元素性质的周期性变化
《元素性质的周期性变化规律》元素周期律PPT课件

(2)试从原子结构角度解释同周期元素性质存在周期性变化的原 因。 提示:核外电子层数相同,随着原子序数(核电荷数)的递增,原子 核对核外电子的引力逐渐增强,原子半径逐渐减小,元素原子的 得电子能力逐渐增强,失电子能力逐渐减弱,最终导致元素的非 金属性逐渐增强,金属性逐渐减弱。
【案例示范】 【典例】(2017·全国卷Ⅱ)a、b、c、d为原子序数依 次增大的短周期主族元素,a原子核外电子总数与b原子 次外层的电子数相同;c所在周期数与族数相同;d与a同 族,下列叙述正确的是 ( )
第二节 元素周期律 第1课时 元素性质的周期性变化规律
-.
一、原子结构的周期性变化
结合图1、图2、图3完成下表:
原子 电子 最外层 序数 层数 电子数
1~2 1
3~ 10
_2_
1~2
_1_~__8_
原子半径的 变化(稀有气 体元素除外)
—
由_大__到_小__
最高或最 低化合价 的变化
+1→0
变化。 核外电子排
2.实质:元素性质的周期性变化是原子的___________ 布 ___的周期性变化的必然结果。
知识点一 元素周期表中主族元素的周期性变化规律
【重点释疑】
项目
同周期(左→右)
原 核电荷数 逐渐增大 子 电子层数 相同 结 构 原子半径 逐渐减小
同主族(上→下) 逐渐增大 逐渐增多
③Al向(OAHl)(3O+H3)H3+沉=淀==中= 加Al入3++盐3H酸2O,发生反应的离子方程式: _________________________。
3.钠、镁、铝的最高价氧化物对应水化物的碱性
NaOH 分类 强碱 碱性强弱 结论
元素基本性质的周期性

只有当 时,对称性较高的半充满和全充满时,②占主导地位。
短周期:
从Na —— Cl, 7个元素,r下降了55 pm,相邻元素之间,平均下降值为55/6 = 9.16pm. (Ar为范德华半径,所以比较大)
长周期:
从Sc —— Ni, 8个元素,r下降了29 pm,相邻元素之间,平均下降值为29/7 = 4.14pm. (Cu, Zn, Ga为 结构,对外层电子斥力大,对核的屏蔽作用强,所以r不但没减小,反而有所增加。同样,Kr为范德华半径,所以比较大).
3)范德华半径:单原子分子(He, Ne等),原子间靠范德华力,即分子间作用力结合(未成键),在低温高压下形成晶体,核间距的一半为范德华半径。
2.原子半径在周期表中的变化规律
1)同周期中,从左——向右,分两个方面看:
①Z —增大,对电子吸引力增大,r —减小,
②Z —增大,电子增加,之间排斥力增大,r —增大。
首先,要明确:失去电子后, Z*增加, r减小,核对电子引力大,更不易失去电子,所以有: I1< I2< I3< I4….,即电离能逐级加大.
Li: I2/I1= 14.02倍,增大14倍,不易生成+2价离子,所以Li+容易形成
Be: I2/I1= 1.95倍, I3/I2= 8.45倍,所以Be2+容易形成.
注意:这是分子活泼性的比较,而不是原子活泼性的比较.首先看键能:
再看电子亲合能:
所以:
综合考虑: H5< H6, ,即氟的反应比氯的相应反应释放的能量大,所以, F2比Cl2更容易得到电子.
四电负性
电离能I:表示元素原子形成正离子的能力大小;
4.2.1 元素性质的周期性变化规律

4.2.1 元素性质的周期性变化规律基础落实知识要点一元素性质的周期性变化规律1.原子结构的变化规律(1)随着原子序数的递增,元素原子的核外电子排布呈现的变化,除第一周期外,同周期从左到右,最外层电子数从1→8。
(2)随着原子序数的递增,元素原子的半径呈现变化,同周期从左到右,随着原子序数的递增,原子半径逐渐(稀有气体除外)。
(3)随着原子序数的递增,元素的主要化合价呈周期性变化,最高正价从→,负价从→,(第二周期氧无最高正价、氟无正价)。
2.元素性质的变化规律随着原子序数的递增,同周期主族元素的金属性逐渐、非金属性逐渐,呈现周期性的变化。
知识要点二元素周期律1.内容:元素的性质随着原子序数的递增而呈的规律。
2.实质:元素性质的周期性变化是元素的必然结果。
对点题组题组一原子半径、化合价的变化规律1.(2019·淄博高一检测)原子序数为 11~17 的元素,随核电荷数的递增而逐渐减小的是()A.电子层数B.最外层电子数C.原子半径D.元素最高正化合价2.下列说法中正确的是()A.非金属元素呈现的最低化合价,其绝对值等于该元素原子的最外层电子数B.非金属元素呈现的最高化合价不超过该元素原子的最外层电子数C.最外层有2 个电子的原子都是金属原子D.金属元素只有正价和零价,而非金属元素既有正价又有负价又有零价3.原子N S O Si半径 r/10-10m 0.75 1.02 0.74 1.17根据以上数据,P原子的半径可能是()A.1.10×10-10mB.0.80×10-10mC.1.20×10-10mD.0.70×10-10m4.下列各组元素中,按从左到右的顺序,原子序数递增、元素的最高正化合价也递增的是()A.C、N、O、FB.Na、Be、B、CC.P、S、Cl、ArD.Na、Mg、Al、Si题组二元素性质的变化规律5.(2019·沈阳高一检测)如图是部分短周期元素原子(用字母表示)最外层电子数与原子序数的关系。
元素性质的周期性变化的规律

元素性质的周期性变化的规律元素性质的周期性变化是指元素的一些物理和化学性质随着元素原子序数的增加而出现规律性变化的现象。
这一周期性的变化反映了元素内电子结构的变化。
本文将从周期表的发现开始,介绍元素性质周期性变化的规律、主要原因以及应用。
周期表的发现元素周期表是化学家门捷列夫于1869年提出的化学元素分类图表。
在这个表中,元素按照原子序数的递增排列,同时可以根据元素的周期性变化进行分组。
化学家门捷列夫根据元素的性质绘制了第一版的周期表,并发现了元素周期性变化的规律。
1.原子半径:随着元素原子序数的增加,原子半径呈现周期性变化。
在同周期内,随着原子序数的增加,原子半径逐渐减小。
在同族内,随着原子序数的增加,原子半径逐渐增加。
2.电离能:电离能是指从一个原子或离子中移去一个电子所需要的能量。
随着元素原子序数的增加,第一电离能呈现周期性变化。
在同周期内,随着原子序数的增加,第一电离能逐渐增加。
在同族内,随着原子序数的增加,第一电离能逐渐减小。
3.电负性:电负性是指元素吸引和结合电子的能力。
随着元素原子序数的增加,电负性呈现周期性变化。
在同周期内,随着原子序数的增加,元素的电负性逐渐增加。
在同族内,随着原子序数的增加,元素的电负性逐渐减小。
4.酸性:酸性是指物质在溶液中释放出H+离子的能力。
随着元素原子序数的增加,酸性呈现周期性变化。
在同周期内,随着原子序数的增加,元素的酸性逐渐减弱。
在同族内,随着原子序数的增加,元素的酸性逐渐增强。
5.金属性:金属性是指元素的物理和化学性质,如导电性、延展性和反射性等。
随着元素原子序数的增加,金属性呈现周期性变化。
在同周期内,随着原子序数的增加,元素的金属性逐渐减弱。
在同族内,随着原子序数的增加,元素的金属性逐渐增强。
6.化合价:化合价是指一个原子和其他原子形成化合物时与其他原子相连的价数,即原子化学价。
随着元素原子序数的增加,化合价呈现周期性变化。
在同周期内,随着原子序数的增加,元素的最高可达价数逐渐增加。
元素性质的递变性规律

第二单元元素性质的递变规律【学海导航】元素的性质随着核电荷数的递增而呈现周期性的变化,这个规律叫做元素周期律。
一、原子核外电子排布的周期性元素按原子序数递增的顺序依次排列时,原子的最外层上的电子数,由1(s1)到8(s2p6),呈现出周期性变化。
相应于这种周期性变化,每周期以碱金属开始,以稀有气体结束。
元素的化学性质,主要取决于元素原子的电子结构,特别是最外层电子结构。
所以元素性质的周期性,来源于原子电子层结构的周期性。
根据元素原子的外围电子排布的特征,可将元素周期表分成五个区域:s区、p区、d 区、ds区、f区。
二、元素第一电离能的周期性变化1、定义:从气态的基态原子中移去一个电子变成+1价气态阳离子所需的最低能量,称为第Ⅰ电离能。
常用符号I1表示。
M(g)→ M+(g)+ e-,+1价气态阳离子移去一个电子变成+2价气态阳离子所需的最低能量,称为第Ⅱ电离能。
依次类推。
元素的第一电离能越小,表示它越容易失去电子,即该元素的金属性越强。
2、影响电离能的因素电离能的大小主要取决于原子的核电荷、原子半径及原子的电子构型。
一般说来,核电荷数越大,原子半径越小,电离能越大。
另外,电子构型越稳定,电离能也越大。
3. 电离能的周期性变化同周期中, 从左向右,核电荷数增大,原子半径减小, 核对电子的吸引增强, 愈来愈不易失去电子, 所以 I 总的趋势是逐渐增大。
但有些元素(如Be、Mg、N、P等)的电离能比相邻元素的电离能高些,这主要是这些元素的最外层电子构型达到了全充满或半充满的稳定构型。
同主族元素自上而下电离能依次减小。
但在同一副族中,自上而下电离能变化幅度不大,且不甚规则。
4.电离能与价态之间的关系失去电子后, 半径减小, 核对电子引力大, 更不易失去电子, 所以有: I1 < I2 < I3 < I4…., 即电离能逐级加大.三、元素电负性的周期性变化1、定义:电负性: 表示一个元素的原子在分子中吸引电子的能力. 元素的电负性越大,表示原子吸引成键电子的能力越强,该元素的非金属性也就越强;电负性越小,该元素的金属性越强。
化学元素的周期性规律性质

化学元素的周期性规律性质化学元素是构成物质的基本单位,它们的性质和行为对于化学研究和工业应用至关重要。
化学元素的周期性规律性质是指元素周期表中元素性质的有规律的周期性变化。
本文将探讨化学元素的周期性规律性质,并分析其对于化学研究和应用的意义。
1. 原子半径周期性变化原子半径是指元素的原子的半径大小。
在周期表中,元素的原子半径呈现一定的周期性变化规律。
一般来说,从左至右,原子半径逐渐减小,因为电子层的数量增加,但核电荷不变,所以电子云受到的吸引力增强,原子半径减小。
而从上至下,原子半径逐渐增大,因为电子层数目增加,电子云远离原子核,原子半径增大。
这一周期性变化对于元素的化学反应和物理性质有重要影响。
2. 电离能周期性变化电离能是指在气态下,一个原子中最外层电子脱离原子形成阳离子所需的能量。
周期表中,电离能呈现一定的周期性变化规律。
从左至右,电离能逐渐增大,因为原子半径减小,原子核对最外层电子的吸引力增强,电子更难被脱离。
而从上至下,电离能逐渐减小,因为原子半径增大,最外层电子与原子核之间的吸引力减弱,电子更容易被脱离。
电离能的周期性变化对于元素的化学反应和电子结合行为具有重要的影响。
3. 电负性周期性变化电负性是指原子吸引和保持共价化合物中的电子对的能力。
周期表中,电负性呈现一定的周期性变化规律。
从左至右,电负性逐渐增大,因为原子半径减小,核电荷增强导致原子对电子的吸引力增强。
而从上至下,电负性逐渐减小,因为原子半径增大,核电荷增强对电子的吸引力减弱。
电负性的周期性变化对于元素在化学反应中的电子转移和共价键形成具有重要影响。
4. 金属性和非金属性的周期性变化周期表中的元素可以分为金属和非金属。
从左至右,金属性逐渐减弱,非金属性逐渐增强。
金属具有良好的导电性和热导性,而非金属多为绝缘体或者半导体。
金属与非金属在化学反应中表现出不同的性质和行为,这一周期性变化对于元素的化学性质具有重要的指导意义。
综上所述,周期表中化学元素的周期性规律性质对于我们理解元素的性质和行为具有重要的意义。
元素性质的周期性变化规律

探究一
探究二
素养脉络
随堂检测
素能应用
典例1下列性质的递变关系正确的是( ) A.氢化物的稳定性:NH3>H2O>HF B.碱性:NaOH>KOH>Mg(OH)2 C.原子半径:Si<P<S<Cl D.最高正价:Cl>Si>Al>Na 答案D 解析氢化物的稳定性:NH3<H2O<HF,A项错误;碱 性:KOH>NaOH>Mg(OH)2,B项错误;原子半径:Si>P>S>Cl,C项错误。
() 答案(1)× (2)× (3)× (4)× (5)√ (6)× (7)×
知识铺垫
新知预习
自主测试
2.根据元素周期律比较下列各组性质。
(1)金属性:K
Na
Mg,
非金属性:F
O
S。
(2)碱性:Mg(OH)2
Ca(OH)2
KOH。
(3)酸性:HClO4
H2SO4
HClO。
(4)热稳定性:CH4
NH3
难→易
氢化物
稳定性 逐渐增强
元素金属性 元素非金属性
逐渐减弱 逐渐增强
逐渐减弱 逐渐增强
易→难
逐渐减弱 逐渐增强 逐渐减弱
探究一
探究二
素养脉络
随堂检测
2.同周期、同主族元素原子结构及性质的递变规律 (1)电子层数相同(同周期)时,核电荷数越大,原子核对外层电子的 引力越大,原子半径越小(稀有气体元素原子除外),失电子能力减弱, 而得电子能力增强,故随核电荷数的递增,金属性逐渐减弱,非金属 性逐渐增强。 (2)最外层电子数相同(同主族)时,电子层数越多,原子半径越大, 原子核对最外层电子的引力越小,越易失电子,元素的金属性越强, 非金属性越弱。
元素周期表的八大规律

元素周期表的八大规律元素周期表是描述化学元素周期性及其物理及化学性质的一张表,它是化学科学的基础,对于化学家而言是无可替代的工具。
元素周期表中包含着很多规律,其中最重要的八大规律如下:1. 周期性规律:元素周期表的水平行称为周期,每个周期有着相同的周期性特征。
相邻的元素具有相同的原子核外层电子构态,因此具有相似的化学性质。
周期增加,元素原子半径逐渐减小,电子云密度增加,原子半径的变化量随原子序数的增加逐渐减小;2. 主族规律:主族元素的外层电子数为同一数字,因此它们具有相似的化学性质,比如同一主族元素的原子半径随着原子序数的增加呈现逐渐增加的趋势;3. 周期律规律:每个周期都有一个最多能容纳2n²(n为周期数)个电子的壳,因此周期表中的元素周期性地重复着原子核外层电子数目的增加以及原子性质的变化;4. 金属性规律:周期表中左下角为金属元素,右上角为非金属元素,中央为逐渐转变为金属的半金属元素。
金属元素具有良好的导热、导电性能,而非金属元素就没有;5. 氢氦规律:氢和氦两个元素在周期表中独立显示,氢氦组成的第一组与剩余各组的区别很大;6. 原子电负性规律:化学键的类型与它们围绕的元素原子电负性差异有关,原子电负性随着原子序数的增加而递增,而原子质量则随着原子序数的增加而递增;7. 原子半径规律:原子半径随着原子序数的增加呈现逐渐减小的趋势,但是由于电子壳层的分布不同,因此第一主量子数n的大小对原子半径的影响比其他量子数要大;8. 电离能规律:与原子半径相比,第一电离能的增加速度要更快。
由于原子核中的原子的密度增加,使得原子半径逐渐减小,原子中的电子与原子核之间的距离变小,因而需要更多的能量才能够将电子从原子中逸出。
元素周期表中的各种规律与元素基本特征密切相关,这些规律不仅揭示了元素物理和化学性质的发展变化趋势,而且为现代化学技术的发展做出了贡献。