ=18max{}ii x ≤≤不是θ的无偏计. 6.设X 1,X 2,…,X n 是取自总体X 的样本,E (X )=μ,D (X )=σ2,2ˆσ=k 1211()n i i i X X -+=-∑,问k 为何值时2ˆσ为σ2的无偏估计. 【解】令 1,i i i Y X X +=-i =1,2,…,n -1,则 21()()()0,()2,i i i i E Y E X E X D Y μμσ+=-=-==于是 1222211ˆ[()](1)2(1),n ii E E k Yk n EY n k σσ-===-=-∑那么当22ˆ()E σσ=,即222(1)n k σσ-=时, 有 1.2(1)k n =-7.设X 1,X 2是从正态总体N (μ,σ2)中抽取的样本112212312211311ˆˆˆ;;;334422X X X X X X μμμ=+=+=+ 试证123ˆˆˆ,,μμμ都是μ的无偏估计量,并求出每一估计量的方差. 【证明】(1)11212212121ˆ()()(),333333E E X X E X E X μμμμ⎛⎫=+=+=+= ⎪⎝⎭21213ˆ()()()44E E X E X μμ=+=, 31211ˆ()()(),22E E X E X μμ=+= 所以123ˆˆˆ,,μμμ均是μ的无偏估计量. (2) 22221122145ˆ()()(),3399D D X D X X σμσ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭222212135ˆ()()(),448D D X D X σμ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭()223121ˆ()()(),22D D X D X σμ⎛⎫=+= ⎪⎝⎭8.某车间生产的螺钉,其直径X ~N (μ,σ2),由过去的经验知道σ2=0.06,今随机抽取6枚,测得其长度(单位mm )如下:14.7 15.0 14.8 14.9 15.1 15.2 试求μ的置信概率为0.95的置信区间. 【解】n =6,σ2=0.06,α=1-0.95=0.05,0.25214.95, 1.96,a x u u ===,μ的置信度为0.95的置信区间为/2(14.950.1 1.96)(14.754,15.146)x u α⎛±=±⨯= ⎝.9.总体X ~N (μ,σ2),σ2已知,问需抽取容量n 多大的样本,才能使μ的置信概率为1-α,且置信区间的长度不大于L ?【解】由σ2已知可知μ的置信度为1-α的置信区间为/2x u α⎛± ⎝,/2u α,/2u α≤L ,得n ≥22/224()u L ασ 10.设某种砖头的抗压强度X ~N (μ,σ2),今随机抽取20块砖头,测得数据如下(kg ·cm -2):64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1) 求μ的置信概率为0.95的置信区间. (2) 求σ2的置信概率为0.95的置信区间. 【解】76.6,18.14,10.950.05,20,x s n α===-==/20.025222/20.0250.975(1)(19) 2.093,(1)(19)32.852,(19)8.907t n t n ααχχχ-==-===(1) μ的置信度为0.95的置信区间/2(1)76.6 2.093(68.11,85.089)a x n ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭(2)2σ的置信度为0.95的置信区间222222/21/2(1)(1)1919,18.14,18.14(190.33,702.01)(1)(1)32.8528.907n s n s n n ααχχ-⎛⎫--⎛⎫=⨯⨯= ⎪⎪--⎝⎭⎝⎭ 11.设总体X ~f (x )=(1),01;10,.x x θθθ⎧+<<>-⎨⎩其中其他X 1,X 2,…,X n 是X 的一个样本,求θ的矩估计量及极大似然估计量.【解】(1)1101()()d (1)d ,2E X xf x x x x θθθθ+∞+-∞+==+=+⎰⎰ 又1(),2X E X θθ+==+ 故21ˆ1X Xθ-=-所以θ的矩估计量 21ˆ.1X Xθ-=- (2) 似然函数11(1) 01(1,2,,)()()0n n ni i i i i x x i n L L f x θθθ==⎧+<<=⎪===⎨⎪⎩∏∏L 其他. 取对数11ln ln(1)ln (01;1),d ln ln 0,d 1nii i ni i L n x x i n L n x θθθθ===++<<≤≤=+=+∑∑所以θ的极大似然估计量为1ˆ1.ln nii nXθ==--∑12.设总体X ~f (x )= 36(),0;0,.xx x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为总体X 的一个样本(1) 求θ的矩估计量ˆθ; (2) 求ˆ()D θ.【解】(1) 236()()d ()d ,2x E X xf x x x x θθθθ+∞-∞=-=⎰⎰令 ,2EX X θ==所以θ的矩估计量 ˆ2.X θ= (2)4ˆ()(2)4(),D D X D X DX nθ===, 又322236()63()d ,2010x x E X x θθθθθ-===⎰于是222223()()(),10420D XE X EX θθθ=-=-=,所以2ˆ().5D nθθ=13.设某种电子元件的使用寿命X 的概率密度函数为f (x ,θ)= 2()2,;0,.x x x θθθ--⎧>⎨≤⎩e其中θ(θ>0)为未知参数,又设x 1,x 2,…,x n 是总体X 的一组样本观察值,求θ的极大似然估计值.【解】似然函数12()12e 0;1,2,,;()0ln ln 22(),;1,2,,,ni i x n i n i i i x i n L L L n x x i n θθθθ=--=⎧∑⎪⋅≥===⎨⎪⎩=--≥=∑L L 其他.由d ln 20ln (),d Ln L θθ=>↑知 那么当01ˆˆmin{}ln ()max ln ()ii nx L L θθθθ>≤≤==时 所以θ的极大似然估计量1ˆmin{}ii nx θ≤≤=其中θ(0<θ<12)是未知参数,利用总体的如下样本值3,1,3,0,3,1,2,3,求θ的矩估计值和极大似然估计值. 【解】813ˆ(1)()34,()4 28ii x E X E X x x x θθ=-=-====∑令得又 所以θ的矩估计值31ˆ.44x θ-== (2) 似然函数86241(,)4(1)(12).ii L P x θθθθ===--∏2ln ln 46ln 2ln(1)4ln(1),d ln 628628240,d 112(1)(12)L L θθθθθθθθθθθθ=++-+--+=--==---- 解2628240θθ-+=得1,272θ=. 由于71,122> 所以θ的极大似然估计值为7ˆ2θ-=15.设总体X 的分布函数为F (x ,β)=1,,0,.x xx ββααα⎧->⎪⎨⎪≤⎩其中未知参数β>1,α>0,设X 1,X 2,…,X n 为来自总体X 的样本(1) 当α=1时,求β的矩估计量;(2) 当α=1时,求β的极大似然估计量; (3) 当β=2时,求α的极大似然估计量. 【解】当α=1时,11,1;(,)(,1,)0,1.x x f x F x x x ββββ+⎧≥⎪==⎨⎪<⎩当β=2时, 2132,;(,)(,,2)0,.x x f x F x x x ααααα⎧≥⎪==⎨⎪<⎩(1) 111()d 11E X x x x βββββββ+∞-+∞===--⎰令()E X X =,于是ˆ,1XX β=- 所以β的矩估计量ˆ.1XX β=- (2) 似然函数(1)1111,1,(1,2,,);()(,)0,.ln ln (1)ln ,d ln ln 0,d n n ni i i i i ni i ni i x x i n L L f x L n x L n x ββββββββ-+====⎧⎛⎫>=⎪ ⎪===⎨⎝⎭⎪⎩=-+=-=∏∏∑∑L 其他所以β的极大似然估计量1ˆ.ln nii nxβ==∑(3) 似然函数23112,,(1,2,,);(,)0,.n ni nn i i i i x i n L f x x ααα==⎧≥=⎪⎪⎛⎫==⎨ ⎪⎝⎭⎪⎪⎩∏∏L 其他 显然(),L L α=↑那么当1ˆmin{}i i nx α≤≤=时,0ˆ()max ()a L L L αα>== , 所以α的极大似然估计量1ˆmin{}i i nx α≤≤=. 16.从正态总体X ~N (3.4,62)中抽取容量为n 的样本,如果其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问n 至少应取多大?2/2()d zt z t ϕ-=⎰【解】26~3.4,X N n ⎛⎫⎪⎝⎭,则~(0,1),X Z N = {1.4 5.4}33210.95333Z P X P PZ ΦΦΦ<<<<=⎧=-<<⎨⎩⎭⎛⎫⎛⎛⎫=-=-≥- ⎪ ⎪⎝⎭⎝⎭⎝⎭于是0.975Φ≥ 1.96≥, ∴ n ≥35.17. 设总体X 的概率密度为f (x ,θ)=,01,1,12,0,.x x θθ<<⎧⎪-≤<⎨⎪⎩其他 其中θ是未知参数(0<θ<1),X 1,X 2,…,X n 为来自总体X 的简单随机样本,记N 为样本值x 1,x 2,…,x n 中小于1的个数.求: (1) θ的矩估计;(2) θ的最大似然估计. 解 (1) 由于121(;)d d (1)d EX xf x x x x x x θθθ+∞-∞==+⎰⎰⎰-133(1)222θθθ=+-=-. 令32X θ-=,解得32X θ=-, 所以参数θ的矩估计为$32X θ=-. (2) 似然函数为1()(;)(1)nN n N i i L f x θθθθ-===-∏,取对数,得ln ()ln ()ln(1),L N n N θθθ=+--两边对θ求导,得d ln ().d 1L N n Nθθθθ-=-- 令 d ln ()0,d L θθ=得 Nnθ=,所以θ的最大似然估计为$Nnθ=. 18.设12,,,n X X X L 是总体2(,)N μσ的简单随机样本.记222211111,(),.1n n i ii i X X S X X T X S n n n====-=--∑∑ (1)证明T 是2μ的无偏估计量; (2)当0,1μσ==时,求D(T).分析 根据无偏估计的定义求E(T)即可证明(1).(2)可用方差的计算公式或统计量的分布的定义和性质求解. 证(1)因为222222222211()()1()E T E X S E X ES n nE X DX ES nnnσσμμ=-=-=+-=+-= 所以T 是2μ的无偏估计量.解(2) 解法1 当0,1μσ==时,有222222222222221()()1111[(1)](1)11121222(1)(1).(1)1(1)D T D X S n DX DS D D n S n n n n n n n n n n n n =-=+=+--=+-=+=---g g g g 解法2 22()()()D T E T E T =- 22()0()1E T E S σ===42224221()()()()()()D T E T E X E X E S E S n n==-+其中4222()()()E X D X E X =+222222222)[()()]1[()]1132()D X D X E X D D X n n n n=++=+=+=g 4222()()()E S D S E S =+ 222211[(1)](1)2(1)11(1)1D n S n n n n n =+---+=+=-- 22321112()11(1)n D T n n n n n n n +∴=-⨯⨯+⨯=--19.设总体X 的概率密度为1,0,21(,),1,2(1)0x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他.其中参数θ(0<θ<1)未知,12,,,n X X X L 是来自总体X 的简单随机样本,X 是样本均值.(1)求参数θ的矩估计量θ∧;(2)判断24X 是否为2θ的无偏估计量,并说明理由.分析 利用矩估计原理 11u A ∧=可求出θ的矩估计量,再求2(4)E X 判断24X 是否为2θ的无偏估计量.解 (1) ()(;)E X xf x dx θ+∞-∞=⎰ 101.22(1)42x x dx dx θθθθθ=+=+-⎰⎰ 令 2()X E X =,即142X θ=+,得θ的矩估计量为12.2X θ∧=- (2)因为 222(4)44[()]E X EX DX EX ==+221114[()()]4241()4D X n D X n θθθ=++=+++ 又 ()0,0,D X θ≥>所以 22(4)E X θ>,即 22(4),E X θ≠因此 24X 不是2θ的无偏估计量.。
中北大学概率统计习题册第七章完整答案

第七章 参数估计1.设总体X 的密度函数为⎩⎨⎧<<+θ=θ其它010)1()(x x x f ,其中1->θ是未知参数,n X X X ,,,21Λ为取自总体X 的容量为n 的随机样本。
(1)求θ的矩估计量;解:由()101(1)d 2E X x x x θθθθ+=+=+⎰得 ()()211E X E X θ-=-所以,θ的矩估计量为XX --=112ˆθ; (2)求θ的极大似然估计量。
解:θ的似然函数为1()(1)nii L x θθθ==+∏取对数得对数似然函数()1ln ()ln 1ln ni i L n x θθθ==++∑令1d ln ()ln 0d 1ni i L nx θθθ==+=+∑ 得θ的极大似然估计量为∑=--=ni iX n1ln 1ˆθ2.设总体X 的概率密度为其中0>θ未知,从总体中抽取简单随机样本n X X X ,,,21Λ.(1)求θ的矩估计量;解:由()()212e d 2x E X x x θθθ+∞--==+⎰ 得()12E X θ=-所以θ的矩估计量为1ˆ2X θ=-; (2)求θ的极大似然估计量。
解:θ的似然函数为2()1()2i nx i L e θθ--==∏1222,,1,2,,nii x n n i eex i n θθ=-∑=≤=L是θ的增函数,而{}1min i i nx θ≤≤≤,所以θ的极大似然估计为 {}1ˆmin ii nX θ≤≤=。
3.设),,,(21n X X X Λ为来自总体),0(~2σN X 的一个样本,求2σ的极大似然估计并检验其是否为无偏估计。
解:2σ的似然函数为22221()i x ni L σσ-==对数似然函数为()222211ln ()ln 2πln 222n i i n n L x σσσ==---∑令222241d ln ()20d 2nii L n xσσσσ==-+=∑得2σ的极大似然估计量为2211ˆn i i X n σ==∑ 由于()()222iiE X D X σ== ,所以()()22211ˆni i E E X n σσ===∑ ()22()0x ex f x x θθθ--⎧>⎪=⎨≤⎪⎩这表明2211ˆn i i X n σ==∑是2σ的无偏估计。
《概率统计》练习题及参考答案

习题一 (A )1.写出下列随机试验的样本空间: (1)一枚硬币连抛三次;(2)两枚骰子的点数和;(3)100粒种子的出苗数;(4)一只灯泡的寿命。
2. 记三事件为C B A ,,。
试表示下列事件:(1)C B A ,,都发生或都不发生;(2)C B A ,,中不多于一个发生;(3)C B A ,,中只有一个发生;(4)C B A ,,中至少有一个发生; (5)C B A ,,中不多于两个发生;(6)C B A ,,中恰有两个发生;(7)C B A ,,中至少有两个发生。
3.指出下列事件A 与B 之间的关系:(1)检查两件产品,事件A =“至少有一件合格品”,B =“两件都是合格品”; (2)设T 表示某电子管的寿命,事件A ={T >2000h },B ={T >2500h }。
4.请叙述下列事件的互逆事件:(1)A =“抛掷一枚骰子两次,点数之和大于7”; (2)B =“数学考试中全班至少有3名同学没通过”; (3)C =“射击三次,至少中一次”;(4)D =“加工四个零件,至少有两个合格品”。
5.从一批由47件正品,3件次品组成的产品中,任取一件产品,求取得正品的概率。
6.电话号码由7个数字组成,每个数字可以是9,,1,0 中的任一个,求:(1)电话号码由完全不相同的数字组成的概率;(2)电话号码中不含数字0和2的概率;(3)电话号码中4至少出现两次的概率。
7.从0,1,2,3这四个数字中任取三个进行排列,求“取得的三个数字排成的数是三位数且是偶数”的概率。
8.从一箱装有40个合格品,10个次品的苹果中任意抽取10个,试求:(1)所抽取的10个苹果中恰有2个次品的概率;(2)所抽取的10个苹果中没有次品的概率。
9.设A ,B 为任意二事件,且知4.0)()(==B p A p ,28.0)(=B A p ,求)(B A p ⋃;)(A B p 。
10.已知41)(=A p ,31)(=AB p ,21)(=B A p ,求)(B A p ⋃。
概率论与数理统计习题及答案第七章

习题7-11.选择题(1)设总体X 的均值口与方差 /都存在但未知,而X 1,X 2,L ,X n 为来自X 的样本,则均值 口与方差 (T 2的矩估计量分别是 ().(A) X 和(B)1 nX 和—(Xn i 1i )2.(C)口和 2(T・1 (D) X 和一 nn(X ii 1 x)2.解 选(D).(2) 设X : U[0,],其中 e >0为未知参数,又X ,,X 2,L ,X n 为来自总体X 的样本 ,则e 的矩估计量是().(A) X . (B)2X . (C)max{X i }.(D)mi^X i}.解选(B).2.设总体X 其中0v B v 为未知参数,X1, X 2,…,X.为来自总体X 的样本,试求e 的矩 估计量.解 因为 E (X )=(- 2)x3 e +1x (1 -4 e )+5x e =1-5 e ,令 1 5 X 得到的矩估计量为3.设总体X 的概率密度为f(x ;)(1)x ,0 x 1,0,其它•其中 0> -1是未知参数,X ,冷… ,X n 是来自 X 的容量为n 的简单随机样本求:(1) 的矩估计量;⑵ 0的极大似然估计量•解 总体X 的数学期望为-19 2X 1令E(X) X ,即一1 X,得参数B 的矩估计量为?•21 X设X 1, X 2,…,x n 是相应于样本X 1, X 2,…,X n 的一组观测值,则似然函 数为n(1)n X i , 0x i 1,i 10,其它.In xi 1In X ii 14.设总体X 服从参数为的指数分布,即X 的概率密度为E(X)1xf(x)dx o (1)x dx当 0<X i <1(i =1,2,3,…,n )时,L >0 且 In L nln(1)In X i ,i 1dln LnIn x =0,得0的极大似然估计值为而0的极大似然估计量为f(X,xe , x 0,其中0为未知参数,X, X2,)0, x< 0,…,X n为来自总体X的样本,试求未知参数的矩估计量与极大似然估计量解因为E(X)= 1= X , 所以的矩估计量为设X1, X2,…,x n是相应于样本X i, X2,…,X 的一组观测值,则似然函数取对数Xii 1然估计量为In L 0,得5.设总体X的概率密度为f (x,) 其中(0< <1)是未知参数.X, N为样本值x1, X2,L ,x n中小于极大似然估计量•解⑴ X E(X) xnInnXn e 11X).的极大似然估计值为1,的极大似X0,X2,0x1,, 1< x< 2,其它,…,X n为来自总体的简单随机样本,记1的个数.dx 2x(1求:(1)e的矩估计量;(2)e的3 3 —)dx ,所以矩一X .2 21⑵ 设样本X ,X 2 ,L X n 按照从小到大为序(即顺序统计量的观测值)有如下关系:X (1) w X (2)X ( Ni <1 W X ( N +1) W X (N+2)X (n ).似然函数为N n NL()(1 ),X (1) w X (2) w L w X ( N ) 1W X (N1) W X (N2) w L w X n ,0,其它.考虑似然函数非零部分,得到In L ( 0 ) = N ln 0 + ( n -N ) ln(1 - 0 ),令d |nL ( )」o ,解得0的极大似然估计值为? N .d1n习题7-2的无偏估计量•1.选择题:设总体X 的均值与方差 2都存在但未知,X i ,X 2,L ,X n 为X 的样本,则无论总体 X 服从什么分布,()1X i和丄 (XiX)2.(B)n i 1 n i1 n(C)X i 和n 1 i 1解 选(D).2.若X 1 ,X 2lx1 1X 2kX 334解 要求E( 7X 1-X j 和丄 1 i 1 n 1n(X ii 1X)2.(X i1)2 • (D)X i 和丄(X i)2.X 3为来 自总体X : N(,2)的样本,且的无偏估计量,问k 等于多少1 11 「2 kX 3)3 4k解之,k=g(A)13.设总体X的均值为0,方差2存在但未知,又X「X2为来自总体X1 2 2的样本,试证:—(X i X2)为的无偏估计21 2 1 2 2证因为E[—(X i X2) ] —E[(X i 2X^2 X2 )]2 2-[E(X i2) 2E(X i X2)E(X22)]-2 2所以-(X i X2)2为2的无偏估计•2习题7-31.选择题(1)总体未知参数的置信水平为的置信区间的意义是指()(A)区间平均含总体95%的值.(B)区间平均含样本95%的值.(C) 未知参数有95%的可靠程度落入此区间.(D) 区间有95%的可靠程度含参数的真值•解选(D).(2)对于置信水平1- a (0< a <1),关于置信区间的可靠程度与精确程度F列说法不正确的是().(A)若可靠程度越咼,则置信区间包含未知参数真值的可能性越大(B)如果a越小,则可靠程度越高,精确程度越低•(C)如杲1 - a越小,则可靠程度越高,精确程度越低•(D)若精确程度越高,则可靠程度越低,而1- a越小.解选(C)习题7-41. 某灯泡厂从当天生产的灯泡中随机抽取9只进行寿命测试,取得数据如下(单位:小时): 1050, 1100, 1080 , 1120, 1250, 1040, 1130, 1300, 1200设灯泡寿命服从正态分布 N 口 , 902),取置信度为,试求当天生产的全部灯泡的平均寿命的置信区间所求置信区间为(x - z /2 , X - z /2 ) \l n J n 90 90 (1141.11 = 1.96,1141.11 r 1.96)V 9V 9(1082.31,1199.91).2.为调查某地旅游者的平均消费水平,随机访问了40名旅游者,算得平均消费额为 X 105元,样本标准差s 28元•设消费额服从正态分布 取置信水平为,求该地旅游者的平均消费额的置信区间解计算可得X 105, s 2 =282.对于a =,查表可得t_(n 1) t o.025(39)2.0227.2所求口的置信区间为3. 假设某种香烟的尼古丁含量服从正态分布 .现随机抽取此种香烟 8支解计算得到X1141.11, CT 2 =902.对于a =,查表可得Z /2Z).Q25匸96*(Xt (n 1), x ■■- n 2s —t (n ■■- n 21)) (1052.0227, 1052.0227)2828为一组样本,测得其尼古丁平均含量为毫克,样本标准差s=毫克.试求此种香烟尼古丁含量的总体方差的置信水平为的置信区间.a =,查表可得 2(n 1) 爲5(7) 20.278,并说明该置信区间的实际意义1 2的置信水平为的置信区间是,”的实际意义是:在两总体第一个正态总体的均值1比第二个正态总体均值 2大〜,此结 论的可靠性达到95%.5.某商场为了了解居民对某种商品的需求 ,调查了 100户,得出每户月2解已知n =8, s2 2 (n 1)0.995(7) 1 - 20.989,所以方差d 2的置信区间为((n 1)S 2(2_ (n 1)22 22(8 1) 2.4 (8 1) 2.4 _2 —)(, )=,.2(n 廿丿 20.2780.9891 -(n 1)S 4.某厂利用两条自动化流水线灌装番茄酱 ,分别从两条流水线上抽取样本:X ,X 2,…,X 12 及 Y ,Y 2,…,丫17,算出 x 10.6g, y2 29.5g, s 1 2.4, s 2 4.7 .假设这两条流水线上装的番茄酱的重量都服从正态分布 ,且相互独立,其均值分别为2又设两总体方差1:.求2置信水平为的置信区间解由题设2 2x 10.6,y 9.5,s 12.4, s 2 4.7,n12,n 2 17,m 1)s 2 仏 1)s :(12 1) 2.4(171) 471.94212 17 2t_gn 22q n 2 22) t °.°25(27)2.05181,所求置信区间为((X y)11) ((10.6 9.5) 2.05181 1.94结论“方差相等时, [(a n 22)s w2)平均需求量为10公斤,方差为9 .如果这种商品供应10000户,取置信水平为•(1) 取置信度为,试对居民对此种商品的平均月需求量进行区间估计(2) 问最少要准备多少这种商品才能以99%的概率满足需要解(1) 每户居民的需求量的置信区间为_ s(xt(n* n_ s1), xt (nV n1)) (xs卅,%s川)(10,9J492.575,10 2.575)(9.2275,10.7725). 100J10010000户居民对此种商品月需求量的置信度为的置信区间为(92275,107725);(2)最少要准备92275公斤商品才能以99%的概率满足需要。
概率论与数理统计(理工类,第四版)吴赣昌主编课后习题答案第七章

写在前面:由于答案是一个个复制到word rh,比校耗时耗力,故下载收取5分・希望需要的朋友给予理解和支持!PS网上有一些没经我同总就将我的答案整合、转换成pdf,放在文库里的.虽然是免费的.但是窃取f我的劳动成果,希望有心的朋友支持我一下.下载我的原版答案。
第七章假设检验假设检验的基本談念习题1 样木容fin确定后,在一个假设检验中•给定显著水平为*设此第一类错的概率为。
•则必有()•(A)a+p=l; (B)a+p>l; (C)a+p<l; {D)a+p<2.解答: 应选(D)・当样木容Sn确定后.aQ不能同时都很小.即a变小时,p变大:而P变小时• a变大.理论上,自然希望犯这两类错误的概率都很小・但a*的大小关系不能确定.并且这两类错谋不能同时发生,即a=l且p=l不会发生.故选(D).习題2设总休X^(g,a2b其中02已知,着要检验W需川统计a U=X"-gOa/n,(1)若对敢边检验,统计假设为则拒绝区间为(2)若肌边假设为H0:g=g0,Hl:n<^0,则拒绝区间为. (给定显着性水平为4样木均值为X•,样木容fi 为n,且可记ul・a为标准正态分布的(l・a)分位数).解答:由敢侧检验及拒绝的概念即可御到.习題3 如何理解假设检验所作出的〃拒绝原假设H0"和“接受原假设Hcr的判断解答:拒绝H0是有说服力的,接受H0是没有充分说服力的•因为假设检验的方法是概率性质的反证法.作为反证法就是必然要〃推出矛盾r才能得出"拒绝HO"的结论.这是有说服力的・如果“推不出矛盾化这时只能说〃目前还找不到拒绝H0的充分理由W此“不拒绝H0”或〃接受HCr\这并没有肯定H0—定成立•由于样木观察值是随机的• W此拒绝H0.不童味着H0是假的•接受H0也不意味着H0是真的•都存在着错误决策的可能.当原假设H0为真,而作出r拒绝H0的判断,这类决策错谋称为第一类错谋.又叫弃真错洪•显然犯这类错渓的概率为前述的小槪率a:a=P(拒绝HOIHO为真);而原假设HO不真•却作出接受H0的判断•称这类错误为第二类错误,又称取伪错误.它发生的槪率P为P二P(接受HO|H0不真).习題4 犯第一类错误的概率a与犯第二类错谋的概率P之间有何关系一般來说.当样木容g固定时,若减少犯一类错误的槪率.则犯另一类错渓的概率往往会增大•要它们同时减少,只有増加样木容a n.在实际问题中,总是控制犯節一类错误的概率a而使犯第二类错谋的概率尽可能小・a的大小视具体实际问题而定.通常取a弓等tfL 习題5 在假设检验中•如何理解指定的显著水平a 解答:我们希望所作的检验犯两类错谋的槪率尽可能都小・但实际上这是不可能的•当样木容Sn固定时,一般地•减少犯其中一个错谋的槪帑就会增加犯另一个错误的概率• W此,通常的作法是只要求犯第一类错误的概率不大于指定的显著水平6因而根据小概率原理,最终结论为拒绝H0较为可靠,而最终判断力接受H0则不大可靠,«原因是不知道犯第二类错误的概率P处竟有多少.且a小,P就大.所以通常用JW 相容r 〃不拒绝HO"等词语來代替“接受H0".而"不拒绝HO"还包含有再进一步作抽样检验的意思.习题6 在假设检验中•如何确定原假设H0和备择假设H1 解答: 在实际中・通常把那些需要着重考虑的假设视为原假设H0.而与之对应的假设视为备择假设H1.(1)如果问题是要决定新方案是否比原方案好,往往将原方案取假设.而将新方案取为备择假设:(2)若提出一个假设・检验的目的仅仅是为r判断这个假设是否成立.这时直接取此假设为原假设H0即可. 习題7 假设检验的基木步腺有哪些解答:根据反证法的思想和小概率原理•可将假设检验的步骤归纳如下:(1)根据问题的要求.提出原理假设H0和备择假设HL (2)根据检验对紀构造检验统计gT(Xl,X2宀Xn),使肖H0为真时汀有确定的分布.(3)由给定的显著水平6直统计址T所服从的分布表,定出临界值K使P{ 1 T I >A)=a,或P(T>M)=P(T<X2)=a/2,从而求出H0的拒绝域:I T I >入或T>MJ<X2,(4)由样木观察值计算统i|・fi T的观察值t(5)作出判断,将t的值与临界值比较大小作出结论:当tW拒绝域g时,则拒绝H0.否则,不拒绝H0.即认为在显著水平a下,H0与实际悄况差界不显著.习題8 假设检验与区间估il•有何异同解答:假设检验与区间估ii•的提法虽不同,但解决问题的途径是相通的.参数0的a信水平为i・a的a信区间对应于双边假设检验在駄着性水平a下的接受域:参数e的a信水平为1-a的爪侧置信区对应于爪边假设检验在显著性水平a下的接受域.在总休的分布已知的条件下•假设检验与区间估计是从不同的角度回答同一个问題•假设检验是判别原假设H0是否成立,而区间估计解决的是“多少"(或范前者是宦性的.后者是定fi的.习题9 某天开工时,需检验自动包装工作是否正常•根据以往的经验,其装包的质a在正常情况下服从正态分布N(100,仲位:kg).现抽测了9包,其质S为:问这天包装机工作是否正常将这一问题化为假设检验问题.写出假设检验的步驟(am 解答: ⑴提出假设检验问题H0:尸100, Hl:"100;(2)选取检验统il S U:U=X; HO成立时,UW((U);(3)a=,ua/2=,拒绝域W={ 1 u 1 >};(4))f勺I u I =. hM 1 u I <ua/2=,故接受HO,认为包装机.I:作正常.设总休X^(pJbXl,X2/7Xn是取自X的样木.对于假设检验HO:|i=O'Hl:pMO,取显著水平a,拒绝域为W={ i U i >ua/2b其中u=nX-,求:H0成立时,犯第一类错误的槪率aO;(2)十HO不成立时(若"0),犯第二类错的概率p.(l)X^(H4)/X'MM(g,l/n),故nX'=uMM(O,l). a0=P{ I u I >ua/2 I g=0}=l-P{-ua/2<u<ua/2}=1-[<D(ua/2)-(D(-ua/2)]=l-[(l-a2)-a2]=a,即犯第一类错误的概率是显著水平a.(2)F H0不成立.即PMO时.犯第二类错误的概率为P=P{ I U I 30/2 I E(X)=n}=P{・uct/2<u<ua/2 I E(X)=A}=P{-ua/2<nX'<ua/2 I E(X)=|i}=P{-ua/2-nn<n(X'-n)<ua/2-nn I E(X)=n}=(I)(ua/2-niJi)-®(-ua/2-nn),注1 '^1 H T+8或时,PTO.由此可见.当实际均值H偏离原假设校大时,犯第二类错误的概率很小.检验效果较好.注2!勺卩工0但接近于0时.Pdw.Wa很小.故犯第一娄错误的概率很大.检验效果较差.单正态总体的假设检験习题1 已知某炼铁厂铁水含碳量服从正态分布N,・现在测定r 9炉铁水•其平均含碳虽为•如果估计方差没有变化.可否认为现在生产的饮水平均含碳fi仍为(a=解答^ 木问题是在a二下检验假设HO:ns由r a2=已知,所以可选取统计sU=X •在HO 成立的条件下• UW(OJ),且此检验问题的拒绝域为I U 1 = I X •这里 说明U 没有落在拒绝域中.从而接受H0.即认为现在生产之饮水平均含碳S 仍为•习題2要求一种元件平均便用寿命不斜低于1000小肘,生产者从一批这种元件中随机抽取25件,测御其寿命的 平均值为950小时.已知该种元件寿命服从标准差为0=100小时的正态分布,试在显著性水平(1=卜确定 这批元件是否合格设总体均值为卩川未知.即需检验假设H0:H >1000,H1:H <1000.解答:检验假设 HO :n>1000,Hl :n<1000.这是飛边假设检验问题.由于方差02二,故用U 检验法.对于显着性水平a 二,拒绝域为W={X"-1000a/n<-ua.査标准正态分布表•得 又知n=25X=950,故可计算出x'-1000a/n=950-1000100/25=,因为&故在a=下拒绝H0,认为这批元件不合格.习题3 打包机装糖入包,每包标准重为100kg.毎天开工后,要检验所装糖包的总体期望值是否合乎标准 (100kg)•某日开工后.测御9包糖重如下位:kg):打包机装糖的包得服从正态分布•问该天打包机1:作是否正常(a 二 解答: 木问题是在a 二下检验假设HO:p=100,Hl :"100・由于02未知.所以可选取统讣fi T=X--100S/n,在HO 成立的条件下.W(n-1K 且此检验问題的拒绝域为I T I = 1 X'-lOOS/n I >ta/2(n-l).I t 1 =<=(8),即t 未落在拒绝域中・从而接受H0,即可以认为该天打包工作正常.习題4机器包装食盐.假设毎袋盐的净重服从正态分布•规定毎俊标准含fi 为500g,标准差不斜趙过lOg •某天开 工后•随机抽取9袋.测得浄重如下仲位:g):497, 507, 510, 475, 515, 484, 488, 524, 491,I U I =<=ua/2・这里 t=x"-100s/ns :试在駄著性水平a二下检验假设:HO:n=500,Hl:n#500,解答:x'=499,ss:,n=9,t=(x~-|jiO)sn==,a=, (8)=.Will <(8b故接受HO,认为该天每袋平均质a可视为500g・习«5从清凉饮料自动售货机・随机抽样36杯,其平均含g为219(mL),标准差为/在a二的显I?性水平下・试检验假设S HO:A=|I O=222,H1:H<M=222・解答: 设总休X-W(g,a2bX代表自动售货机售出的清凉饮料含S・检验假设H0:n=n0=222(mL), Hl:n<222(mL),由asn=36,査表毎(36・1)弓拒绝域为W={t=x'-nOs/n<-ta(n-l).il•算t值并判断:t=36»习題6 某种寻线的电阻服从正态分布N(x・今从新生产的一批导线中抽取9根・测«电阻•得s=Q,对于a®能否认为这批导线电阴的标准差仍为解答:木问题是在a二下检验假设H0:a2=, Hl:o2匕选取统计fi x2=n-la2S2,在HO成立的条件下,X2^2(n-1),且此检验问題的拒绝域为X2>xa/22(n-l)或x2<xl-a/22(n-l).这里X2==x=,X(8)=,x(8)-落在拒绝域中,从而拒绝HO,即不能认为这批导线电阻的标准差仍为.习题7某厂生产的铜线,要求其折断力的方差不超过16N2.今从某日生产的铜丝中随机抽取容fi为9的样木•测得其折断力如下(飛位:N):289, 286, 285, 286, 285, 284, 285, 286, 298, 292设总体服从正态分布,问该日生产的铜线的折斷力的方差是否符合标准(a二解答: 检验问題为n=9, s2勺X2=8XS216勺am X(8)=・因X2<X(8)s故接受HO,可认为铜丝的折断力的方差不超过16N2.习题8过去经验示.商三学生完成标准考试的时间为一正态变其标准差为6min.若随机样木为20位学生, 其标准差为X,试在显着性水平a= b\检验假设:H0:a>6,Hl:a<6,解答:HO:a>6,Hl:a<6,a=,n-l=19,ssx(19)-拒绝域为W={x2<},i l•算X2值X2=(20-l)x^.因为>■故接受H0,认为a>6.习題9测定某种潯液中的水分・它的10个测定值给出*%,设测定值总体服从正态分布.02为总休方差.02未知,试在a二水平下检验假设:在a= b\拒绝域为W={(n-l)S2a02<xl-a2(9).查X2分布表得X(9)m讣算得(n-l)s2o02=(10-l)x\per)2\per)2^>,未落入拒绝域•故接受H0.取正态总体的假设检越习題1制造厂家宜称•线A的平均张力比线B至少强120N,为证实其说法.在同样情况下测试两种线各50条.线A的平均张力x-=867N,标准差为01=;而线B的平均张力为y・=778N,标准差为o2m在a二的显善性水平下,试检验此制造厂家的说法.解答:H0:nl4l2=120,Hl:pl 屮2<120・am=・W={u=x'-y~-120ol2nl+a22n2<-ua,拒绝域为由x'=867,y'=778,nl=n2=50, 012=2,o22=2,得□=867-778-120250+250^^^,因为&故拒绝H0,认为pl-rx2<120,即厂家的说法不对.习题2 欲知某新血清是否能抑制白血球过多症,选择已患该病的老畝9只•并将其中5只施予此种血清,另外4 只则不热•从实验开始.其存活年限表示如下假设两总体均服从方差相同的正态分布,试在显著性水平a二下检验此种血清是否有效解答^ 设pl- p2分别为老鼠接受和未接受血清的平均存活年限。
概率论与数理统计浙大四版习题答案第七章

第七章 参数估计1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计)求总体均值μ及方差σ2的矩估计,并求样本方差S 2。
解:μ,σ2的矩估计是 6122106)(1ˆ,002.74ˆ-=⨯=-===∑ni i x X n X σμ621086.6-⨯=S 。
2.[二]设X 1,X 1,…,X n 为准总体的一个样本。
求下列各总体的密度函数或分布律中的未知参数的矩估计量。
(1)⎩⎨⎧>=+-其它,0,)()1(cx x c θx f θθ其中c >0为已知,θ>1,θ为未知参数。
(2)⎪⎩⎪⎨⎧≤≤=-.,010,)(1其它x x θx f θ其中θ>0,θ为未知参数。
(5)()p p m x p px X P x m xmx,10,,,2,1,0,)1()(<<=-==- 为未知参数。
解:(1)X θcθθc θc θc θdx x c θdx x xf X E θθcθθ=--=-===+-∞+-∞+∞-⎰⎰1,11)()(1令,得cX Xθ-=(2),1)()(10+===⎰⎰∞+∞-θθdx xθdx x xf X E θ2)1(,1X X θX θθ-==+得令(5)E (X ) = mp令mp = X , 解得mXp=ˆ 3.[三]求上题中各未知参数的极大似然估计值和估计量。
解:(1)似然函数1211)()()(+-===∏θn θn nni ix x x c θx f θL0ln ln )(ln ,ln )1(ln )ln()(ln 11=-+=-++=∑∑==ni ini i xc n n θθd θL d x θc θn θn θL∑=-=ni icn xnθ1ln ln ˆ (解唯一故为极大似然估计量)(2)∑∏=--=-+-===ni i θn n ni ix θθnθL x x x θx f θL 112121ln )1()ln(2)(ln ,)()()(∑∑====+⋅-=ni ini ix nθxθθn θd θL d 121)ln (ˆ,0ln 2112)(ln 。
经济数学基础——概率统计课后习题答案

目录习题一(1)习题二(16)习题三(44)习题四(73)习题五(97)习题六(113)习题七(133)1 / 81习 题 一1.写出下列事件的样本空间: (1) 把一枚硬币抛掷一次; (2) 把一枚硬币连续抛掷两次;(3) 掷一枚硬币,直到首次出现正面为止;(4) 一个库房在某一个时刻的库存量(假定最大容量为M ).解(1)Ω={正面,反面} △ {正,反}(2)Ω={(正、正),(正、反),(反、正),(反、反)} (3)Ω={(正),(反,正),(反,反,正),…} (4) Ω={x ;0≤x ≤m }2.掷一颗骰子的实验,观察其出现的点数,事件A =“偶数点”,B =“奇数点”,C =“点数小于5”,D =“小于5的偶数点”,讨论上述各事件间的关系. 解{}{}{}{}{}.4,2,4,3,2,1,5,3,1,6,4,2,6,5,4,3,2,1=====D C B A ΩA 与B 为对立事件,即B =A ;B 与D 互不相容;A ⊃D ,C ⊃D.3. 事件A i 表示某个生产单位第i 车间完成生产任务,i =1,2,3,B 表示至少有两个车间完成生产任务,C 表示最多只有两个车间完成生产任务,说明事件B 及B -C 的含义,并且用A i (i =1,2,3)表示出来. 解B 表示最多有一个车间完成生产任务,即至少有两个车间没有完成生产任务. 313221A A A A A A B ++=B -C 表示三个车间都完成生产任务 321321321321+++A A A A A A A A A A A A B =321321321321321321321A A A A A A A A A A A A A A A A A A A A A C ++++++=321A A A C B =- 4. 如图1-1,事件A 、B 、C 都相容,即ABC ≠Φ,把事件A +B ,A +B +C ,AC +B ,C -AB 用一些互不相容事件的和表示出来. 解B A A B A +=+C B A B A A C B A ++=++C B A B B AC +=+BC A C B A C B A AB C ++=-5.两个事件互不相容与两个事件对立的区别何在,举例说明.解 两个对立的事件一定互不相容,它们不可能同时发生,也不可能同时不发生;两个互不相容的事件不一定是对立事件,它们只是不可能同时发生,但不一定同时不发生. 在本书第6页例2中A 与D 是对立事件,C 与D 是互不相容事件.6.三个事件A 、B 、C 的积是不可能事件,即ABC =Φ,问这三个事件是否一定互不相容?画图说明. 解 不一定. A 、B 、C 三个事件互不相容是指它们中任何两个事件均互不相容,即两两互不相容.如图1-2,事件ABC =Φ,但是A 与B 相容.7. 事件A 与B 相容,记C =AB ,D =A+B ,F =A -B.说明事件A 、C 、D 、F的关系.解由于AB ⊂A ⊂A+B ,A -B ⊂A ⊂A+B ,AB 与A -B 互不相容,且A =AB +(A -B).因此有A =C +F ,C 与F 互不相容, D ⊃A ⊃F ,A ⊃C.8. 袋内装有5个白球,3个黑球,从中一次任取两个,求取到的两个球颜色不同的概率.解记事件A 表示“取到的两个球颜色不同”.则有利于事件A 的样本点数目#A =1315C C .而组成实验的样本点总数为#Ω=235+C ,由古典概率公式有图1-1图1-2P (A )==Ω##A 2815281315=C C C (其中#A ,#Ω分别表示有利于A 的样本点数目与样本空间的样本点总数,余下同)9. 计算上题中取到的两个球中有黑球的概率.解设事件B 表示“取到的两个球中有黑球”则有利于事件B 的样本点数为#25C B =.1491)(1)(2825=-==C C B P B P -10. 抛掷一枚硬币,连续3次,求既有正面又有反面出现的概率.解设事件A 表示“三次中既有正面又有反面出现”, 则A 表示三次均为正面或三次均为反面出现. 而抛掷三次硬币共有8种不同的等可能结果,即#Ω=8,因此43821#1)(1)(=-=Ω-=-=A A P A P # 11. 10把钥匙中有3把能打开一个门锁,今任取两把,求能打开门锁的概率.解设事件A 表示“门锁能被打开”. 则事件A 发生就是取的两把钥匙都不能打开门锁.15811)(1)(21027==Ω-=-=C C A A P A P -##从9题-11题解中可以看到,有些时候计算所求事件的对立事件概率比较方便.12. 一副扑克牌有52张,不放回抽样,每次一张,连续抽取4张,计算下列事件的概率:(1)四张花色各异;(2)四张中只有两种花色.解设事件A 表示“四张花色各异”;B 表示“四张中只有两种花色”.,113113113113452##C C C C A , C Ω==) +#2132131133131224C C C C C C B (= 105013##)(4524.C ΩA A P ===30006048+74366##)(452 )(.C ΩB B P ===13. 口袋内装有2个伍分、3个贰分,5个壹分的硬币共10枚,从中任取5枚,求总值超过壹角的概率.解设事件A 表示“取出的5枚硬币总值超过壹角”.)+(+C =##25231533123822510C C C C C C A C Ω , = 50252126)(.ΩA A P ==##=14. 袋中有红、黄、黑色球各一个,每次任取一球,有放回地抽取三次,求下列事件的概率:A =“三次都是红球” △ “全红”,B =“全白”, C =“全黑”,D =“无红”,E =“无白”, F =“无黑”,G =“三次颜色全相同”,H =“颜色全不相同”,I =“颜色不全相同”.解 #Ω=33=27,#A =#B =#C =1, #D =#E =#F =23=8, #G =#A +#B +#C =3,#H =3!=6,#I =#Ω-#G =24271)()()(===C P B P A P 278)()()(===F P E P D P 982724)(,92276)(,91273)(======I P H P G P 15. 一间宿舍内住有6位同学,求他们中有4个人的生日在同一个月份的概率.解设事件A 表示“有4个人的生日在同一个月份”.#Ω=126,#A =21124611C C 0073.01221780##)(6==ΩA A P = 16. 事件A 与B 互不相容,计算P )(B A +.解 由于A 与B 互不相容,有AB =Φ,P (AB )=0.1)(1)()(=-==+AB P AB P B A P 17. 设事件B ⊃A ,求证P (B )≥P (A ). 证∵B ⊃A∴P (B -A )=P (B ) -P (A ) ∵P (B -A )≥0 ∴P (B )≥P (A )18. 已知P (A )=a ,P (B )=b ,ab ≠0 (b >0.3a ),P (A -B )=0.7a ,求P (B +A ),P (B -A ),P (B +A ). 解由于A -B 与AB 互不相容,且A =(A -B )+AB ,因此有P (AB )=P (A )-P (A -B )=0.3aP (A +B )=P (A )+P (B )-P (AB )=0.7a +b P (B -A )=P (B )-P (AB )=b -0.3a P(B +A )=1-P (AB )=1-0.3a19. 50个产品中有46个合格品与4个废品,从中一次抽取三个,计算取到废品的概率.解设事件A 表示“取到废品”,则A 表示没有取到废品,有利于事件A 的样本点数目为#A =346C ,因此P (A )=1-P (A )=1-3503461C C ΩA-=## =0.225520. 已知事件B ⊃A ,P (A )=ln b≠0,P (B )=ln a ,求a 的取值范围.解因B ⊃A ,故P (B )≥P (A ),即ln a ≥ln b ,⇒a ≥b ,又因P (A )>0,P (B )≤1,可得b >1,a ≤e ,综上分析a 的取值范围是:1<b ≤a ≤e21. 设事件A 与B 的概率都大于0,比较概率P (A ),P (AB ),P (A +B ),P (A )+P (B )的大小(用不等号把它们连接起来). 解由于对任何事件A ,B ,均有AB ⊂A ⊂A +B且P (A +B )=P (A )+P (B )-P (AB ),P (AB )≥0,因此有 P (AB )≤P (A )≤P (A +B )≤P (A )+P (B )22. 一个教室中有100名学生,求其中至少有一人的生日是在元旦的概率(设一年以365天计算).解 设事件A 表示“100名学生的生日都不在元旦”,则有利于A 的样本点数目为#A =364100,而样本空间中样本点总数为 #Ω=365100,所求概率为1001003653641##1)(1)(-=Ω-=-=A A P A P= 0.239923. 从5副不同手套中任取4只手套,求其中至少有两只手套配成一副的概率.解设事件A 表示“取出的四只手套至少有两只配成一副”,则A 表示“四只手套中任何两只均不能配成一副”.21080##)(4101212121245===C C C C C C ΩA A P 62.0)(1)(=-=A P A P24. 某单位有92%的职工订阅报纸,93%的人订阅杂志,在不订阅报纸的人中仍有85%的职工订阅杂志,从单位中任找一名职工求下列事件的概率: (1)该职工至少订阅一种报纸或期刊; (2)该职工不订阅杂志,但是订阅报纸.解设事件A 表示“任找的一名职工订阅报纸”,B 表示“订阅杂志”,依题意P (A )=0.92,P (B )=0.93,P (B |A )=0.85P (A +B )=P (A )+P (A B )=P (A )+P (A )P (B |A )=0.92+0.08×0.85=0.988P (A B )=P (A +B )-P (B )=0.988-0.93=0.05825. 分析学生们的数学与外语两科考试成绩,抽查一名学生,记事件A 表示数学成绩优秀,B 表示外语成绩优秀,若P (A )=P (B )=0.4,P (AB )=0.28,求P(A |B ),P (B |A ),P (A +B ).解P (A |B )=7.04.028.0)()(==B P AB PP (B |A)=7.0)()(=A P AB PP (A +B )=P (A )+P (B )-P (AB )=0.5226. 设A 、B 是两个随机事件. 0<P (A )<1,0<P (B )<1,P (A |B )+P (A |B )=1. 求证P (AB )=P (A )P (B ). 证∵P (A |B )+P (A |B )=1且P (A |B )+P (A |B )=1∴P (A |B )=P (A |B ))(1)()()()()()(B P AB P A P B P B A P B P AB P --== P (AB )[1-P (B )]=P ( B )[P ( A )-P ( AB )]整理可得P (AB )=P ( A ) P ( B )27. 设A 与B 独立,P ( A )=0.4,P ( A +B )=0.7,求概率P (B ). 解P ( A +B )=P (A )+P (A B )=P ( A )+P (A ) P ( B )⇒0.7=0.4+0.6P (B ) ⇒P (B )=0.528. 设事件A 与B 的概率都大于0,如果A 与B 独立,问它们是否互不相容,为什么?解因P (A ),P (B )均大于0,又因A 与B 独立,因此P (AB )=P (A )P (B )>0,故A 与B 不可能互不相容.29. 某种电子元件的寿命在1000小时以上的概率为0.8,求3个这种元件使用1000小时后,最多只坏了一个的概率.解设事件A i 表示“使用1000小时后第i 个元件没有坏”, i =1,2,3,显然A 1,A 2,A 3相互独立,事件A 表示“三个元件中最多只坏了一个”,则A =A 1A 2A 3+1A A 2A 3+A 12A A 3+A 1A 23A ,上面等式右边是四个两两互不相容事件的和,且P (A 1)=P (A 2)=P (A 3)=0.8P ( A )=[][])()(3)(12131A P A P A P + =0.83+3×0.82×0.2 =0.89630. 加工某种零件,需经过三道工序,假定第一、二、三道工序的废品率分别为0.3,0.2,0.2,并且任何一道工序是否出现废品与其他各道工序无关,求零件的合格率.解设事件A 表示“任取一个零件为合格品”,依题意A 表示三道工序都合格.P (A )=(1-0.3)(1-0.2)(1-0.2)=0.44831. 某单位电话总机的占线率为0.4,其中某车间分机的占线率为0.3,假定二者独立,现在从外部打电话给该车间,求一次能打通的概率;第二次才能打通的概率以及第m 次才能打通的概率(m 为任何正整数).解设事件A i 表示“第i 次能打通”,i =1,2,…,m ,则P (A 1)=(1-0.4)(1-0.3)=0.42 P (A 2)=0.58×0.42=0.2436P (A m )=0.58m -1×0.4232. 一间宿舍中有4位同学的眼镜都放在书架上,去上课时,每人任取一副眼镜,求每个人都没有拿到自己眼镜的概率.解设A i 表示“第i 人拿到自己眼镜”,i =1,2,3,4.P (A i )=41,设事件B 表示“每个人都没有拿到自己的眼镜”.显然B 则表示“至少有一人拿到自己的眼镜”. 且B =A 1+A 2+A 3+A 4.P (B )=P (A 1+A 2+A 3+A 4) =∑∑∑-+-=≤≤≤≤4141414321)()()()(i j i k j i k j i i i i A A A A P A A A P A A P A p <<<P (A i A j )=P (A i )P (A j |A i )=)41(1213141≤≤=⨯j i < P (A i A j A k )=P (A i )P (A j |A i )P (A k |A i A j )=41×31×21=241(1≤i <j <k ≤4) P (A 1A 2A 3A 4)=P (A 1)P (A 2|A 1)P (A 3|A 1A 2)×P (A 4|A 1A 2A 3) =2411213141=⨯⨯⨯ 85241241121414)(3424=-⨯+⨯-⨯=C C B P83)(1)(=-=B P B P33. 在1,2,…,3000这3000个数中任取一个数,设A m =“该数可以被m 整除”,m =2,3,求概率P (A 2A 3),P (A 2+A 3),P (A 2-A 3).解依题意P (A 2)=21,P (A 3)=31P (A 2A 3)=P (A 6)=61P (A 2+A 3)=P (A 2)+P (A 3)-P (A 2A 3)=32613121=-+ P (A 2-A 3)=P (A 2)-P (A 2A 3)=316121=-34. 甲、乙、丙三人进行投篮练习,每人一次,如果他们的命中率分别为0.8,0.7,0.6,计算下列事件的概率:(1)只有一人投中; (2)最多有一人投中; (3)最少有一人投中.解设事件A 、B 、C 分别表示“甲投中”、“乙投中”、“丙投中”,显然A 、B 、C 相互独立.设A i 表示“三人中有i 人投中”,i =0,1,2,3,依题意,)()()() ()(0C P B P A P C B A P A P == =0.2×0.3×0.4×=0.024 P (A 3)=P (ABC )=P (A )P (B )P (C ) =0.8×0.7×0.6=0.336P (A 2)=P (AB C )+P (A B C )+P (A BC )=0.8×0.7×0.4+0.8×0.3×0.6+0.2×0.7×0.6=0.452 (1)P (A 1)=1-P (A 0)-P (A 2)-P (A 3)=1-0.024-0.452-0.336=0.188(2)P (A 0+A 1)=P (A 0)+P (A 1)=0.024+0.188=0.212 (3)P (A +B +C )=P (0A )=1-P (A 0)=0.97635. 甲、乙二人轮流投篮,甲先开始,假定他们的命中率分别为0.4及0.5,问谁先投中的概率较大,为什么?解设事件A 2n -1B 2n 分别表示“甲在第2n -1次投中”与“乙在第2n 次投中”,显然A 1,B 2,A 3,B 4,…相互独立.设事件A 表示“甲先投中”.⋯+++=)()()()(543213211A B A B A P A B A P A P A P⋯⨯⨯⨯⨯=+++0.40.5)(0.60.40.50.60.42743.014.0=-= 计算得知P (A )>0.5,P (A )<0.5,因此甲先投中的概率较大.36. 某高校新生中,北京考生占30%,京外其他各地考生占70%,已知在北京学生中,以英语为第一外语的占80%,而京外学生以英语为第一外语的占95%,今从全校新生中任选一名学生,求该生以英语为第一外语的概率.解设事件A 表示“任选一名学生为北京考生”,B 表示“任选一名学生,以英语为第一外语”. 依题意P (A )=0.3,P (A )=0.7,P (B |A)=0.8,P (B |A )=0.95. 由全概率公式有P (B )=P (A )P (B |A )+P (A )P (B |A )=0.3×0.8+0.7×0.95=0.90537. A 地为甲种疾病多发区,该地共有南、北、中三个行政小区,其人口比为9 : 7 : 4,据统计资料,甲种疾病在该地三个小区内的发病率依次为4‰,2‰,5‰,求A 地的甲种疾病的发病率.解设事件A 1,A 2,A 3分别表示从A 地任选一名居民其为南、北、中行政小区,易见A 1,A 2,A 3两两互不相容,其和为Ω.设事件B 表示“任选一名居民其患有甲种疾病”,依题意:P (A 1)=0.45,P (A 2)=0.35,P (A 3)=0.2,P (B |A 1)=0.004,P (B |A 2)=0.002,P (B |A 3)=0.005=∑=31)|()(i i i A B P A P=0.45×0.004+ 0.35×0.002+ 0.2×0.005 =0.003538. 一个机床有三分之一的时间加工零件A ,其余时间加工零件B ,加工零件A 时,停机的概率为0.3,加工零件B 时停机的概率为0.4,求这个机床停机的概率.解设事件A 表示“机床加工零件A ”,则A 表示“机床加工零件B ”,设事件B 表示“机床停工”.)|()()|()()(A B P A P A B P A P B P +=37.0324.0313.0=⨯+⨯=39. 有编号为Ⅰ、Ⅱ、Ⅲ的3个口袋,其中Ⅰ号袋内装有两个1号球,1个2号球与1个3号球,Ⅱ号袋内装有两个1号球和1个3号球,Ⅲ号袋内装有3个1号球与两个2号球,现在先从Ⅰ号袋内随机地抽取一个球,放入与球上号数相同的口袋中,第二次从该口袋中任取一个球,计算第二次取到几号球的概率最大,为什么?解设事件A i 表示“第一次取到i 号球”,B i 表示第二次取到i 号球,i =1,2,3.依题意,A 1,A 2,A 3构成一个完全事件组.41)()(,21)(321===A P A P A P41)|()|(,21)|(131211===A B P A B P A B P41)|()|(,21)|(232221===A B P A B P A B P61)|(,31)|(,21)|(333231===A B P A B P A B P应用全概率公式∑==31)|()()(i i j i j A B P A P B P 可以依次计算出4811)(,4813)(,21)(321===B P B P B P . 因此第二次取到1号球的概率最大.40. 接37题,用一种检验方法,其效果是:对甲种疾病的漏查率为5%(即一个甲种疾病患者,经此检验法未查出的概率为5%);对无甲种疾病的人用此检验法误诊为甲种疾病患者的概率为1%,在一次健康普查中,某人经此检验法查为患有甲种疾病,计算该人确实患有此病的概率.解设事件A 表示“受检人患有甲种疾病”,B 表示“受检人被查有甲种疾病”,由37题计算可知P (A )=0.0035,应用贝叶斯公式)|()()|()()|()()|(A B P A P A B P A P A B P A P B A P +=01.09965.095.00035.095.00035.0⨯⨯⨯=+ 25.0=41. 甲、乙、丙三个机床加工一批同一种零件,其各机床加工的零件数量之比为5 : 3 : 2,各机床所加工的零件合格率,依次为94%,90%,95%,现在从加工好的整批零件中检查出一个废品,判断它不是甲机床加工的概率.解设事件A 1,A 2,A 3分别表示“受检零件为甲机床加工”,“乙机床加工”,“丙机床加工”,B 表示“废品”,应用贝叶斯公式有∑==31111)|()()|()()|(i i i A B P A P A B P A P B A P7305020+1030+06.05.006.05.0=⨯⨯⨯⨯=....74)|(1)|(11=-=B A P B A P42. 某人外出可以乘坐飞机、火车、轮船、汽车4种交通工具,其概率分别为5%,15%,30%,50%,乘坐这几种交通工具能如期到达的概率依次为100%,70%,60%与90%,已知该旅行者误期到达,求他是乘坐火车的概率.解设事件A 1,A 2,A 3,A 4分别表示外出人“乘坐飞机”,“乘坐火车”,“乘坐轮船”,“乘坐汽车”,B 表示“外出人如期到达”.∑==41222)|()()|()()|(i i i A B P A P A B P A P B A P1.05.04.03.03.015.0005.03.015.0⨯+⨯+⨯+⨯⨯==0.20943. 接39题,若第二次取到的是1号球,计算它恰好取自Ⅰ号袋的概率.解39题计算知P (B 1)=21,应用贝叶斯公式 21212121)()|()()|(111111=⨯==B P A B P A P B A P44. 一箱产品100件,其次品个数从0到2是等可能的,开箱检验时,从中随机地抽取10件,如果发现有次品,则认为该箱产品不合要求而拒收,若已知该箱产品已通过验收,求其中确实没有次品的概率. 解设事件A i 表示一箱中有i 件次品,i =0, 1, 2.B 表示“抽取的10件中无次品”,先计算P (B )∑++⨯===20101001098101001099)1(31)|()()(i i i C C C C A B P A P B P37.0)(31)|(0==B P B A P45. 设一条昆虫生产n 个卵的概率为λλ-=e !n p n n n =0, 1, 2, …其中λ>0,又设一个虫卵能孵化为昆虫的概率等于p (0<p <1).如果卵的孵化是相互独立的,问此虫的下一代有k 条虫的概率是多少?解设事件A n =“一个虫产下几个卵”,n =0,1,2….B R =“该虫下一代有k 条虫”,k =0,1,….依题意λλ-==e !)(n p A P n n n⎩⎨⎧≤≤=-n k q p C n k A B P k n k k nn k 00)|(>其中q =1-p .应用全概率公式有∑∑∞=∞===kn n k n n n k n k A B P A P A B P A P B P )|()()|()()(0∑∞=-λ--λ=ln k n k nq p k n k n n !)(!!e ! ∑∞=-λ--λλk n k n k k n q k p !)()(e !)( 由于q k n k n k n k n k n q k n q λ∞=--∞=-∑∑=-λ=-λe !)()(!)()(0,所以有 ,2,1,0e)(e e !)()(===--k kp k p B P pp q k k λλλλλ习 题 二1. 已知随机变量X 服从0-1分布,并且P {X ≤0}=0.2,求X 的概率分布.解X 只取0与1两个值,P {X =0}=P {X ≤0}-P {X <0}=0.2,P {X =1}=1-P {X =0}=0.8.2. 一箱产品20件,其中有5件优质品,不放回地抽取,每次一件,共抽取两次,求取到的优质品件数X 的概率分布.解X 可以取0, 1, 2三个值. 由古典概型公式可知{})2,1,0(2202155===-m C C C m X P mm 依次计算得X 的概率分布如下表所示:3. 上题中若采用重复抽取,其他条件不变,设抽取的两件产品中,优质品为X 件,求随机变量X 的概率分布.解X 的取值仍是0, 1, 2.每次抽取一件取到优质品的概率是1/4,取到非优质品的概率是3/4,且各次抽取结果互不影响,应用伯努利公式有{}1694302=⎪⎭⎫⎝⎛==X P{}1664341112=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C X P {}1614122=⎪⎭⎫⎝⎛==X P4. 第2题中若改为重复抽取,每次一件,直到取得优质品为止,求抽取次数X 的概率分布.解X 可以取1, 2,…可列个值. 且事件{X =n }表示抽取n 次,前n -1次均未取到优质品且第n 次取到优质品,其概率为41431⋅⎪⎭⎫ ⎝⎛-n . 因此X 的概率分布为 {}⋯=⎪⎭⎫⎝⎛==-,2,143411n n X P n5. 盒内有12个乒乓球,其中9个是新球,3个为旧球,采取不放回抽取,每次一个直到取得新球为止,求下列随机变量的概率分布. (1)抽取次数X ;(2)取到的旧球个数Y . 解(1)X 可以取1, 2, 3, 4各值.{}{}4491191232431=⨯====X P X P {}22091091121233=⨯⨯==X P {}2201991011121234=⨯⨯⨯==X P (2)Y 可以取0, 1, 2, 3各值.{}{}4310====X P Y P{}{}44921====X P Y P {}{}220932====X P Y P {}{}220143====X P Y P 6. 上题盒中球的组成不变,若一次取出3个,求取到的新球数目X 的概率分布. 解X 可以取0, 1, 2, 3各值.{}2201031233===C C X P{}2202713122319===C C C X P{}22010823121329===C C C X P{}22084331239===C C X P 7. 已知P {X =n }=p n ,n =1, 2, 3, …, 求p 的值.解根据{}∑=∞=11n n X P =, 有∑-==∞=111n n pp P 解上面关于p 的方程,得p =0.5.8. 已知P {X =n }=p n ,n =2, 4, 6, …,求p 的值.解1122642=-=⋯+++p p p p p解方程,得p =2±/29. 已知P {X =n }=cn ,n =1,2,…, 100, 求c 的值. 解∑=+⋯++==10015050)10021(1n cc cn =解得c =1/5050 .10. 如果p n =cn _2,n =1,2,…, 问它是否能成为一个离散型概率分布,为什么?解,1121∑=∑∞=∞=n n n n c p 由于级数∑∞=121n n 收敛, 若记∑∞=121n n =a ,只要取ac 1=,则有∑∞=1n n p =1,且p n >0.所以它可以是一个离散型概率分布.11. 随机变量X 只取1, 2, 3共三个值,其取各个值的概率均大于零且不相等并又组成等差数列,求X 的概率分布.解设P {X =2}=a ,P {X =1}=a -d ,P {X =3}=a +d . 由概率函数的和为1,可知a =31,但是a -d 与a +d 均需大于零,因此|d |<31, X 的概率分布为其中d 应满足条件:0<|d |<312. 已知{}λ-==e !m c λm X P m ,m =1, 2, …, 且λ>0, 求常数c . 解{}∑∑∞=-∞====11e !1m m m m c m X p λλ由于∑∑∞=∞==+=10e !1!m mm mm m λλλ, 所以有∑∞=---=-=-=11)e 1(e )1e (e !m m c c m c λλλλλ 解得λ--=e 11c13. 甲、乙二人轮流投篮,甲先开始,直到有一人投中为止,假定甲、乙二人投篮的命中率分别为0.4及0.5,求:(1)二人投篮总次数Z 的概率分布; (2)甲投篮次数X 的概率分布; (3)乙投篮次数Y 的概率分布.解设事件A i 表示在第i 次投篮中甲投中,j 表示在第j 次投篮中乙投中,i =1,3,5,…,j =2,4,6,…,且A 1, B 2, A 3,B 4,…相互独立.(1){}{}1222321112---=-=k k k A B A B A p k Z P=(0.6×0.5)1-k ·0.4=0.4(0.3)1-k k=1, 2, … {})(2212223211k k k k B A B A B A p k Z P ---== =0.5×0.6×(0.6×0.5)1-k =0.3k k=1, 2, …(2){}{}12223211---==n n n A B A B A p n X P{}n n n n B A B A B A p 212223211---+ )5.06.04.0()5.06.0(1⨯+⨯=-n ,2,13.07.01=⨯=-n n (3) {}4.0)(01===A P Y P{}{}{}122121121211+--+==n n n n n A B A B A P B A B A P n Y P )4.05.05.0(6.0)5.06.0(1⨯+⨯⨯⨯=-n ,2,13.042.01=⨯=-n n14. 一条公共汽车路线的两个站之间,有四个路口处设有信号灯,假定汽车经过每个路口时遇到绿灯可顺利通过,其概率为0.6,遇到红灯或黄灯则停止前进,其概率为0.4,求汽车开出站后,在第一次停车之前已通过的路口信号灯数目X 的概率分布(不计其他因素停车). 解X 可以取0, 1, 2, 3, 4 .P { X =0 } =0.4P { X =1 }=0.6×0.4=0.24 P { X =2 } =0.62×0.4=0.144 P { X =3 } =0.63×0.4=0.0864 P { X =4 } =0.64=0.129615. ⎩⎨⎧∈=.,0],[,sin )(其他,b a x x x f问f (x )是否为一个概率密度函数,为什么?如果(1).π23,)3( ;π,0)2( ;2π,0======b a b a b a π解在[0, 2π]与[0, π]上,sin x ≥0,但是,1d sin π≠⎰x x ,1d sin 2π=⎰x x 而在⎥⎦⎤⎢⎣⎡π23,π上,sin x ≤0.因此只有(1)中的a , b 可以使f (x )是一个概率密度函数.16. ⎪⎩⎪⎨⎧≤=-.0,00e )(,22x x c x x f c x ,>其中c >0,问f (x )是否为密度函数,为什么? 解易见对任何x ∈(-∞ , +∞) , f ( x ) ≥ 0,又1d e 202=⎰-∞+x cx cx f (x )是一个密度函数 .17. ⎩⎨⎧+=.0.2<<,2)(其他,a x a x x f问f ( x )是否为密度函数,若是,确定a 的值;若不是,说明理由. 解如果f ( x )是密度函数,则f ( x )≥0,因此a ≥0,但是,当a ≥0时,444|d 2222≥+==⎰⨯++a x x a a a a由于x x f d )(⎰+∞∞-不是1,因此f ( x )不是密度函数.18. 设随机变量X ~f ( x )⎪⎩⎪⎨⎧∞++=.,0,,)1(π2)(2其他<<x a x x f 确定常数a 的值,如果P { a < x < b } =0.5,求b 的值.解)arctan 2π(2arctan π2d )1(π22a x x x a a -π==+⎰⎰+∞+∞ 解方程 π2⎪⎭⎫⎝⎛a arctan - 2π=1得a =0{}b x x x f b x P b barctan π2|arctan π2d )(000==⎰=<< 解关于b 的方程:π2arctan b =0.5 得b =1.19. 某种电子元件的寿命X 是随机变量,概率密度为⎪⎩⎪⎨⎧≥=.100,0,100100)(2<x x x x f 3个这种元件串联在一个线路中,计算这3个元件使用了150小时后仍能使线路正常工作的概率.解串联线路正常工作的充分必要条件是3个元件都能正常工作. 而三个元件的寿命是三个相互独立同分布的随机变量,因此若用事件A 表示“线路正常工作”,则3])150([)(>X P A P ={}32d 1001502150=⎰∞+x x X P =>278)(=A P 20. 设随机变量X ~f ( x ),f ( x )=A e -|x|,确定系数A ;计算P { |X | ≤1 }.解A x A x A x x 2d e 2d e 10||=⎰=⎰=∞+-∞+∞-- 解得A =21 {}⎰⎰---==≤10||11d e d e 211||x x X P x x632.0e 11≈-=-21. 设随机变量Y 服从[0, 5]上的均匀分布,求关于x 的二次方程4x 2+4xY +Y +2=0有实数根的概率. 解4x 2+4xY +Y +2=0. 有实根的充分必要条件是△=b 2-4ac =16Y 2-16(Y +2)=16Y 2-16Y -32≥0 设事件P (A )为所求概率.则{}{}{}120321616)(2-≤+≥=≥--=Y P Y P Y Y P A P =0.622. 设随机变量X ~ f ( x ),⎪⎩⎪⎨⎧-=.,01||,1)(2其他,<x x cx f 确定常数c ,计算.21||⎭⎬⎫⎩⎨⎧≤X P解π|arcsin d 1111211c x c x xc ==-⎰=--c =π131arcsin 2d 1121||0212121 2=π=-π=⎭⎬⎫⎩⎨⎧≤⎰-xx x X P 23. 设随机变量X 的分布函数F ( x )为⎪⎩⎪⎨⎧≥=.1,1,10,0,0)(x x x A x x F <<,<确定系数A ,计算{}25.00≤≤X P ,求概率密度f ( x ).解连续型随机变量X 的分布函数是连续函数,F (1)= F (1-0),有A =1.⎪⎩⎪⎨⎧=.,0,10,21)(其他<<x xx f {}5.0)0()25.0(25.00=-=≤≤F F X P24. 求第20题中X 的分布函数F ( x ) .解{}t x X P x F t xd e 21)(||-∞-⎰=≤=当t ≤ 0时, x t x t x F e 21d e 21)(=⎰=∞-当t >0时,t t t x F t x t t x d e 21d e 21d e 21)(-00||⎰+⎰=⎰=-∞--∞-x x ---=-+=e 211)e 1(2121 25. 函数(1+x 2)-1可否为连续型随机变量的分布函数,为什么? 解不能是分布函数,因F (-∞)= 1 ≠ 0.26. 随机变量X ~f ( x ),并且)1(π)(2x ax f +=,确定a 的值;求分布函数F ( x );计算{}1||<X P .解a x a x x a ==⎰+=∞+∞-∞+∞-arctan πd )1(π12因此a =1x xt t t x F ∞-∞-=⎰+=arctan π1d )1(π1)(2x arctan π121+= {}⎰+=⎰+=-102112d )1(π12d )1(π11||x x x x X P < 21arctan π210==x 27. 随机变量X 的分布函数F ( x ) 为:⎪⎩⎪⎨⎧≤-=.2,02,1)(2x x xA x F ,> 确定常数A 的值,计算{}40≤≤X P .解由F ( 2+0 )=F ( 2 ),可得4,041==-A A{}{})0()4(4X 040F F P X P -=≤=≤≤<=0.7528. 随机变量X ~f ( x ),f ( x )=,e e x x A-+确定A 的值;求分布函数F ( x ) .解⎰+=⎰+=∞∞-∞∞--x A x A xxx x d e1e d e e 12 A A x 2πe arctan ==∞∞- 因此A =π2,xtxt t t x F ∞-∞--=+=⎰e arctan π2d )e e (π2)(x e arctan π2= 29. 随机变量X ~f ( x ),⎪⎩⎪⎨⎧=.,00,π2)(2其他<<a x x x f确定a 的值并求分布函数F ( x ) .解2202202ππd π21a x x x a a==⎰=因此,a = π 当0<x <π时,⎰=x x t tx F 0222πd π2)(⎪⎪⎩⎪⎪⎨⎧≥≤=π1,π0,π0,0)(22x x xx x F << 30. 随机变量X 的分布函数为)0(0,e 22210,0)(22>>a x ax x a x x F ax⎪⎩⎪⎨⎧++-≤=-求X 的概率密度并计算⎭⎬⎫⎩⎨⎧a X P 10<<.解当x ≤ 0时,X 的概率密度f ( x ) =0;当x > 0时,f ( x ) =F′ ( x )⎪⎩⎪⎨⎧≤=-.0,e 2,0,0)(23> x x a x x f ax其他)0()1(1010F a F a x P a x P -=⎭⎬⎫⎩⎨⎧≤=⎭⎬⎫⎩⎨⎧<<<08.0e 2511≈-=-31. 随机变量X 服从参数为0.7的0-1分布,求X 2,X 2-2X 的概率分布.解X 2仍服从0-1分布,且P { X 2=0 } =P { X =0 } =0.3,P {X 2=1}=P {X =1}=0.7X 2-2X 的取值为-1与0 , P {X 2-2X =0} =P { X =0 } =0.3P { X 2-2X =-1 } =1-P { X =0 } =0.732. 已知P { X =10n } =P { X =10-n }=,,2,1,31=n nY =l gX ,求Y 的概率分布. 解Y 的取值为±1, ±2 , …P { Y =n } =P { l gX =n } =P { X =10n } =31P { Y =-n } =P { l gX =-n } =P { x =10-n } =31n =1 , 2 , …33. X 服从[a ,b ]上的均匀分布,Y =ax +b (a ≠0),求证Y 也服从均匀分布.证设Y 的概率密度为f Y ( y ) ,X 的概率密度为f X ( x ),只要a ≠ 0,y = ax + b 都是x 的单调函数. 当a > 0时,Y 的取值为[a 2+b ,ab +b ],ax y h b y a y h x y 1)(,)(1)(='='-== ],,[,)(1])([)()(2b ab b a y a b a y h f y h y f X Y ++∈-='=当],[2b ab b a y ++∈时,f Y ( y ) =0.类似地,若a <0,则Y 的取值为[ ab +b , a 2+b ]⎪⎩⎪⎨⎧+≤≤+--=.,0,,)(1)(2其他b a y b ab a b a y f Y因此,无论a >0还是a <0,ax +b 均服从均匀分布.34. 随机变量X 服从[0 , 2π]上的均匀分布Y =cos X , 求Y 的概率密度f Y ( y ).解y =cos x 在[0,2π]上单调,在(0 , 1)上,h ( y ) = x =arccos yh′ ( y ) = 211y -- , f x ( x ) = π2 , 0 ≤ x ≤ 2π. 因此⎪⎩⎪⎨⎧-=.0,10,1π2)(2其他,<<y yy f Y35. 随机变量X 服从(0 , 1)上的均匀分布,Y =e x , Z =|ln X |,分别求随机变量Y 与Z 的概率密度f Y ( y ) 及f Z ( z ) .解y = e x 在(0 , 1)内单调 , x =ln y 可导,且x′y = y1, f X ( x ) =10 < x < 1 , 因此有⎪⎩⎪⎨⎧.,0,e 1,1)(其他 <<y yy f Y在(0 , 1)内ln x < 0|ln x |=-ln x 单调,且x = e z -,x′z =-e z -,因此有⎩⎨⎧∞+=-.,0,0e )(其他<<,z z f z z36. 随机变量X ~f ( x ) , ⎩⎨⎧≤=-0,00,e )(x x x f x >Y = X , Z = X 2 , 分别计算随机变量Y 与Z 的概率密度f y ( y ) 与f Z ( z ) . 解当x > 0时,y =x 单调,其反函数为x = y 2 , x′y = 2y ⎪⎩⎪⎨⎧≤=-.0,0,0,e 2)(2y y y y f y Y >当x > 0时z =x 2也是单调函数,其反函数为x =z , x′ z =z21⎪⎩⎪⎨⎧≤=-.0,00e 21)(z ,z zz f zz > 37.随机变量X ~f ( x ),当x ≥ 0时,)1(2)(2x x f +=π, Y =arctan X ,Z =X1,分别计算随机变量Y 与Z 的概率密度f Y ( y ) 与fz ( z ) . 解由于y = arctan x 是单调函数,其反函数x =tan y , x′ y =sec 2y 在⎪⎭⎫⎝⎛-2π,0内恒不为零,因此,当0 < y <π2时, π2)tan 1(π2sec )(22=+=y y y f Y 即Y 服从区间(0 , 2π)上的均匀分布.z = x 1在x >0时也是x 的单调函数,其反函数x =z 1, x′ z =21z-.因此当z >0时,)1(π2])1(1[π21)(222z zz z fz +=+-=⎪⎩⎪⎨⎧≤+=0,00,)1(π2)(2z z z z f z >即Z =X1与X 同分布. 38. 一个质点在半径为R ,圆心在原点的圆的上半圆周上随机游动. 求该质点横坐标X 的密度函数f X ( x ) .解如图,设质点在圆周位置为M ,弧MA 的长记为L ,显然L 是一个连续型随机变量,L 服从[0,πR ]上的均匀分布.⎪⎩⎪⎨⎧≤≤=.,0π0,π1)(其他,R l Rl f L M 点的横坐标X 也是一个随机变量,它是弧长L 的函数,且X = R cos θ = R cos RL函数x = R cos l / R 是l 的单调函数 ( 0< l < πR ) ,其反函数为l = R arccos Rx22xR R l x--=' 当-R < x < R 时,L′x ≠ 0,此时有2222π1π1)(xR R x R Rx f X -=⋅--=当x ≤ -R 或x ≥ R 时,f X ( x ) =0 .39. 计算第2 , 3 , 5 , 6 , 11各题中的随机变量的期望. 解根据第2题中所求出的X 概率分布,有2138223815138210=⨯+⨯+⨯=EX亦可从X 服从超几何分布,直接计算2120521=⨯==N N n EX在第3题中21161216611690=⨯+⨯+⨯=EX亦可从X 服从二项分布(2,41),直接用期望公式计算:21412=⨯==np EX在第5题中(1)3.122014220934492431=⨯+⨯+⨯+⨯=EX(2)3.022013220924491430=⨯+⨯+⨯+⨯=EY在第6题中,25.2220843220108222027122010=⨯+⨯+⨯+⨯=EX在第11题中,⎪⎭⎫⎝⎛+⨯+⨯+⎪⎭⎫ ⎝⎛-⨯=d 313312d 311EX31|<d <|0 d 22+=40. P { X = n } =nc, n =1, 2, 3, 4, 5, 确定C 的值并计算EX .解160137543251==++++=∑=c c c c c c n c n 13760=C 137300551==∑⋅==C n c n EX n 图2-141. 随机变量X 只取-1, 0, 1三个值,且相应概率的比为1 : 2 : 3,计算EX . 解设P { X =-1 } = a ,则P { X =0 } =2a , P { X =1 } =3a ( a >0 ) ,因a + 2a + 3a = 1 , 故a =1/631631620611=⨯+⨯+⨯-=EX42. 随机变量X 服从参数为0.8的0-1分布,通过计算说明EX 2是否等于( EX )2 ? 解EX =P { X =1 } =0.8,( EX )2 =0.64EX 2=1×0.8=0.8>( EX )243. 随机变量X ~f ( x ) ,f ( x ) =0.5e - | x |,计算EX n ,n 为正整数.解当n 为奇数时,)(x f x n 是奇函数,且积分x x x n d e 0-∞⎰收敛,因此0d e 5.0||=⎰=-∞+∞-x x EX x n n当n 为偶数时,x x x x EX x n x n n d e 5.02d e 5.00||-∞+-∞+∞-⎰=⎰=!)1(d e 0n n x x x n =+Γ=⎰=-∞+44. 随机变量X ~f ( x ) ,⎪⎩⎪⎨⎧-≤≤=.,0,21,2,10,)(<<x x x x x f计算EX n (n 为正整数) .解x x x x x x x f x EX n n n n d )2(d d )(21101⎰-+⎰=⎰=+∞+∞-1)2(21)12(122121-+--+++=++n n n n n )2()1(222++-=+n n n 45. 随机变量X ~f ( x ) ,⎩⎨⎧≤≤=.,0,10,)(其他x cx x f bb ,c 均大于0,问EX 可否等于1,为什么?解11d d )(10=+=⎰=⎰∞+∞-b c x cx x x f b 而2d 101+=⎰=+b c x cx EX b 由于方程组⎪⎪⎩⎪⎪⎨⎧=+=+1211b c b c无解,因此EX 不能等于1. 46. 计算第6,40各题中X 的方差DX . 解在第6题中,从第39题计算知EX =49, 22012152208492201084220272=⨯+⨯+=EX DX =EX 2-( EX )2≈0.46其他 其他在第40题中,已计算出EX =137300, c cn n c n EX n n 15515122=∑=⨯∑=== =137900DX =EX 2-(EX )2≈1.7747. 计算第23,29各题中随机变量的期望和方差.解在第23题中,由于f ( x ) =x21(0<x <1),因此31d 210=⎰=x xx EX51d 22102=⎰=x xx EXDX = EX 2- ( EX )2 =454在第29题中,由于f ( x ) =2π2x( 0<x <π ) , 因此π32d π2π022=⎰=x xEX2πd π22π0232=⎰=x x EX DX =EX 2- ( EX )2=18π248. 计算第34题中随机变量Y 的期望和方差.解EY =π2d 1π2d )(12=⎰-=⎰∞+∞-y y y y y yf Y EY 2=21d 1π2122=⎰-y y y DY =222π28ππ421-=-49. 已知随机变量X 的分布函数F ( x ) 为:F ( x ) =⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+≤-++-.1,11022101,2211,022x x ,x x x x x x ,<-,<,<计算EX 与DX .解依题意,X 的密度函数f ( x ) 为:⎪⎩⎪⎨⎧≤-≤-+=.010,101,1)(其他,<,<,x x x x x f解EX =0d )1(d )1(0101=-⎰++⎰--x x x x x xEX 2=61d )1(d )1(102012=-⎰++⎰-x x x x x xDX =61 50. 已知随机变量X 的期望E X =μ,方差DX =σ2,随机变量Y = σμ-X ,求EY 和DY .解EY =σ1( EX -μ ) =0 DY = 2σDX =151. 随机变量Y n ~B ( n , 41) ,分别就n =1, 2, 4, 8, 列出Y n 的概率分布表,并画出概率函数图 .其中a = 1/65536 . 图略 .52. 设每次实验的成功率为0.8,重复实验4次,失败次数记为X ,求X 的概率分布 . 解X 可以取值0, 1,2, 3, 4.相应概率为P ( X =m ) =m m mC 2.08.0444⨯⨯--( m=0,1,2,3, 4 ) 计算结果列于下表53. 设每次投篮的命中率为0.7,求投篮10次恰有3次命中的概率 ;至少命中3次的概率 . 解 记X 为10次投篮中命中的次数,则X ~B ( 10 , 0.7 ) .{}009.03.07.0373310≈==C X P{}{}{}{}21013=-=-=-=≥X P X P X P X P =1-0.310-10×0.7×0.39-45×0.72×0.38≈0.998454.掷四颗骰子,求“6点”出现的平均次数及“6点”出现的最可能(即概率最大)次数及相应概率.解 掷四颗骰子,记“6点”出现次数为X ,则X ~B (4,61).EX = np =32由于np + p =65,其X 的最可能值为[ np + p ]=0 {}1296625)65(04===X P 若计算{}12965001==X P ,显然{}{},3,2==x P x P{}4=x P 概率更小.55.已知随机变量X ~B (n , p ),并且EX =3,DX =2,写出X 的全部可能取值,并计算{}8≤X P . 解根据二项分布的期望与方差公式,有⎩⎨⎧==23npq np 解方程,得q =32,p =31,n =9 . X 的全部可能取值为0, 1, 2, 3, …, 9. {}{}918=-=≤X P X P= 1-9)31(≈ 0.999956.随机变量X ~B (n ,p ),EX =0.8,EX 2=1.28,问X 取什么值的概率最大,其概率值为何? 解由于DX = EX 2-(EX)2=0.64, EX =0.8, 即⎩⎨⎧==8.064.0np npq 解得q = 0.8,p = 0.2,n = 4 .由于np +p =1,因此X 取0与取1的概率最大,其概率值为 {}{}4096.08.0104=====X P X P57.随机变量X ~B (n , p ),Y =e aX ,计算随机变量Y 的期望EY 和方差DY .解随机变量Y 是X 的函数,由于X 是离散型随机变量,因此Y 也是离散型随机变量,根据随机变量函数的期望公式,有 }{ }{∑+==∑==∑+==∑∑====-==-==-ni n a i n i a i n ni ai ni na i n i a i n ni ni in i i n ai ai q p q p C i X P EY q p q p C qp C i X P EY 022022000)e ()e ()e ()e ()e (e en ap n ap q q DY 22)e ()e (+-+=58. 从一副扑克牌(52张)中每次抽取一张,连续抽取四次,随机变量X ,Y 分别表示采用不放回抽样及有放回抽样取到的黑花色张数,分别求X ,Y 的概率分布以及期望和方差.解X 服从超几何分布,Y 服从二项分布B (4,21).)4,3,2,1,0(45242626===-m C C C m X P m m }{)4,3,2,1,0()21()21(44===-m C m Y P mm m }{ 具体计算结果列于下面两个表中.1 2214171651485226522641252264211===⨯===⨯⨯⨯=--⋅⋅==⨯==npq DY np EY N n N N N N N n DX N N nEX 59. 随机变量X 服从参数为2的泊松分布,查表写出概率4,3,2,1,0,==m m X P }{并与上题中的概率分布进行比较.X0 1 2 3 4 P0.13530.27070.27070.18040.090260.从废品率是0.001的100000件产品中,一次随机抽取500件,求废品率不超过0.01的概率.解 设500件中废品件数为X ,它是一个随机变量且X 服从N=100000,1N =100,n =500的超几何分布.由于n 相对于N 较小,因此它可以用二项分布B (500,0.001)近似.又因在二项分布B (500,0.001)中,n =500比较大,而p =0.001非常小,因此该二项分布又可用泊松分布近似,其分布参数λ=np =0.5.}∑=≈≤=≤⎩⎨⎧=-505.0999986.0e !5.05X 001.0500m m m P X P }{ 61.某种产品每件表面上的疵点数服从泊松分布,平均每件上有0.8个疵点,若规定疵点数不超过1个为一等品,价值10元;疵点数大于1不多于4为二等品,价值8元;4个以上者为废品,求: (1)产品的废品率; (2)产品价值的平均值解 设X 为一件产品表面上的疵点数目,(1)}{}>{314≤-=X P X P ∑==-==300014.01m m X P }{(2)设一件产品的产值为Y 元,它可以取值为0,8,10. )(61.98088.0101898.08 110418 10108800元}{}<{}{}{}{≈⨯+⨯=≤+≤==⨯+=⨯+=⨯=X P X P Y P Y P Y P EY62.设书籍中每页的印刷错误服从泊松分布,经统计发现在某本书上,有一个印刷错误的页数与有2个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解设一页书上印刷错误为X ,4页中没有印刷错误的页数为Y ,依题意,}{}{21===X P X P 即λλλλ--=e !2e2解得λ=2,即X 服从λ=2的泊松分布.2e 0-===}{X P p 显然Y ~B )e ,4(2-84e 4-===p Y P }{63.每个粮仓内老鼠数目服从泊松分布,若已知一个粮仓内,有一只老鼠的概率为有两只老鼠概率的两倍,求粮仓内无鼠的概率. 解设X 为粮仓内老鼠数目,依题意λλλλ--⨯====e!22e 2212}{}{X P X P解得λ=1.1e 0-==}{X P64.上题中条件不变,求10个粮仓中有老鼠的粮仓不超过两个的概率.解 接上题,设10个粮仓中有老鼠的粮仓数目为Y ,则Y ~B (10,p ),其中,e 10101--==-==}{}>{X P X P 1e -=q)45e 80e 36(e 2102128+-==+=+==≤---}{}{}{}{Y P Y P Y P Y P65.设随机变量X 服从][3,2上的均匀分布,计算E (2X ),D (2X ),2)2(X D .解EX =2.5,DX =1276)(,12122=+=EX DX EXE (2X )=5,D (2X )=4DX =31,][⎰==-===32 442242225211d )(1616)4()2(x x EX EX EX DX X D X D 45150416)2(720150414457765211)(222242===-=-=DX X D EX EX DX66.随机变量X 服从标准正态分布,求概率P }{}{}{}{7,1,535.2,3-≤≤≤≤≤X P X P X P X . 解3(3)0.9987P X Φ≤=={} 2.355(5)(2.35)0.0094P X ΦΦ≤≤=-={}1(1)0.8413P X Φ≤=={}71(7)0P X Φ≤-=-={}67.随机变量X 服从标准正态分布,确定下列各概率等式中的a 的数值: (1);9.0=≤}{a X P ;(2){};9.0 =≤a X P(3){};97725.0=≤a X P (4){};1.0 =≤a X P 解(1){}()0.9P X a a Φ≤==,查表得a =1.28(2){} 2()10.9P X a a Φ≤=-=,得Φ(a )=0.95, 查表得a =1.64(3){}()0.97725P X a a Φ≤==,查表得a =2(4){}1.01)(2 =-Φ=≤a a X P ,得Φ(a )=0.55, 查表得a =0.1368. 随机变量X 服从正态分布)2,5(2N ,求概率{}85<<X P ,{}0≤X P ,{}25 <-X P .解{}⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-=2552588X 5ΦΦ<<P (1.5)(0)0.4332ΦΦ=-=P {}()()00620521520...X =-=-=≤ΦΦ{}1)1(212525 -Φ=⎭⎬⎫⎩⎨⎧≤-=-X P X P <=0.682669.随机变量X 服从正态分布),(2σμN ,若{}975.09=<X P ,{}062.02=<X P ,计算μ和σ的值,求{}6>X P .。
概率论与数理统计教程-魏宗舒-课后习题解答答案-7-8章

概率论与数理统计教程-魏宗舒-课后习题解答答案-7-8章概率论与数理统计教程-魏宗舒-课后习题解答答案-7-8章第七章假设检验7.1 设总体2(,)N ξµσ~,其中参数µ,2σ为未知,试指出下⾯统计假设中哪些是简单假设,哪些是复合假设:(1)0:0,1H µσ==;(2)0:0,1H µσ=>;(3)0:3,1H µσ<=;(4)0:03H µ<<;(5)0:0H µ=.解:(1)是简单假设,其余位复合假设 7.2 设1225,,,ξξξ取⾃正态总体(,9)N µ,其中参数µ未知,x 是⼦样均值,如对检验问题0010:,:H H µµµµ=≠取检验的拒绝域:12250{(,,,):||}c x x x x c µ=-≥,试决定常数c ,使检验的显著性⽔平为0.05解:因为(,9)N ξµ~,故9(,)25N ξµ~ 在0H 成⽴的条件下,00053(||)(||)53521()0.053cP c P c ξµξµ-≥=-≥??=-Φ=55()0.975,1.9633c cΦ==,所以c =1.176。
7.3 设⼦样1225,,,ξξξ取⾃正态总体2(,)N µσ,20σ已知,对假设检验0010:,:H H µµµµ=>,取临界域12n 0{(,,,):|}c x x x c ξ=>,(1)求此检验犯第⼀类错误概率为α时,犯第⼆类错误的概率β,并讨论它们之间的关系;(2)设0µ=0.05,20σ=0.004,α=0.05,n=9,求µ=0.65时不犯第⼆类错误的概率。
解:(1)在0H 成⽴的条件下,200(,)nN σξµ~,此时00000()P c P ξαξ=≥=10,由此式解出010c αµ-=+在1H 成⽴的条件下,20(,)nN σξµ~,此时101010()(P c P αξβξµ-=<=<=Φ=Φ=Φ由此可知,当α增加时,1αµ-减⼩,从⽽β减⼩;反之当α减少时,则β增加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TX0n3.252 3.2550.3430。
S*0.013038
对0.05,查t分布表可得t1(n 1) t0.975(4)2.7764。
因为T0.3430 2.7764,接受H0:3.25。
7.3 问题相当于要检验H0:20。
n
25,S*2
404.77,S2n 1S*2388.58,n
2nS225388.58
24.286。
2
0
202
对
0.05,查
2
分布表可得
22(n 1)
2
02.025(24) 12.401,
122(n
2
1)02.975(24)39.364,
因为12.401
224.286 39.364
, 接受
H0:20。
S*11(m/s),求
2和
的水平为 95% 的置信区间。
7.15 设总体~N(
2
1,12),~N(2,
2
22),其中
1,2都未知, 但已知1
2,
(X1,X2, , Xm),(Y1, Y2, ,Yn)分别是, 的样本,两个样本相互独立,请根
据 6.7 节的定理 6.8 ,推导出一个在本题条件下,求1 2的水平为1的置信区间 的公式。
7.16设用原料A和原料B生产的两种电子管的使用寿命(单位:小时)分别为~22
N(1,12)和~N(2,22),其中1,2都未知,但已知1 2。现对这两种 电子管的使用寿命进行测试,测得结果如下:
原料A
1460,1550,1640, 1600,1620,1660,1740,1820
原料B
1580,1640,1750, 1640,1700
配方二
565,577,580, 575,556,542,560,532,570,561
如果橡胶的伸长率服从正态分布,两种配方生产的橡胶伸长率的标准差是否有显著差异? (显著水平0.05)
7.8 设锰的熔化点(单位:C)服从正态分布。进行 5次试验,测得锰的熔化点如下:
1269,1271 ,1256 ,1265,1254。 是否可以认为锰的熔化点显著高于1250 C?(显著水平0.05)
7.9某种导线的电阻 (单位: )服从正态分布, 按照规定, 电阻的标准差不得超过 0.005 。 今在一批导线中任取9根,测得样本标准差S0.007 ,这批导线的电阻的标准差,比起 规定的电阻的标准差来,是否显著地偏大?(显著水平0.05)
7.10某厂从用旧工艺和新工艺生产的灯泡中,各取10只进行寿命试验,测得旧工艺生产 的灯泡寿命的样本均值为2460小时, 样本标准差为56小时; 新工艺生产的灯泡寿命的样本 均值为2550小时,样本标准差为48小时。设新、旧工艺生产的灯泡寿命都服从正态分布, 而且方差相等。问:能否认为采用新工艺后,灯泡的平均寿命有显著的提高?(显著水平
智商
<80
80~89
90~ 99
≥100
营养良好
245
228
177
219
营养不良
31
27
13
10
问:儿童的智力发展是否与营养状况有关?(显著水平0.05)习题七
192
7.1问题相当于要检验H0:0.150。n75,X0.154,已知0.012。
0.154 0.150
75
0.012
因为U2.8868 1.9600,拒绝H0:0.150。
0.05
7.11 甲、乙两台车床生产的滚珠的直径(单位:mm)都服从正态分布,现从两台车床生产的滚珠中分别抽取8个和9个,测得直径如下:
甲车床生产的滚珠
15.0 ,14.5 ,15.2 , 15.5 ,14.8 , 15.1 ,15.2 , 14.8
乙车床生产的滚珠
15.2 ,15.0 , 14.8 ,15.2 ,15.0 ,15.0 , 14.8 ,15.1 , 14.8
7.13对铝的比重(单位:g/cm3)进行16次测量,测得样本均值X
2
S0.029。设样本来自正态总体~N( ,2),求:
1)总体均值 的水平为 95% 的置信区间
2)总体标准差 的水平为 95% 的置信区间。
7.14某种炮弹的炮口速度服从正态分布N( ,2),随机地取9发炮弹作试验,测得炮口
91
速度的修正样本标准差
10.5?
(显著水平
0.05)
(2)
是否可以认为金属棒长度的标准差
0.15?
(显著水平
0.05)
7.5 为了比较甲、乙两种安眠药的疗效,任选20名患者分成两组,其中10人服用甲种安 眠药后,延长睡眠的时数为:
1.9,0.8 ,1.1 ,0.1 ,-0.1 ,4.4 ,5.5 ,1.6 , 4.6 ,3.4 ; 另外10人服用乙种安眠药后,延长睡眠的时数为:
3.25 ,3.27 ,3.24 , 3.26 , 3.24 。
设镍含量服从正态分布,问:能否认为这批矿砂中镍含量的平均值为 3.25 ?(显著水平0.05)
7.3某厂生产的一种保险丝,其熔化时间(单位:ms) ~N( ,2),在正常情况下,
标准差20。现从某天生产的保险丝中抽取 25个样品, 测量熔化时间, 计算得到样本均 值为X62.24,修正样本方差为S*2404.77,问:这批保险丝熔化时间的标准差, 与正常情况相比,是否有显著的差异?(显著水平0.05)
位: )是否有显著的差异,在同一平炉上,用原方法炼10炉钢,得到得率如下:
78.1,72.4 ,76.2 ,74.3 ,77.4 , 78.4 , 76.0 ,75.5 ,76.7 ,77.3 ; 用新方法炼12炉钢,得到得率如下:
79.1,81.0 ,77.3 ,79.1 , 80.0 ,78.2 ,79.1 ,79.1 ,77.2 ,-1.2 ,-0.1 ,3.4 , 3.7 ,0.8 ,0.0 ,2.0 。 设两组样本都来自正态总体,而且总体方差相等。问:甲、乙两种安眠药的疗效是否有显著 差异?(显著水平0.05) 7.6 为了确定在不同的操作方法下,炼钢的得率(可用钢材量与投入炉中金属量之比,单
习题七
7.1某车间加工的钢轴直径 服从正态分布N( ,2),根据长期积累的资料,已知其
中0.012(cm)。按照设计要求,钢轴直径的均值应该是0.150(cm)。现从一
批钢轴中抽查75件,测得它们直径的样本均值为0.154(cm),问:这批钢轴的直径是否
符合设计要求?(显著水平0.05)
7.2从一批矿砂中,抽取5个样品,测得它们的镍含量(单位: )如下:
问:乙车床产品的方差是否显著地小于甲车床产品的方差?(显著水平0.05)
7.12某炼铁厂炼出的铁水含碳量(单位: )服从正态分布N( ,2),根据长期积累的 资料,已知其中0.108。现测量5炉铁水,测得含碳量为:
4.28 ,4.40 ,4.42 , 4.35 , 4.37 。
求总体均值 的水平为 95% 的置信区间。
求1 2的水平为 0.95 的置信区间。
7.17甲、乙两人相互独立地对一种聚合物的含氯量用相同的方法各作10次测定,测定值 的样本方差分别为Sx20.5419和Sy20.6050,设测定值服从正态分布,求他们测定 值的方差之比的水平为 95% 的置信区间。
7.18为研究色盲与性别的关系,对1000人作统计,得到结果如下:
90
设这两个样本相互独立,都来自正态总体。问:
(1)是否可以认为两种方法下炼钢得率的方差相等?(显著水平0.05)
(2)是否可以认为两种方法下炼钢得率的均值相等?(显著水平0.05)
7.7 按两种不同的配方生产橡胶,测得橡胶伸长率(单位: )如下:
配方一
540,533,525,520,544,531,536, 529,534
7.4
从切割机切割所得的金属棒中,随机抽取
15根,
测得长度(单位:
cm)
10.5 , 10.6 , 10.1 , 10.4 ,
10.5 ,
10.3 ,10.3 ,
10.2 ,
10.9 ,10.6 , 10.8 , 10.5
, 10.7
, 10.2 ,10.7
。
设金属棒长度~N( ,2)。问:
(1)
是否可以认为金属棒长度的平均值
男
女
色盲
38
6
正常
442
514
问:色盲是否与性别有关?(显著水平0.05)
7.19为研究青少年犯罪与家庭状况的关系,对1154名青少年进行调查,得到统计结果如 下:
无犯罪记录
有犯罪记录
完整家庭
973
88
残缺家庭
70
23
问:青少年犯罪是否与家庭状况有关?(显著水平0.05)
7.20 为研究儿童智力发展与营养的关系,抽查了950名小学生,得到统计数据如下:
1)问题相当于要检验H0:10.5。
对0.05,查t分布表可得t1(n 1) t0.975(14)2.1448。
93