第九章 光学系统的像质评价(2013第15讲)分解
华中科技大学 《应用光学》课程——第九章 光学系统的像差

L′
-δL′
l′
β— 近轴区垂轴倍率
2. 正弦条件(不晕成像):轴上点及近轴外点均理想成像
不晕成像条件: SC 0,L 0
1 n sinU 1
nsinU
nysinU nysinU (无球差也无正弦差)
y n sinU
y nsinU
a:物在无穷远:
nysinU ny sinU 物有限远的正弦条件
有负球差为“校正不足”, 有正球差为“校正过头”。
5. 光学系统的球差分布公式:
令
1 2
S
niZ
Z LsinU LsinU
单个折射面的球差表达式
L'
nu sinU nu sinU
L
1 2nu sinU
S
S
单个折射面的球差分布系数
整个系统的球差表达式
Lk
n1u1 sin U1 nk uk sinU k
不晕点
sinU ' sin I n' L sinU sin I ' n L'
不晕透镜(齐明透镜):满足不晕条件
例:设计一齐明透镜,第一面曲率半径r1=-95mm,物点 位于第一面曲率中心,第二面满足齐明条件。若该透镜厚 度d=5mm,折射率n=1.5,该透镜在空气中,求:
1)该透镜第二面的曲率半径;
-U1
A2’
A1
-r1
d
-L1
-L2
-L’2 齐明透镜
L n n r n
s in U 3
s in U1
s in U1 n
n1=1
n2=n
n3=1
-U3
A’2 -U1
A1
d
第九章像质评价与像差公差分析

1.22 取555 nm 140 '' D D
入瞳 直径
该评价方法不很完善,存在的缺点: ①像差可降低光学系统的分辨率,但小像差光学系统, 其实际分辨率受像差的影响很小,不宜用分辨率来评价 象质;而在大像差光学系统中,分辨率与系统的像差有 关,常用分辨率作为成像质量指标。 ②用于分辨率检测的鉴别板,由于照明条件和接收器的 不同,其检测结果也不同,有时可能认为像质较好,有 6 时认为较差。
二、利用MTF曲线的积分值来评价像质 理论证明:像点中心点亮度值=MTF曲线所围的面积。 显然MTF所围面积越大,表明光学系统传递的信息量越多, 其成像质量越好,图象越清晰。
两曲线所 围面积 MTF曲线 所围面积
曲线I为光学系统的MTF曲线,曲线II为接收器的分辨率极 值曲线。两曲线所围面积越大,表明系统的成像质量越好, 其交点F为光学系统和接收器共同使用时的极限分辨率。
4
§9-2 分辨率
分辨率是反映光学系统能分辨物体细节的能力,是光学系 统的一个很重要的性能,因此可用其来评价光学系统的成 像质量。 表述为:能分辨的两个等亮度亮点间的距离对应艾里斑的 半径,即一个亮点的衍射图案中心与另一个亮点的衍射图 案的第一个暗环重合时,这两个亮点能被分辨开。
5
能被分辨开的两个衍射图案中的光强极大值与极小值之 比为1:0.735,与接收器能分辨的亮度相当,可分辨 率的大小还与接收器分辨率有关。 由衍射理论知,光学系统的最小分辨角为:
8
利用点列图法来评价像质时,通常是利用集中30%以上的 点或光线所构成的图形区域作为其实际有效弥散斑,其直 径的倒数即为系统的分辨率。 优点:简便易行,形象直观。 缺点:计算量大,需借助计算机。 适用范围:大像差光学系统。
第九章光学系统的像质评价分解

第九章光学系统的像质评价分解光学系统的像质评价是对光学系统成像性能的定量分析和评估。
在光学系统设计和制造中,评价光学系统的像质是非常重要的,可以帮助工程师了解光学系统的成像性能,指导设计优化和制造流程改进。
本文将对光学系统的像质评价进行分解。
首先,光学系统的像质评价包括像散、相对孔径、像场曲率、像场曲率和像场畸变五个方面。
像散是光学系统成像时,由于透镜折射作用,会导致不同波长的光线成像位置不同,从而引起色差。
相对孔径指的是光学系统的数值孔径,是透镜或物镜口径与焦距之比,决定了光线的收集能力和分辨能力。
像场曲率是光学系统成像平面与对象平面之间的位置关系,如果成像平面与对象平面不在同一个位置,就会导致像场曲率,影响成像质量。
像场畸变是指光线通过透镜组成像时,由于透镜非理想的成像性能,使得成像出现畸变,影响成像准确性。
其次,光学系统的像质评价还包括分辨力、像点扩散函数(PSF)和耦合。
分辨力是指光学系统能够分辨的最小物体细节大小,它与光学系统的焦距和数值孔径有关。
像点扩散函数是用来描述光学系统成像效果的函数,它描述了光线通过光学系统后,成像点的形状和分布。
耦合是指光学系统中不同光线之间相互作用和干涉的现象,会导致成像时出现噪声和其他不确定性因素,影响像质。
最后,光学系统的像质评价还包括像偏、像移和畸变。
像偏是指光学系统成像时,成像点相对于理想位置的偏移,可以通过调整光学元件的位置和参数来进行校正。
像移是指光学系统成像时,成像点相对于成像平面的位置偏移,可以通过调整焦距和收集角度来进行校正。
畸变是指光学系统成像时,成像点位置相对于对象点位置的非线性偏差,分为径向畸变和切向畸变两种,可以通过调整透镜组参数和改变光路来进行校正。
综上所述,光学系统的像质评价是一个多方面的指标体系,涉及到像散、相对孔径、像场曲率、像场曲率和像场畸变等多个方面。
对于光学系统设计和制造来说,一个好的像质评价指标体系可以帮助工程师评估和优化光学系统的成像性能,提高光学系统的质量和效率。
光学系统成像质量评价

第九节 光学传递函数 第十节 用光学传递函数评价系统的像质
上一页 下一页 返回
第一节 概述
成像质量评价的方法: 成像质量评价的方法:
1、用于在光学系统实际制造完成后对其进行实际测量。 用于在光学系统实际制造完成后对其进行实际测量。 分辨率检验 星点检验 用于在光学系统还没制造出来, 2、用于在光学系统还没制造出来,即在设计阶段通过计算就能评定 系统质量。 系统质量。
上一页
下一页
返回
第二节 介质的色散和光学系统的色差
某一种介质对两种不同颜色光线的折射率之差称为该介质对这两种颜色 光的色散。 光的色散。 不同颜色光线的像点沿光轴方向的位置之差称为轴向色差 分别表示F 两种波长光线的近轴像距,则轴向色差为: 若用 lF ', lC '分别表示F,C两种波长光线的近轴像距,则轴向色差为:
1500 N= F
三、显微镜物镜分辨率: 显微镜物镜分辨率:
在显微镜系统中,物体位在近距离,一般以物平面上刚能分开两物体 在显微镜系统中,物体位在近距离, 间的最短距离σ 间的最短距离σ表示
σ=
0.61λ 0.61λ = nu NA
上一页 下一页 返回
第九节 光学传递函数
一种对设计和使用都适用的统一的像质评价指标 图像分解与合成的概念 像面与物面对比之比称为对指定空间频率μ的对比传递因子, 像面与物面对比之比称为对指定空间频率μ的对比传递因子,用 MTFμ表示 表示。 MTFμ表示。称为振幅传递因子
δ L ' = L ' l '
上一页 下一页 返回
第四节 轴外像点的单色相差
如图所示,主光线和光轴决定的平面,称为子午面, 如图所示,主光线和光轴决定的平面,称为子午面,过主光线与子午 面垂直的平面,称为弧矢面。 面垂直的平面,称为弧矢面。
工程光学第九章课件

*实际成像(衍射及像差):
① 对比度降低
M Ia , M Ia
I0
I0
调制传递函数(MTF)
T
M M
0,1
16
光学系统的像质评价
光学传递函数
➢光学传递函数定义
*实际成像(衍射及像差):
② 相位移动
相位传递函数(PTF)
理想成像光亮度分布 I x 1 M cos 2π x
*用调制度M(/反衬度/对比度)表示正弦光栅线条明暗
对比度。
M Imax Imin Ia 1 Imax Imin I0
I x I0 Ia cos 2π x
I0
1 Leabharlann Ia I0cos 2πx
1 M cos 2π x (令I0 = 1)
点列图(及星点检测法)、光学传递函数
2
光学系统的像质评价
瑞利判断法
*由光路追迹计算得到实际光线与理想光线之间的光程
差——波像差。
*瑞利判断——当系统最大波像差 W<λ/4,成像质量好。 *波前图——实际出射波面的变形程度(波像差),可由
波面干涉仪测量获得。
3
光学系统的像质评价
中心点亮度 *以光学系统存在像差时,其成像衍射斑的中心亮度和
*对大像差系统,将系统入瞳分成大量等面积小面元,
物点发出且穿过面元中心的光线代表通过该面元的能 量。所追迹光线在成像面上的交点分布——点列图— —代表像点的光亮度分布。
*入瞳处面元的选取:
• 直角坐标;极坐标;考虑系统拦光效应。
*以集中60%以上的点所构成的图像区域作为实际有效
弥散斑,弥散斑直径的倒数为系统的分辨率。
光学系统像质评价方法

光学系统像质评价方法那最直观的一种呢,就是星点检验法。
这就像是拿个小镜子去照星星,看星星在镜子里的成像情况。
如果成像清晰,像个完美的小亮点,那就说明这个光学系统还不错呢。
要是星星的像看起来模模糊糊的,或者周围有奇怪的光晕之类的,那这个光学系统可能就有点小毛病啦。
这就好比一个人脸上有脏东西,一眼就能看出来,很直接的一种判断方式哦。
还有分辨率检验法。
你可以想象成看一幅超级复杂的画,画里有好多密密麻麻的线条和小图案。
如果光学系统好,那这些小细节就能看得清清楚楚的,就像你有一双超级锐利的眼睛。
要是分辨率不行呢,那些小线条就会糊成一团,就像近视眼没戴眼镜看东西一样。
这能反映出光学系统分辨微小物体的能力呢。
调制传递函数(MTF)法也很厉害哦。
这个有点像给光学系统打分啦。
它能告诉我们这个系统在不同空间频率下的成像质量。
简单说呢,就像是看这个光学系统在处理简单图案和复杂图案时的表现。
如果MTF的值比较高,那就说明这个光学系统在传递图像信息的时候很靠谱,就像一个很负责的快递员,能把包裹完好无损地送到目的地。
要是MTF值低,那图像的信息可能在传递过程中就丢三落四的啦。
波像差法也不能少呀。
它是从波前的角度来看待像质的。
就好比看水面上的波浪,如果波浪很规则,那成像就会好。
要是波浪乱七八糟的,那像质肯定就受影响啦。
这个方法就像是从根源上去找像质不好的原因,看是哪个环节让波前变得不那么听话了。
像差曲线法呢,就像是给光学系统的像差画个像。
通过这个曲线,我们能很清楚地看到像差是怎么分布的。
就像给光学系统做个体检报告,哪里有问题,从曲线里就能看个大概。
光学系统像质评价

如果系统中有光阑,则把光阑作为系统中 的一个平面来处理。
指定波长光线的折射率n。
选择3~5个波长。用人眼观察的目视光学
仪 器 采 用 C(656.28nm),D(589.30nm), F(486.13nm) 3种波长;用感光底片接收的照 相机镜头,则采用C,D,g(435.83nm)这3种波
长。
光学特性参数
光学特性,包括焦距、物距、像距、 放大率、入瞳位置、入瞳距离等
--应用光学
成像质量,成像清晰,物像相似, 变形要小
----光学设计
成像质量评价的方法
(1)、光学系统实际制造完成后对其进行实际测 量
分辨率检验:
分辨率:光学系统成像时所能分辨的最小间隔δ
空间频率:δ的倒数
1
,单位:lp/mm
星点检验
一个物点通过光学系统成像后,根据弥散斑的 大小和能量分布的情况,可以评判系统的成像质量
像散:
x'ts x't x's
畸变:成像光束主光线实际像高和理想像高之差
y'z y'z y'o
平均场曲: x' xt' xs' 2
像点形状及特性: 球差
Ⅰ
Ⅱ
Ⅲ
最小弥散圆
像差形状及特性
二.彗差 弧矢彗差大约等于子午彗差 的三分之一 光学系统有彗差时像点的 形状如彗星
像差形状及特性
三.像散
一个面处理,并指出哪个面是系统的孔径光阑。
渐晕系数或系统中每个面的通光半径
轴外光束的宽度比轴上点光束的宽度小,这 种现象叫做“渐晕”。
为保证轴外点的成像质量,把轴外子午光束的 宽度适当减小;
从系统外形尺寸上考虑。 两种方式:一种是渐晕系数法;另一种是给出 系统中每个通光孔的实际通光半径。
光学系统像质评价 [自动保存]
![光学系统像质评价 [自动保存]](https://img.taocdn.com/s3/m/cd0415ccc1c708a1284a4478.png)
xts xt xs
细光束像散曲线
轴外像点的单色像差
实际光学系统所成的像即使子午像差和弧矢像差都为零,但对应的 像高并不一定和理想像高一致,这种像对物的变形像差称为畸变。
' ' ' ' ' ' Ao Bp ( yz ) 是光束的实际像高,Ao Bo ( yo ) 是理想像高,两者之差即 为畸变
光学传递函数的评价方法
• 用MTF曲线评价成像质量(所有频率) • 用特征频率传递函数值评价光学系统的质量(根据光 学系统使用目的)
• 用MTF阈值进行成像质量评价(分辨率)
• 用MTF曲线的积分值来评价成像质量(中心点亮度) • 用MTF曲线族来进行成像质量评价(焦深)
光学特性参数
孔径光阑或入瞳位置
它是限制轴上物点成像光束立体角(锥角)的光阑
入瞳的位置用从第一面顶点到入瞳面的距离lz表示,符 号规则同样是向右为正,向左为负
光学特性参数
渐晕
由于轴外点成像光束部分被遮挡,造成像的边缘部分亮度比像平 面中心暗,这种现象叫渐晕。
入窗
入瞳
O
A1
A2
A3
像差
实际成像的典型表现是,一个物点发出的光束经光学系统后不能聚焦成 一点而形成弥散斑,垂轴平面的物体也不可能成理想的垂轴平面像而发 生像面弯曲,同时物体成像还会产生变形,此外,还有不同波长光源之 间的成像差异。 实际像与理想像的差异称为像差。 像差包括:球差、彗差、像散、场曲、畸变和色差。其中,前五种是单 色像差,色差分为垂轴色差和位置色光学特性
成像质量
焦距、物距、像距、放大率、 入瞳位置、入瞳距离等
光学系统所包含的像应该足 够清晰,并且物像相似,变 形要小
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、产品鉴定阶段:样品加工装配后、大批量生产之前,通过严格的实验来 检测其实际成像效果。 考察方法有分辨率检验、星点检验和光学传递函数测量等。
各种方法都有其优点、缺点和适用范围,要综合使用多种评价方法才
能客观、全面地反映成像质量。
光学系统成像性能的两种要求
1、光学特性:焦距、物距、像距、放大率、人瞳位置、人பைடு நூலகம்距离等。
面面积中所占的比重。例如透镜中的小汽泡或表面划痕等,可能在某一局
部会引起很大的波像差,按照瑞利判断,这是不允许的。但实际成像中, 局部极小区域的缺陷对光学系统的成像影响并不明显。
瑞利判断是一种较严格的像质评价方法,主要适用于如望远物镜、
显微物镜、微缩物镜和制版物镜等对成像质量要求较高的小像差系统。
第三节 1、分辨率
分辨率与点扩散函数
分辨率是反映光学系统能分辨物体细节的能力,是一个很重要的性能, 也可以用作光学系统的成像质量评价方法。 瑞利指出“能分辨的二个等亮度点间的 距离对应艾里斑的半径”,即一个亮点的衍 射图案中心与另一个亮点的衍射图案的第一 暗环重合时,这二个亮点则能被分辨。此时 在二个衍射图案光强分布的迭加曲线中有二 个极大值和一个极小值,极大值与极小值之 比为1:0.735,与光能接收器(如眼睛或照相 底板)能分辨的亮度差别相当。若二亮点更 靠近时,光能接收器就不能再分辨出它们是 分离开的二点了。
⑷因对比度反转有时会造成“伪分辨现像”。
用分辨率来评价光学系统的成像质量不是一种严格而可靠的像质评价 方法,但由于其指标单一,且便于测量,在光学系统的像质检测中得到了
广泛应用。
ISO12233 Test Chart (ISO12233标准分辨率测试卡)
最新版解像力测试图 Digital CINE Camera Resolution Chart ( 数码电影模式分辨率测试卡)
通常把二者结合起来。
第一节 1、瑞利判断
瑞利(Reyleigh)判断和波前图
瑞利判断是根据成像波面相对理想球面波的变形程度来判断光学系统
的成像质量。瑞利认为“实际波面与参考球面波之间的最大波像差不超过
λ /4时,光学系统的成像质量是良好的”。 优点:便于实际应用,因波像差与几何像差间的计算关系比较简单。 不足:它只考虑波像差的最大允许公差,没有考虑缺陷部分在整个波
总第15讲
上篇
几何光学与光学设计
第九章 光学系统的像质评价
石家庄铁道大学.机械工程学院
测控系.刘希太
光学系统成像质量的主要评价方法: 瑞利(Reyleigh)判断和波前图 中心点亮度和能量包容图
分辨率与点扩散函数
显点检测法和点列图 光学传递函数
像差评价的两个阶段
1、设计阶段:通过大量计算对系统的成像情况进行仿真模拟。 不考虑衍射时,成像质量主要与系统像差大小有关,可利用几何光学方 法,通过大量的光路追迹计算来评价成像质量。 考察对象有几何像差、波像差等。 存在衍射时,提出了多种基于衍射理论的评价方法,如瑞利判断、点列 图及绘制实际成像波面或光学传递函数曲线等。
2、能量包容图
以高斯像点或能量弥散斑的中心为圆心画圆,随着半径的增大圆形区 域内包含的像点能量也增多,称之为能量包容图。其中横坐标表示以高斯 像点为中心的包容圆的半径,纵坐标表示该包容圆所包容的能量。虚线代
表只考虑衍射影响时的像点能量分布情况,实线则代表存在像差时像点的
实际能量分布情况。两条曲线越接近表明光学系统的像差越小,中心点亮 度也越高。 中心点亮度指标表明中央亮斑损失了多少能量,而能量包容图完整 地显示这些能量弥散到了什么位置,从而能获取更多信息,同时适用于 大像差系统(如照相物镜)和小像差系统。
2、点扩散函数(point spread function)
是依据光学系统存在像差时,其成像衍射斑的中心亮度和不存在像差时衍射
斑的中心亮度之比来表示光学系统的成像质量的,比值用 S.D 来表示。当 S.D≥0.8时,认为光学系统的成像质量是完善的,称斯托列尔准则。
瑞利判断和中心点亮度是从不同角度提出来的像质评价方法,但研究
表明,对一些常用的像差形式,当最大波像差为λ/4时,其中心点亮度约等 于0.8,这说明上述二种评价成像质量的方法是一致的。 斯托列尔准则同样是一种高质量的像质评价标准,它也只适用于小像差 光学系统。但由于其计算相当复杂,在实际中不便应用。
解初始结构,而后再重复上述的过程,直到取得满意的结果。
另一种观点是从现存的光学系统的结构中找寻适合于使用要求的结 构,然后计算光线,分析像差,采用弯曲半径,增加或减少透镜个数等 校正像差的手段,消除和平衡像差,直到获得满意的结果。这种方法需 要计算大量的光线,同时需要光学设计者有较丰富的设计经历和经验。
2、波前图
用现代计算机软件绘制而得的实际波面的变形程度图。
图9-1 望远物镜波像差计算实例 不同视场物点在出瞳位置的波像差。上为灰度图,下为等高线表示。 设计者既能了解波面变形程度,也能了解变形的面积大小。
第二节、中心点亮度和能量包容图 1、中心点亮度
瑞利判断是根据成像波面的变形程度来判断成像质量的,而中心点亮度
2、成像质量:成像应该足够清晰,物像相似,变形要小。
像质评价的相对性
像差总是存在的,没有必要也不可能校正所有像差。对像质的评价
要讨论光学系统所允许存在的剩余像差及像差公差的范围。
光学系统的像差分析与计算
光学设计时,有两种观点:一种主张以像差理论为基础,根据对光学 系统的质量要求,用像差表达式,特别是用三级像差表达式来求解光学系 统的初始结构,然后计算光线并求出像差,对其结果进行分析。若不符合 要光,可利用弯曲半径,更换玻璃、改变光焦度分配等校正像差的手段, 进行像差平衡,直到获得满意的结果。若得不到满意的结果,则需重新求
用分辨率评价光学系统成像质量的特点:
该方法的不完善性: ⑴像差可降低光学系统的分辨率,故只适用于大像差光学系统。 ⑵检测结果与实际情况常存在差异。 ①用于分辨率检测的鉴别率板为黑白相间的条纹,这与实际物体的亮
度背景有着很大的差别;
②照明条件和接收器不同时,同一光学系统检测结果也不相同。 ⑶分辨率不能完全体现分辨范围内分辨质量的好坏。