全固态锂电池材料、结构及研究进展

合集下载

固态核磁研究锂离子电池正极材料的结构

固态核磁研究锂离子电池正极材料的结构

此,SSNMR 技术在锂离子正极材料结构的表征方面具有很强的 应用价值(图 1)。
小变化信息,并且具有不损坏样品、快速准确高分辨及定量分析 等优点。SSNMR 曲线的峰位移、峰形、强度等均能够提供材料 的有效信息,对于正极材料的局域结构,尤其是结晶性较差的成 分都能进行相应的表征,同时它对材料的电子结构极其敏感,可 以分析固体中的离子迁移及电化学过程动力学等 [2]。
移相关的电子结构等信息。此外,对正极材料中其他元素的谱峰 120ppm ~ 150ppm ;而 当 其 键 角 接 近 180 ° 的 时 候 则 呈 现 -60
进行分析还可以直接获得这部分材料的电子结构和局域结构变 到 -125ppm 的负向位移。利用 Goodenough-Kanamoori 规则可以
1 正极材料局域结构信息的获取
细位移与局域结构之间的关系指认做出了详细的对照图表。结
锂离子电池的电化学反应过程往往直接涉及到 Li 离子的迁 移等行为,通过对 [6,7]Li, 谱的测试可以直接获取正极材料离子迁
果表明,超精细位移与 Li-O-Mn 键的键长键角密切相关,如 LiO-Mn4+ 的键角接近 90°的时候呈现较大的正向位移,大约在
2 钒酸盐以及聚阴离子等各类正极材料结构 目 前,SSNMR 技 术 已 经 用 于 LiCoO2 层 状 结 构,钒 酸 盐 以
及聚阴离子等各类正极材料的结构研究。Clare.P.Grey 课题组利 用 SSNMR 技 术 研 究 了 锰 酸 盐 锂 离 子 电 池 正 极 材 料 [4],通 过 对 不同 Mn(Ⅳ)化合物中 Li 局域结构的测试,对这类材料的超精
固态核磁共振(solid-state NMR,简称 SSNMR)是在外加磁 限制较大等问题。二维 SSNMR 技术可以获取正极材料中 Li 位间

基于金属锂负极的全固态锂电池化学储能技术

基于金属锂负极的全固态锂电池化学储能技术

基于金属锂负极的全固态锂电池化学储能技术1. 引言1.1 概述在当今快节奏的生活环境中,储能技术的发展对于满足人们对电力需求和实现可持续发展具有关键作用。

锂电池作为一种高效、稳定、可重复使用的化学储能技术,已经被广泛应用于移动设备、电动汽车等领域。

然而,传统的液态锂电池由于液体电解质带来的安全性和稳定性问题仍然存在限制。

因此,研究全固态锂电池技术成为了当前热门的研究领域。

1.2 研究背景全固态锂电池是一种基于固体电解质材料替代传统液态电解质实现高安全性和高能量密度的新型储能技术。

金属锂作为一种理想的负极材料,在全固态锂电池中展示出了独特的优势。

金属锂具有高比容量、低工作电压和良好的导电性能,可以有效提高全固态锂电池的性能表现。

1.3 目的和意义本文旨在对基于金属锂负极的全固态锂电池化学储能技术进行深入研究和探讨。

首先,我们将介绍金属锂负极的基本性质,包括其在全固态锂电池中的应用优势以及面临的挑战。

接着,我们将对全固态锂电池技术进行概述,包括其结构与原理、固体电解质材料综述以及富锰正极材料研究进展。

然后,我们将详细介绍基于金属锂负极的全固态锂电池的研究现状与进展,包括实验室级别研究成果介绍、工业化前景与问题分析以及未来发展方向展望。

最后,我们将总结现有技术,并提出个人对全固态锂电池技术发展的见解和期待。

2. 金属锂负极的特性2.1 金属锂的基本性质金属锂是一种轻量化学元素,具有较低的密度和高的电化学活性。

它具有优异的电导率和良好的离子传输速率,使其成为理想的负极材料候选者。

金属锂在常温下呈现银灰色金属,同时也是所有电池化学反应中储能密度最高的材料之一。

2.2 金属锂在全固态锂电池中的应用优势相较于传统液态锂离子电池,采用金属锂作为负极材料的全固态锂电池具有以下几个优势:首先,金属锂作为负极材料,在充放电过程中不会产生固态尺寸变化或溶解等问题,并且具有稳定的循环寿命。

其次,金属锂具有较低的工作电位窗口,并且在充放电过程中能够提供较高的功率密度,从而增强了全固态锂电池在快速充放电方面的性能表现。

全固态锂电池研究报告

全固态锂电池研究报告

全固态锂电池研究报告
随着人们对环保和安全的要求日益提高,全固态锂电池作为新一代锂离子电池已逐渐受到关注。

本报告就全固态锂电池的研究现状、技术特点及应用前景进行分析和探讨。

一、全固态锂电池的研究现状
全固态锂电池是指电解质全部为固态材料的锂离子电池,其优点包括高安全性、高温度稳定性、高能量密度等。

目前,全固态锂电池的研究主要集中在电解质材料、电极材料以及电池构造等方面。

电解质材料包括硫化合物、氧化物、硅酸盐等,电极材料则包括硫化物、氧化物等。

近年来,全固态锂电池的研究进展较快,不断有新材料推出,但仍存在问题,如电阻率大、循环寿命短等。

二、全固态锂电池的技术特点
全固态锂电池相比液态锂电池,具有以下技术特点:
1.较高的安全性:全固态锂电池采用固态电解质,不含有液态电解质,相比液态锂电池更加安全可靠。

2.较高的能量密度:固态电解质的特性使得全固态锂电池具有更高的能量密度,有望超过目前的液态锂电池。

3.较高的温度稳定性:全固态锂电池能够在高温环境下运行,且有较好的稳定性,不会像液态锂电池那样发生“热失控”的问题。

三、全固态锂电池的应用前景
由于全固态锂电池具有高安全性、高能量密度、高温度稳定性等优点,其应用前景广泛。

目前,全固态锂电池已被应用于智能手表、
智能手环、无人机、电动汽车等领域。

随着全固态锂电池技术的不断完善,其应用范围将会越来越广泛。

总之,全固态锂电池是未来电池领域的重要发展方向,其研究和应用具有重要的意义和前景。

全固态锂电池技术的研究现状与展望

全固态锂电池技术的研究现状与展望

全固态锂电池技术的研究现状与展望近年来,飞机、汽车、船舶等交通工具的发展与信息化社会的发展密切相关,传统的锂离子电池的性能和安全性难以满足这种需求。

全固态锂电池(Solid-State Lithium Battery,SSL)是一种有前景的锂离子电池技术,它采用固态电解质和微细催化剂,在保证安全性的条件下实现了电池容量和寿命的显著提高。

目前,全固态锂电池的研究主要集中在四个方面:电解质,催化剂,负极材料和真空热处理技术。

在电解质方面,重要的研究方向是开发新型的全固态电解质和复合电解质,例如离子液体和柱状结构全固态电解质。

在催化剂方面,研究重点在于开发新型的微细催化剂材料和其制备方法,例如氧还原催化剂和氧化物形成催化剂。

在负极材料方面,重点研究是研究全固态锂离子电池的负极电化学反应机制,并开发新型全固态负极材料。

最后,在真空热处理技术方面,重点研究是研究高温下电池凝胶电解质的稳定性和结构,以及电池工艺的优化。

全固态锂电池的发展具有广泛的应用前景,尤其适用于一些具有较高要求的电场应用,如汽车电池、家用电子产品和新能源纯电动汽车等。

然而,由于全固态锂电池技术的实际应用还较少,应用还存在一些问题,如提高全固态锂电池的能量密度、改善其耐久性和安全性等。

为此,未来应继续进行交叉学科的深入研究,探索新的全固态锂电池构效关系,加速全固态锂电池的实际应用。

总之,全固态锂电池的发展已成为当今能源科学发展的热点研究领域之一,它在提高电池性能和安全性方面具有很大的潜力。

然而,要预测全固态锂电池未来发展趋势,必须深入研究各种新型全固态电解质、全固态负极材料、催化剂和真空热处理等技术材料,以及其设计和评估方法。

同时,未来还应探索全固态锂电池在新能源发电系统等领域的潜在应用,为深入推动全固态锂电池技术的发展做出贡献。

本文从全固态锂电池技术的研究现状出发,着眼于明确全固态锂电池的结构及技术性能,以及其实际应用中存在的技术问题,通过综合分析,探讨了全固态锂电池的研究展望。

(完整版)全固态锂电池技术的研究进展与展望

(完整版)全固态锂电池技术的研究进展与展望

全固态锂电池技术的研究进展与展望周俊飞(衢州学院化学与材料工程学院浙江衢州324000)摘要:现有电化学储能锂离子电池系统采用液体电解质,易泄露、易腐蚀、服役寿命短,具有安全隐患。

薄膜型全固态锂电池、大容量聚合物全固态锂电池和大容量无机全固态锂电池是一类以非可燃性固体电解质取代传统锂离子电池中液态电解质,锂离子通过在正负极间嵌入-脱出并与电子发生电荷交换后实现电能与化学能转换的新型高安全性锂二次电池。

作者综述了各种全固态锂电池的研究和开发现状,包括固态锂电池的构造、工作原理和性能特征,锂离子固体电解质材料与电极/电解质界面调控,固态整电池技术等方面,提出并详细分析了该技术面临的主要科学与技术问题,最后指出了全固态锂电池技术未来的发展趋势。

关键词:储能;全固态锂离子电池;固体电解质;界面调控1 全固态锂电池概述全固态锂二次电池,简称为全固态锂电池,即电池各单元,包括正负极、电解质全部采用固态材料的锂二次电池,是从20 世纪50 年代开始发展起来的[10-12]。

全固态锂电池在构造上比传统锂离子电池要简单,固体电解质除了传导锂离子,也充当了隔膜的角色,如图 2 所示,所以,在全固态锂电池中,电解液、电解质盐、隔膜与黏接剂聚偏氟乙烯等都不需要使用,大大简化了电池的构建步骤。

全固态锂电池的工作原理与液态电解质锂离子电池的原理是相通的,充电时正极中的锂离子从活性物质的晶格中脱嵌,通过固体电解质向负极迁移,电子通过外电路向负极迁移,两者在负极处复合成锂原子、合金化或嵌入到负极材料中。

放电过程与充电过程恰好相反,此时电子通过外电路驱动电子器件。

目前,对于全固态锂二次电池的研究,按电解区分主要包括两大类[13]:一类是以有机聚合物电解质组成的锂离子电池,也称为聚合物全固态锂电池;另一类是以无机固体电解质组成的锂离子电池,又称为无机全固态锂电池,其比较见表1。

通过表1 的比较可以清楚地看到,聚合物全固态锂电池的优点是安全性高、能够制备成各种形状、通过卷对卷的方式制备相对容易,但是,该类电池作为大容量化学电源进入储能领域仍有一段距离,主要存在的问题包括电解质和电极的界面不稳定、高分子固体电解质容易结晶、适用温度范围窄以及力学性能有提升空间;以上问题将导致大容量电池在使用过程中因为局部温度升高、界面处化学反应面使聚合物电解质开貌发生变化,进而增大界面电阻甚至导致断路。

2024年固态电解质和全固态锂电池研究报告

2024年固态电解质和全固态锂电池研究报告

2024年是固态电解质和全固态锂电池研究的重要年份。

固态电解质作为一种新型电解质材料,具有高离子导电性、较高的安全性和良好的化学稳定性等特点,被广泛看作是解决锂电池安全性问题的关键技术之一、以下是对2024年固态电解质和全固态锂电池研究的概述。

一、固态电解质材料研究在固态电解质材料的研究方面,硫化锂玻璃(Li2S-P2S5)和氧化物固态电解质是2024年的热门研究方向。

硫化锂玻璃作为一种传统的固态电解质材料,具有较高的离子导电性能。

研究者通过调控硫化锂玻璃的成分和结构,提高了其离子导电性能和电化学稳定性。

此外,还有研究对硫化锂玻璃进行表面涂层或者插入基质,进一步提高了其电化学性能。

氧化物固态电解质由于其较高的化学稳定性和电化学稳定性,被认为是一种很有潜力的固态电解质材料。

氧化物固态电解质主要有氧化锂钇(Li7La3Zr2O12,LLZO)和氧化锂硅(Li10GeP2S12,LGPS)等。

研究者通过掺杂和改性的方法,提高了氧化物固态电解质的离子导电性和稳定性,为全固态锂电池的应用提供了关键材料。

二、全固态锂电池研究全固态锂电池是一种具有高能量密度、长寿命和良好安全性的锂离子电池。

2024年,固态电解质和全固态锂电池的研究取得了很大进展。

固态电解质的高离子导电性和稳定性为全固态锂电池的应用提供了可行性。

研究者通过在电极和电解质之间形成良好接触的界面,进一步提高了全固态锂电池的性能。

此外,为了提高全固态锂电池的电化学性能,还有研究对电极材料进行改性和优化,使其更适合全固态锂电池的工作条件。

全固态锂电池的研究重点还包括制备工艺和尺寸效应的研究。

制备工艺的研究主要关注如何实现高效制备全固态锂电池并提高其可扩展性。

尺寸效应的研究探索了全固态锂电池的微观结构和性能之间的关系,旨在寻找最佳的电池设计和优化策略。

三、全固态锂电池的挑战和展望尽管固态电解质和全固态锂电池在2024年取得了重要进展,但仍然面临一些挑战。

全固态锂电池技术研究现状和发展趋势

全固态锂电池技术研究现状和发展趋势

Telecom Power Technology研制开发全固态锂电池技术研究现状和发展趋势朱家辰(郑州大学化工学院,河南郑州随着全球经济的快速发展,大量的化石燃料被不断消耗。

我国未来的发展趋势是绿色环保,除了可以用绿色清洁的能源代替原本的化石燃料能源之外,还可以通过改进储能设备来高效地利用能源。

全固态锂电池具有高能量密度、高离子电导率、高安全性以及清洁等特点,逐渐引起人们的重视。

通过分析全固态锂电池技术的研究现状和发展趋势,探讨将其应用于智能穿戴产品的可行性。

全固态锂电池;电解质;研究现状Research Status and Development Trend of All Solid State Lithium Battery TechnologyZHU Jiachen(School of Chemical Engineering, Zhengzhou University, Zhengzhouof the global economy, as future development trend is green and environmental protection. In addition to replacing the original fossil fuel energy with green and clean energy, energy can also be efficiently utilized by improving energyxC6。

全固态锂电池能量传递如图全固态锂电池的优势:)高安全性。

传统液态锂电子电池的电解质中有易燃的液态有机溶剂,在遇到高温或因电池短路而导致局部温度升高时,极易发生电池爆炸。

而全固态锂电池乃无机材质,不易挥发、阻燃性好,在遇到高温时不易发生爆炸,具有很高的安全性能。

)高能量密度。

传统的液态锂电子电池由于放电Ve-e-放电充电充电Li+Li+Li+Li+Li+Li+Li+Li+ 2022年4月25日第39卷第8期· 27 ·Telecom Power TechnologyApr. 25, 2022, Vol.39 No.8 朱家辰:全固态锂电池技术研究现状和发展趋势盐在高温下也会发生一定的分解促进电解液的反应,电解液消耗殆尽便无法储能。

全固态锂电池技术的研究现状与展望

全固态锂电池技术的研究现状与展望

全固态锂电池技术的研究现状与展望许晓雄;邱志军;官亦标;黄祯;金翼【期刊名称】《储能科学与技术》【年(卷),期】2013(000)004【摘要】现有电化学储能锂离子电池系统采用液体电解质,易泄露、易腐蚀、服役寿命短,具有安全隐患。

薄膜型全固态锂电池、大容量聚合物全固态锂电池和大容量无机全固态锂电池是一类以非可燃性固体电解质取代传统锂离子电池中液态电解质,锂离子通过在正负极间嵌入-脱出并与电子发生电荷交换后实现电能与化学能转换的新型高安全性锂二次电池。

作者综述了各种全固态锂电池的研究和开发现状,包括固态锂电池的构造、工作原理和性能特征,锂离子固体电解质材料与电极/电解质界面调控,固态整电池技术等方面,提出并详细分析了该技术面临的主要科学与技术问题,最后指出了全固态锂电池技术未来的发展趋势。

【总页数】11页(P331-340,341)【作者】许晓雄;邱志军;官亦标;黄祯;金翼【作者单位】中国科学院宁波材料技术与工程研究所,浙江宁波 315201;中国科学院宁波材料技术与工程研究所,浙江宁波 315201;中国电力科学研究院,北京100192;中国科学院宁波材料技术与工程研究所,浙江宁波 315201;中国电力科学研究院,北京 100192【正文语种】中文【中图分类】TM911【相关文献】1.全固态薄膜锂电池研究进展和产业化展望 [J], 陈牧;颜悦;刘伟明;周辰;郭志强;张晓锋;望咏林;厉蕾;张官理2.全固态聚合物锂电池的科研进展、挑战与展望 [J], 张建军;董甜甜;杨金凤;张敏;崔光磊3.基于对全固态锂电池技术的现状研究与展望 [J], 王潇4.基于对全固态锂电池技术的现状研究与展望 [J], 马丽娜5.全固态锂电池技术发展趋势与创新能力分析 [J], 汤匀;岳芳;郭楷模;李岚春;柯旺松;陈伟因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

书山有路勤为径;学海无涯苦作舟
全固态锂电池材料、结构及研究进展
电动汽车、大规模储能和微型器件等领域的发展要求不断提高现有二次电池的能量密度、功率密度、工作温度范围和安全性,而全固态锂电池作为最具潜力的电化学储能装置,近年来受到广泛关注。

本文阐述了全固态锂电池的优点(即固态电解质的使用有助于提高锂电
池安全性、能量密度和功率密度,拓宽电池工作温度范围和应用领域),指出了作为全固态电池关键材料的固态电解质应满足的要求,并在此基础上分别讨论了聚合物电解质和无机固态电解质(特别是硫化物和氧化物)的优缺点。

此外,文章介绍了固态锂电池的 3 种结构类型,即薄膜型、3D 薄膜型和体型,综述了全固态锂电池从薄膜型向体型发展的历史进程及现状,并在此基础上讨论了全固态电池最终实现安全性、高能量密度和功率密度仍需解决的固态电解质材料方面问题。

随着能源危机和环境污染问题的日益突显,人们对清洁、可再生能源的
需求越来越迫切。

实际应用中,太阳能、风能、水力等可再生能源需要被转化为电能等二次能源才能广泛被人们加以利用。

为解决这类自然可再生能源与电力需求在时空分布上的不匹配问题,储能技术的发展必不可少。

在众多储能技术中,电化学储能技术,即电池的使用受到人们越来越多的
关注。

电池储能具有高效、规模可调的特点,既可整合于电力系统作为能量储
存单元,起到对电网削峰填谷的作用,提高电网运行的可靠性和稳定性,也可用于移动通讯、新能源汽车等领域,为人类生活质量的提高提供源源不断的能量支持。

专注下一代成长,为了孩子。

相关文档
最新文档