使用UC3842设计的CUK降压电路(无PCB电路板)
基于UC3842的降压型DC-DC设计

基于UC3842的降压型DC-DC设计设计课题:基于UC3842的降压型DC-DC设计专业班级: B120409 学生姓名:*** *9指导教师: *设计时间: 2014年12月18日目录摘要: (3)关键词: (3)一、系统设计 (3)1.1 系统设计要求 (3)1.2系统设计框图 (3)二、硬件电路设计 (4)2.1 输入模块 (4)2.2 输出模块 (5)2.3 UC3842外围电路 (5)2.4反馈电路 (6)2.5开关管控制电路 (7)三、重要元件简介 (7)3.1 UC3842 (7)3.2 PC817 (9)3.3 TL431 (10)四、计算 (11)4.1 续流二极管的选择 (11)4.2 R6--R10 (11)五、原理图、电路板及PCB图 (12)5.1 原理图 (12)5.2 电路板 (12)5.3 PCB图 (13)六、测试结果及结果分析 (13)6.1测试结果 (13)6.2 测试结果分析 (14)七、结论与心得 (15)基于UC3842的降压型DC-DC设计摘要:为了研究基于UC3842的直流降压斩波电路,选择了以UC3842为脉宽控制核心的15V到8V的降压变换为实例,详细的说明UC3842的用法,外围电路设计,以及反激直流变换器的直接降压斩波工作原理。
该方案里的UC3842可以直接驱动开关管,向负载提供电能。
为了整体电路的稳定,又在输出端添加由TL431和PC817组成的反馈电路,对输出电压采样,把输出电压反馈给UC3842,通过内部比较器,自动的调节脉宽,调节输出电压,以达到稳定。
关键词:UC3842 反馈电路滤波一、系统设计1.1 系统设计要求表1 系统要求1.2系统设计框图本设计采用的是一种高性能单端输出式电流控制型脉宽调制器芯片UC3842。
该脉宽调制器能产生频率固定而脉冲宽度可以调节的驱动信号,控制大功率开关管的通断状态来调节输出电压的大小,达到稳压目的,锯齿波发生器提供恒定的时钟频率信号,利用误差放大器的电压测定比较器形成电压闭环,利用电流测定、电流测定比较器构成电流闭环,在脉宽比较器的输入端直接用流过输出电感电流的信号与误差放大器输出信号进行比较,从而调节驱动信号的占空比使输出的电感峰值电流跟随误差电压变化而变化。
UC3842降压开关电源的设计报告1

UC3842降压开尖电源的设计」、设计任务及要求:1、掌握UC3842主要性能参数、端子功能、工作原理及典型应用2、掌握BUCK降压型开尖电源原理,掌握电路布线及焊接。
设计要求:(1)稳压电源在输入电压30〜36v、电压变化范围+ 15%〜一20%条件下:a输出电压可调范围为+9V〜+12Vb. 最大输出电流为1.5Ac. 电压调整率W0.2% (输入电压30〜36v变化范围+ 15%〜一20%下,空载到满载)d. 负载调整率W1% (最低输入电压下,满载)e. 纹波电压(峰■峰值)w 5mV (最低输入电压下,满载)f-效率》40% (输出电压9V、输入电压220V下,满载)g.具有过流及短路保护功能、buck变换器buck线路(降压电路)的原理图如图1所示,降压线路的基本特征为:输出电压低于输入电压,输出电流为连续的,输入电流是脉动的。
图1S为开尖管,D为续流二极管,当给S —个高电平使得开尖管导通,输入电源对电鳳,电容充电,同时向负载供电。
当给S —个彳氐电平时使得开尖管矢断,负载电流经二极管续流。
改变开尖管的占空比即能改变输出的平均电压。
但是实际使用时不能用这个图,因为控制信号和开矢管不共地,需要隔离。
采用如下电路作为BUCI主电路:L3:fm H:丄忙—30V C1 IC2::D1 :l;1N120KCTii F22mF 二T •22MU03 •・CG…R*C38k HZ5 ;:Om- OumIAFMO 二三、硬件设计1 ' Buck主电路参数选择:由于电压输入到电路板上有辐射干扰,需加电源输入滤波电容和退偶电容,经验值选择470u的电解电容和O.1u的瓷片电容。
①开尖管选择IFR640,V DSS = 200V^DS(on)二0.15(2l D= 18AI ----------------- 各个参数均满足电路性能及指标要求。
②续流二极管选择MUR302各个指标都还适合,只是反向恢复时间150ns有点长。
用UC3842芯片设计开关电源

用UC3842芯片设计开关电源笔者最近设计了由UC3842组成的DC-DC转换器,总的框架采用参考文献中现成的电路。
但由于输入电压和工作频率不同,重新设计了电路参数。
UC3842是美国Unitrode公司生产的一种高性能单端输出式电流控制型脉宽调制器芯片。
UC3842为8脚双列直插式封装,其内部原理框图如图1所示。
主要由5.0V基准电压源、用来精确地控制占空比调定的振荡器、降压器、电流测定比较器、PWM锁存器、高增益E/A误差放大器和适用于驱动功率MOSFET的大电流推挽输出电路等构成。
端1为COMP端;端2为反馈端;端3为电流测定端;端4接Rt、Ct确定锯齿波频率;端5接地;端6为推挽输出端,有拉、灌电流的能力;端7为集成块工作电源电压端,可以工作在8~40V;端8为内部供外用的基准电压5V,带载能力50mA。
2.1启动过程 首先由电源通过启动电阻R1提供电流给电容C2充电,当C2电压达到UC3842的启动电压门槛值16V时,UC3842开始工作并提供驱动脉冲,由6端输出推动开关管工作,输出信号为高低电压脉冲。
高电压脉冲期间,场效应管导通,电流通过变压器原边,同时把能量储存在变压器中。
根据同名端标识情况,此时变压器各路副边没有能量输出。
当6脚输出的高电平脉冲结束时,场效应管截止,根据楞次定律,变压器原边为维持电流不变,产生下正上负的感生电动势,此时副边各路二极管导通,向外提供能量。
同时反馈线圈向UC3842供电。
UC3842内部设有欠压锁定电路,其开启和关闭阈值分别为16V和10V,如图3所示。
在开启之前,UC3842消耗的电流在1mA以内。
电源电。
一种基于UC3842的新型开关稳压电源设计

一种基于UC3842的新型开关稳压电源设计作者:栾军来源:《电子世界》2014年第16期【摘要】设计了一种以电流型PWM控制器UC3842芯片为核心的高频单端反激式开关稳压电源。
利用可控精密稳压源TL431和一种性能优良的电流控制型脉宽调制芯片UC3842实现对电源电压的稳压输出和控制。
阐述了开关电源的设计原理、各组成部分的功能及其工作过程。
为了满足电源的安全性和电磁兼容性要求,采用低通滤波法抑制传导干扰,采用光耦PC817进行隔离和反馈,并在电源电路中加入了热敏电阻、压敏电阻以及过压、过流保护等保护措施。
测试结果表明:该电源具有优良的稳压性、纹波小、负载调整率电压调整率高等优点。
【关键词】电流型;PWM;控制器;UC3842;电磁兼容性;传导干扰引言在设计开关电源时通常以PWM集成电路为核心。
近年来,开关电源集成控制器将PWM 控制电路、保护电路集成到一块芯片上,电路设计简单方便,可靠性高。
常见的PWM控制器从控制类型划分共有两种:分别是电压控制型和电流控制型。
电压型PWM控制器调节脉宽是通过反馈电压进行的,电流型PWM控制器是通过调节占空比,使电感峰值电流随误差变化而变化。
电流型PWM控制器的电压调整率和负载调整率效果比电压型PWM控制器更为显著。
采用电流型PWM控制器后系统的动态特性和稳定性明显改善。
电流型PWM控制器内置的限流和并联均流能力使控制电路更加简单且可靠性高。
目前,电流型PWM集成控制器已经产品化,在小功率电源方面取代了电压型PWM控制器。
1.UC3842 PWM芯片简介UC3842采用固定工作频率脉冲宽度可控调制方式,共有8个引脚,各脚功能如下:①脚是误差放大器的输出端,外接阻容元件用于改善误差放大器的增益和频率特性;②脚是反馈电压输入端,此脚电压与误差放大器同相端的2.5V基准电压进行比较,产生误差电压,从而控制脉冲宽度;③脚为电流检测输入端,当检测电压超过1V时缩小脉冲宽度使电源处于间歇工作状态;④脚为定时端,内部振荡器的工作频率由外接的阻容时间常数决定,f=1.72/(RT×CT);⑤脚为公共地端;⑥脚为推挽输出端,内部为图腾柱式,上升、下降时间仅为50ns驱动能力为±1A;⑦脚是直流电源供电端,具有欠、过压锁定功能,芯片功耗为15mW;⑧脚为5V基准电压输出端,有50mA的负载能力。
UC3842典型应用电路

UC3842典型应用电路电路中的芯片有:UC3842 采用固定工作频率脉冲宽度可控调制方式,共有8 个引脚,各脚功能如下:①脚是误差放大器的输出端,外接阻容元件用于改善误差放大器的增益和频率特性;②脚是反馈电压输入端,此脚电压与误差放大器同相端的2.5V 基准电压进行比较,产生误差电压,从而控制脉冲宽度;③脚为电流检测输入端,当检测电压超过1V时缩小脉冲宽度使电源处于间歇工作状态;④脚为定时端,内部振荡器的工作频率由外接的阻容时间常数决定,f=1.8/(RT×CT);⑤脚为公共地端;⑥脚为推挽输出端,内部为图腾柱式,上升、下降时间仅为50ns 驱动能力为±1A ;⑦脚是直流电源供电端,具有欠、过压锁定功能,芯片功耗为15mW;⑧脚为5V 基准电压输出端,有50mA 的负载能力。
电流控制型脉宽调制器UC3842工作原理及应用UC3842是美国Unitrode公司(该公司现已被TI公司收购)生产的一种高性能单端输出式电流控制型脉宽调制器芯片,可直接驱动双极型晶体管、MOSFEF 和IGBT 等功率型半导体器件,具有管脚数量少、外围电路简单、安装调试简便、性能优良等诸多优点,广泛应用于计算机、显示器等系统电路中作开关电源驱动器件。
1 UC3842 内部工作原理简介图1 示出了UC3842 内部框图和引脚图,UC3842 采用固定工作频率脉冲宽度可控调制方式,共有8 个引脚,各脚功能如下:①脚是误差放大器的输出端,外接阻容元件用于改善误差放大器的增益和频率特性;②脚是反馈电压输入端,此脚电压与误差放大器同相端的2.5V 基准电压进行比较,产生误差电压,从而控制脉冲宽度;③脚为电流检测输入端,当检测电压超过1V时缩小脉冲宽度使电源处于间歇工作状态;④脚为定时端,内部振荡器的工作频率由外接的阻容时间常数决定,f=1.8/(R T×C T);⑤脚为公共地端;⑥脚为推挽输出端,内部为图腾柱式,上升、下降时间仅为50ns 驱动能力为±1A ;⑦脚是直流电源供电端,具有欠、过压锁定功能,芯片功耗为15mW;⑧脚为5V 基准电压输出端,有50mA 的负载能力。
UC3842_UC3843隔离单端反激式开关电源电路图

UC3842/UC3843隔离单端反激式开关电源电路图开关电源以其高效率、小体积等优点获得了广泛应用。
传统的开关电源普遍采用电压型脉宽调制(PWM)技术,而近年电流型PWM技术得到了飞速发展。
相比电压型PWM,电流型PWM具有更好的电压调整率和负载调整率,系统的稳定性和动态特性也得以明显改善,特别是其内在的限流能力和并联均流能力使控制电路变得简单可靠。
电流型PWM集成控制器已经产品化,极大推动了小功率开关电源的发展和应用,电流型PWM控制小功率电源已经取代电压型PWM控制小功率电源。
Unitrode 公司推出的UC3842系列控制芯片是电流型PWM控制器的典型代表。
DC/DC转换器转换器是开关电源中最重要的组成部分之一,其有5种基本类型:单端正激式、单端反激式、推挽式、半桥式和全桥式转换器。
下面重点分析隔离式单端反激转换电路,电路结构图如图1所示。
图1 电路结构图电路工作过程如下:当M1导通时,它在变压器初级电感线圈中存储能量,与变压器次级相连的二极管VD处于反偏压状态,所以二极管VD截止,在变压器次级无电流流过,即没有能量传递给负载;当M1截止时,变压器次级电感线圈中的电压极性反转,使VD导通,给输出电容C充电,同时负载R上也有电流I 流过。
M1导通与截止的等效拓扑如图2所示。
图2 M1导通与截止的等效拓扑电流型PWM与电压型PWM比较,电流型PWM控制在保留了输出电压反馈控制外,又增加了一个电感电流反馈环节,并以此电流反馈作为PWM所必须的斜坡函数。
下面分析理想空载下电流型PWM电路的工作情况(不考虑互感)。
电路如图3所示。
设V导通,则有L·diL/dt = ui (1) iL以斜率ui/L线性增长,L为T1原边电感。
经无感电阻R1采样Ud=R1·iL送到脉宽比较器A2与Ue比较,当Ud>Ue,A2输出高电平,送到RS锁存器的复位端,此时或非门的两个输入中必有一个高电平,经过或非门输出低电平关断功率开关管V。
非隔离电源的制作及测试—UC3842控制的降压电路的制作及测试

7. 会用示波器去测试波形,会根据波形分析产生的原因,
从而找到解决问题的办法。
பைடு நூலகம்
21 21
任务三 降压式电源电路的分析及参数设计
电源的基本要求如下: 输入电压36V-75V,正常输入电压是48V,输出电
压是12V,输出电流5A,开关频率fs为100KHz,输入 电压Vin=48V,在满载时效率η可达到0.90以上。 其他要求:输出电压纹波、输出电流纹波、动态响 应、 输出电压上升时间等。
一个正比于电感电流的电压接至此输入 端,PWM用此信息停止开关管的导通
19
4 RT/CT 通过连接RT到Vref和电容CT到地使振荡器频 率和最大占空比可调,输出频率可达到 500KHz。
5地
此管脚是控制电路和功率电路公共的地。
6 输出 输出可直接驱动功率MOS管的门极,高达1A 峰值电流经过此管脚拉和灌。
* Dy
*Ts
V0 Lf
* (1 Dy ) *Ts
11
3. 基本关系式
根据电路图推导 关系式
· · Lf ·
Vo
Q
Vin Vgs
D
Cf
RL
·
·
12 12
3. 基本关系式
稳态时,一个开关周期内输出滤波电容Cf的平均充电
与放电电流为零,故变换器输出电流I0就是iLf的平均值,
即
I0
I Lf
m in
I Lf 2
R10
C5 2.4n
Refv Vp
Osc
Vfb
Vout
Comp
Sense Gnd
UC3842 U1
4. 控制芯片一定是输出PWM波去控制MOS管,要清楚哪
基于UC3842的buck降压电路的设计

电力电子课程设计班级:2012级电气工程及其自动化姓名:和健学号:1205230209时间: 2013 13-2014年第二学期第17-18周指导老师:李艳成绩:绪论1.设计题目2.设计目的3.硬件设计3.1芯片介绍3.2原理图介绍4.数据处理4.1数据测量4.2波形测量5.实物连接图6.总结心得电源装置是电力电子技术应用的一个重要领域,其中高频开关式直流稳压电源由于具有效率高、体积小和重量轻等突出优点,获得了广泛的应用。
开关电源的控制电路可以分为电压控制型和电流控制型,前者是一个单闭环电压控制系统,系统响应慢,很难达到较高的线形调整率精度,后者,较电压控制型有不可比拟的优点。
1、设计题目基于UC3842的buck降压电路的设计2、设计目的尝试使用UC3842芯片矩形波输出驱动MOS管,来实际应用于电力电子课本中BUCK降压电路的设计。
3、硬件设计采用TI公司生产的高性能开关电源芯片UC3842,结合外围电路(振荡电路,反馈电压,电流检测电路)来控制占空比,振荡频率,电压,从而控制PWM输出波形。
利用芯片输出PWM电压来驱动BUCK降压电路关键原件MOS管IRF840的通断,实现降压电路降压功能。
3.1芯片介绍3.2原理图介绍3.2.1 利用3842相关知识设计出下面MOS管IRF840驱动电路参数设置R1=88KΩR2=4.7KΩR3=3KΩRT1、RT2、RT3为可调电阻CT为可变电容电路分析:RT1、CT与3842芯片4脚连接的OSC 组成电路中最重要的控制电压输出频率的振荡电路。
调节RT1或CT大小可在示波器上明显观测出PWM输出波形频率变化。
(RT1=5.2KΩ,CT独石电容为2.2nF)由芯片资料介绍得出f=1.8/(RT1*CT)=1.8/(5.2*10^3 *2.2*10^-9)=17.482KHZ周期T=5.7us占空比= t开/T=1.2/3.0=0.36PWM输出波形1脚为误差放大器输出端。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
使用UC3843设计的CUK降压电路
第一章开关电源简介
1.1 开关电源原理分析
开关电源是通过脉宽调制或频率调制,控制MOS管导通时间,继而控制电感线圈的磁通量,同时又要保证电感线圈不会达到磁饱和状态,从而控制输出电压的高低。
同时通过反馈电路保证负载变化和输入电压变化时,输出电压仍能保证在一定范围内的稳定。
1.2、开关电源分类
DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。
斩波器的工作方式有两种:
一是脉宽调制方式Ts不变,改变ton(通用);
二是频率调制方式,ton不变,改变Ts(易产生干扰)。
其具体的电路由以下几类:
(1)Buck电路——降压斩波器,其输出平均电压Uo小于输入电压Ui,极性相同。
(2)Boost电路——升压斩波器,其输出平均电压Uo大于输入电压Ui,极性相同。
(3)Buck-Boost电路——降压或升压斩波器,其输出平均电压Uo大于或小于输入电压Ui,极性相反,电感传输。
(4)Cuk电路——降压或升压斩波器,其输出平均电压Uo 大于或小于输入电压UI,极性相反,电容传输。