(含分析点评)2020年中考数学试卷分类汇编: 材料阅读题、定义新

合集下载

2020年陕西省中考数学试题(含解析版)

2020年陕西省中考数学试题(含解析版)

2020年陕西省中考数学试卷一.选择题(共10小题)1.﹣18的相反数是()A.18B.﹣18C.D.﹣2.若∠A=23°,则∠A余角的大小是()A.57°B.67°C.77°D.157°3.2019年,我国国内生产总值约为990870亿元,将数字990870用科学记数法表示为()A.9.9087×105B.9.9087×104C.99.087×104D.99.087×103 4.如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是()A.4℃B.8℃C.12℃D.16℃5.计算:(﹣x2y)3=()A.﹣2x6y3B.x6y3C.﹣x6y3D.﹣x5y46.如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD 是△ABC的高,则BD的长为()A.B.C.D.7.在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x交于点A、B,则△AOB的面积为()A.2B.3C.4D.68.如图,在▱ABCD中,AB=5,BC=8.E是边BC的中点,F是▱ABCD内一点,且∠BFC =90°.连接AF并延长,交CD于点G.若EF∥AB,则DG的长为()A.B.C.3D.29.如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为()A.55°B.65°C.60°D.75°10.在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m>1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限二.填空题(共4小题)11.计算:(2+)(2﹣)=.12.如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD,则∠BDM的度数是.13.在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y=(k≠0)的图象经过其中两点,则m的值为.14.如图,在菱形ABCD中,AB=6,∠B=60°,点E在边AD上,且AE=2.若直线l 经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,则线段EF的长为.三.解答题(共11小题)15.解不等式组:16.解分式方程:﹣=1.17.如图,已知△ABC,AC>AB,∠C=45°.请用尺规作图法,在AC边上求作一点P,使∠PBC=45°.(保留作图痕迹.不写作法)18.如图,在四边形ABCD中,AD∥BC,∠B=∠C.E是边BC上一点,且DE=DC.求证:AD=BE.19.王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)这20条鱼质量的中位数是,众数是.(2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?20.如图所示,小明家与小华家住在同一栋楼的同一单元,他俩想测算所住楼对面商业大厦的高MN.他俩在小明家的窗台B处,测得商业大厦顶部N的仰角∠1的度数,由于楼下植物的遮挡,不能在B处测得商业大厦底部M的俯角的度数.于是,他俩上楼来到小华家,在窗台C处测得大厦底部M的俯角∠2的度数,竟然发现∠1与∠2恰好相等.已知A,B,C三点共线,CA⊥AM,NM⊥AM,AB=31m,BC=18m,试求商业大厦的高MN.21.某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如图所示.(1)求y与x之间的函数关系式;(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?22.小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.(1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率;(2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率.23.如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AB=12,求线段EC的长.24.如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.(1)求该抛物线的表达式;(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.25.问题提出(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是.问题探究(2)如图2,AB是半圆O的直径,AB=8.P是上一点,且=2,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长.问题解决(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,重足分别为E,F.按设计要求,四边形PEDF 内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2).①求y与x之间的函数关系式;②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.2020年陕西省中考数学试卷参考答案与试题解析一.选择题(共10小题)1.﹣18的相反数是()A.18B.﹣18C.D.﹣【分析】直接利用相反数的定义得出答案.【解答】解:﹣18的相反数是:18.故选:A.2.若∠A=23°,则∠A余角的大小是()A.57°B.67°C.77°D.157°【分析】根据∠A的余角是90°﹣∠A,代入求出即可.【解答】解:∵∠A=23°,∴∠A的余角是90°﹣23°=67°.故选:B.3.2019年,我国国内生产总值约为990870亿元,将数字990870用科学记数法表示为()A.9.9087×105B.9.9087×104C.99.087×104D.99.087×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:990870=9.9087×105,故选:A.4.如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是()A.4℃B.8℃C.12℃D.16℃【分析】根据A市某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.【解答】解:从折线统计图中可以看出,这一天中最高气温8℃,最低气温是﹣4℃,这一天中最高气温与最低气温的差为12℃,故选:C.5.计算:(﹣x2y)3=()A.﹣2x6y3B.x6y3C.﹣x6y3D.﹣x5y4【分析】根据积的乘方运算法则计算即可,积的乘方,等于每个因式乘方的积.【解答】解:(﹣x2y)3==.故选:C.6.如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD 是△ABC的高,则BD的长为()A.B.C.D.【分析】根据勾股定理计算AC的长,利用面积差可得三角形ABC的面积,由三角形的面积公式即可得到结论.【解答】解:由勾股定理得:AC==,∵S△ABC=3×3﹣=3.5,∴,∴,∴BD=,故选:D.7.在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x交于点A、B,则△AOB的面积为()A.2B.3C.4D.6【分析】根据方程或方程组得到A(﹣3,0),B(﹣1,2),根据三角形的面积公式即可得到结论.【解答】解:在y=x+3中,令y=0,得x=﹣3,解得,,∴A(﹣3,0),B(﹣1,2),∴△AOB的面积=3×2=3,故选:B.8.如图,在▱ABCD中,AB=5,BC=8.E是边BC的中点,F是▱ABCD内一点,且∠BFC =90°.连接AF并延长,交CD于点G.若EF∥AB,则DG的长为()A.B.C.3D.2【分析】依据直角三角形斜边上中线的性质,即可得到EF的长,再根据梯形中位线定理,即可得到CG的长,进而得出DG的长.【解答】解:∵E是边BC的中点,且∠BFC=90°,∴Rt△BCF中,EF=BC=4,∵EF∥AB,AB∥CG,E是边BC的中点,∴F是AG的中点,∴EF是梯形ABCG的中位线,∴CG=2EF﹣AB=3,又∵CD=AB=5,∴DG=5﹣3=2,故选:D.9.如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为()A.55°B.65°C.60°D.75°【分析】连接CD,根据圆内接四边形的性质得到∠CDB=180°﹣∠A=130°,根据垂径定理得到OD⊥BC,求得BD=CD,根据等腰三角形的性质即可得到结论.【解答】解:连接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是边BC的中点,∴OD⊥BC,∴BD=CD,∴∠ODB=∠ODC=BDC=65°,故选:B.10.在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m>1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据平移规律得到平移后抛物线的顶点坐标,然后结合m的取值范围判断新抛物线的顶点所在的象限即可.【解答】解:∵y=x2﹣(m﹣1)x+m=(x﹣)2+m﹣,∴该抛物线顶点坐标是(,m﹣),∴将其沿y轴向下平移3个单位后得到的抛物线的顶点坐标是(,m﹣﹣3),∵m>1,∴m﹣1>0,∴>0,∵m﹣﹣3===﹣﹣1<0,∴点(,m﹣﹣3)在第四象限;故选:D.二.填空题(共4小题)11.计算:(2+)(2﹣)=1.【分析】先利用平方差公式展开得到原式=22﹣()2,再利用二次根式的性质化简,然后进行减法运算.【解答】解:原式=22﹣()2=4﹣3=1.12.如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD,则∠BDM的度数是144°.【分析】根据正五边形的性质和内角和为540°,求得每个内角的度数为108°,再结合等腰三角形和邻补角的定义即可解答.【解答】解:因为五边形ABCDE是正五边形,所以∠C==108°,BC=DC,所以∠BDC==36°,所以∠BDM=180°﹣36°=144°,故答案为:144°.13.在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y=(k≠0)的图象经过其中两点,则m的值为﹣1.【分析】根据已知条件得到点A(﹣2,1)在第三象限,求得点C(﹣6,m)一定在第三象限,由于反比例函数y=(k≠0)的图象经过其中两点,于是得到反比例函数y=(k≠0)的图象经过B(3,2),C(﹣6,m),于是得到结论.【解答】解:∵点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限,点A (﹣2,1)在第二象限,∴点C(﹣6,m)一定在第三象限,∵B(3,2)在第一象限,反比例函数y=(k≠0)的图象经过其中两点,∴反比例函数y=(k≠0)的图象经过B(3,2),C(﹣6,m),∴3×2=﹣6m,∴m=﹣1,故答案为:﹣1.14.如图,在菱形ABCD中,AB=6,∠B=60°,点E在边AD上,且AE=2.若直线l 经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,则线段EF的长为2.【分析】过点A和点E作AG⊥BC,EH⊥BC于点G和H,可得矩形AGHE,再根据菱形ABCD中,AB=6,∠B=60°,可得BG=3,AG=3=EH,由题意可得,FH=FC ﹣HC=2﹣1=1,进而根据勾股定理可得EF的长.【解答】解:如图,过点A和点E作AG⊥BC,EH⊥BC于点G和H,得矩形AGHE,∴GH=AE=2,∵在菱形ABCD中,AB=6,∠B=60°,∴BG=3,AG=3=EH,∴HC=BC﹣BG﹣GH=6﹣3﹣2=1,∵EF平分菱形面积,∴FC=AE=2,∴FH=FC﹣HC=2﹣1=1,在Rt△EFH中,根据勾股定理,得EF===2.故答案为:2.三.解答题(共11小题)15.解不等式组:【分析】分别求出不等式组中两不等式的解集,找出两解集的方法部分即可.【解答】解:,由①得:x>2,由②得:x<3,则不等式组的解集为2<x<3.16.解分式方程:﹣=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程﹣=1,去分母得:x2﹣4x+4﹣3x=x2﹣2x,解得:x=,经检验x=是分式方程的解.17.如图,已知△ABC,AC>AB,∠C=45°.请用尺规作图法,在AC边上求作一点P,使∠PBC=45°.(保留作图痕迹.不写作法)【分析】根据尺规作图法,作一个角等于已知角,在AC边上求作一点P,使∠PBC=45°即可.【解答】解:如图,点P即为所求.18.如图,在四边形ABCD中,AD∥BC,∠B=∠C.E是边BC上一点,且DE=DC.求证:AD=BE.【分析】根据等边对等角的性质求出∠DEC=∠C,在由∠B=∠C得∠DEC=∠B,所以AB∥DE,得出四边形ABCD是平行四边形,进而得出结论.【解答】证明:∵DE=DC,∴∠DEC=∠C.∵∠B=∠C,∴∠B=∠DEC,∴AB∥DE,∵AD∥BC,∴四边形ABED是平行四边形.∴AD=BE.19.王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)这20条鱼质量的中位数是 1.45kg,众数是 1.5kg.(2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?【分析】(1)根据中位数和众数的定义求解可得;(2)利用加权平均数的定义求解可得;(3)用单价乘以(2)中所得平均数,再乘以存活的数量,从而得出答案.【解答】解:(1)∵这20条鱼质量的中位数是第10、11个数据的平均数,且第10、11个数据分别为1.4、1.5,∴这20条鱼质量的中位数是=1.45(kg),众数是1.5kg,故答案为:1.45kg,1.5kg.(2)==1.45(kg),∴这20条鱼质量的平均数为1.45kg;(3)18×1.45×2000×90%=46980(元),答:估计王大伯近期售完鱼塘里的这种鱼可收入46980元.20.如图所示,小明家与小华家住在同一栋楼的同一单元,他俩想测算所住楼对面商业大厦的高MN.他俩在小明家的窗台B处,测得商业大厦顶部N的仰角∠1的度数,由于楼下植物的遮挡,不能在B处测得商业大厦底部M的俯角的度数.于是,他俩上楼来到小华家,在窗台C处测得大厦底部M的俯角∠2的度数,竟然发现∠1与∠2恰好相等.已知A,B,C三点共线,CA⊥AM,NM⊥AM,AB=31m,BC=18m,试求商业大厦的高MN.【分析】过点C作CE⊥MN于点E,过点B作BF⊥MN于点F,可得四边形AMEC和四边形AMFB均为矩形,可以证明△BFN≌△CEM,得NF=EM=49,进而可得商业大厦的高MN.【解答】解:如图,过点C作CE⊥MN于点E,过点B作BF⊥MN于点F,∴∠CEF=∠BFE=90°,∵CA⊥AM,NM⊥AM,∴四边形AMEC和四边形AMFB均为矩形,∴CE=BF,ME=AC,∠1=∠2,∴△BFN≌△CEM(ASA),∴NF=EM=31+18=49,由矩形性质可知:EF=CB=18,∴MN=NF+EM﹣EF=49+49﹣18=80(m).答:商业大厦的高MN为80m.21.某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如图所示.(1)求y与x之间的函数关系式;(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?【分析】(1)分段函数,利用待定系数法解答即可;(2)利用(1)的结论,把y=80代入求出x的值即可解答.【解答】解:(1)当0≤x≤15时,设y=kx(k≠0),则:20=15k,解得k=,∴y=;当15<x≤60时,设y=k′x+b(k≠0),则:,解得,∴y=,∴;(2)当y=80时,80=,解得x=33,33﹣15=18(天),∴这种瓜苗移至大棚后.继续生长大约18天,开始开花结果.22.小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.(1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率;(2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率.【分析】(1)由频率定义即可得出答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球中一个是白球、一个是黄球的情况,利用概率公式求解即可求得答案.【解答】解:(1)小亮随机摸球10次,其中6次摸出的是红球,这10次中摸出红球的频率==;(2)画树状图得:∵共有16种等可能的结果,两次摸出的球中一个是白球、一个是黄球的有2种情况,∴两次摸出的球中一个是白球、一个是黄球的概率==.23.如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AB=12,求线段EC的长.【分析】(1)连接OC,由切线的性质可得∠OCE=90°,由圆周角定理可得∠AOC=90°,可得结论;(2)过点A作AF⊥EC交EC于F,由锐角三角函数可求AD=8,可证四边形OAFC 是正方形,可得CF=AF=4,由锐角三角函数可求EF=12,即可求解.【解答】证明:(1)连接OC,∵CE与⊙O相切于点C,∴∠OCE=90°,∵∠ABC=45°,∴∠AOC=90°,∵∠AOC+∠OCE=180°,∴∴AD∥EC(2)如图,过点A作AF⊥EC交EC于F,∵∠BAC=75°,∠ABC=45°,∴∠ACB=60°,∴∠D=∠ACB=60°,∴sin∠ADB=,∴AD==8,∴OA=OC=4,∵AF⊥EC,∠OCE=90°,∠AOC=90°,∴四边形OAFC是矩形,又∵OA=OC,∴四边形OAFC是正方形,∴CF=AF=4,∵∠BAD=90°﹣∠D=30°,∴∠EAF=180°﹣90°﹣30°=60°,∵tan∠EAF=,∴EF=AF=12,∴CE=CF+EF=12+4.24.如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.(1)求该抛物线的表达式;(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.【分析】(1)将点(3,12)和(﹣2,﹣3)代入抛物线表达式,即可求解;(2)由题意得:PD=DE=3时,以P、D、E为顶点的三角形与△AOC全等,分点P 在抛物线对称轴右侧、点P在抛物线对称轴的左侧两种情况,分别求解即可.【解答】解:(1)将点(3,12)和(﹣2,﹣3)代入抛物线表达式得,解得,故抛物线的表达式为:y=x2+2x﹣3;(2)抛物线的对称轴为x=﹣1,令y=0,则x=﹣3或1,令x=0,则y=﹣3,故点A、B的坐标分别为(﹣3,0)、(1,0);点C(0,﹣3),故OA=OC=3,∵∠PDE=∠AOC=90°,∴当PD=DE=3时,以P、D、E为顶点的三角形与△AOC全等,设点P(m,n),当点P在抛物线对称轴右侧时,m﹣(﹣1)=3,解得:m=2,故n=22+2×2﹣5=5,故点P(2,5),故点E(﹣1,2)或(﹣1,8);当点P在抛物线对称轴的左侧时,由抛物线的对称性可得,点P(﹣4,5),此时点E坐标同上,综上,点P的坐标为(2,5)或(﹣4,5);点E的坐标为(﹣1,2)或(﹣1,8).25.问题提出(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是CF、DE、DF.问题探究(2)如图2,AB是半圆O的直径,AB=8.P是上一点,且=2,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长.问题解决(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,重足分别为E,F.按设计要求,四边形PEDF 内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2).①求y与x之间的函数关系式;②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.【分析】(1)证明四边形CEDF是正方形,即可得出结果;(2)连接OP,由AB是半圆O的直径,=2,得出∠APB=90°,∠AOP=60°,则∠ABP=30°,同(1)得四边形PECF是正方形,得PF=CF,在Rt△APB中,PB =AB•cos∠ABP=4,在Rt△CFB中,BF==CF,推出PB=CF+BF,即可得出结果;(3)①同(1)得四边形DEPF是正方形,得出PE=PF,∠APE+∠BPF=90°,∠PEA =∠PFB=90°,将△APE绕点P逆时针旋转90°,得到△A′PF,P A′=P A,则A′、F、B三点共线,∠APE=∠A′PF,证∠A′PB=90°,得出S△P AE+S△PBF=S△P A′B=P A′•PB=x(70﹣x),在Rt△ACB中,AC=BC=35,S△ACB=AC2=1225,由y =S△P A′B+S△ACB,即可得出结果;②当AP=30时,A′P=30,PB=40,在Rt△A′PB中,由勾股定理得A′B==50,由S△A′PB=A′B•PF=PB•A′P,求PF,即可得出结果.【解答】解:(1)∵∠ACB=90°,DE⊥AC,DF⊥BC,∴四边形CEDF是矩形,∵CD平分∠ACB,DE⊥AC,DF⊥BC,∴DE=DF,∴四边形CEDF是正方形,∴CE=CF=DE=DF,故答案为:CF、DE、DF;(2)连接OP,如图2所示:∵AB是半圆O的直径,=2,∴∠APB=90°,∠AOP=×180°=60°,∴∠ABP=30°,同(1)得:四边形PECF是正方形,∴PF=CF,在Rt△APB中,PB=AB•cos∠ABP=8×cos30°=8×=4,在Rt△CFB中,BF====CF,∵PB=PF+BF,∴PB=CF+BF,即:4=CF+CF,解得:CF=6﹣2;(3)①∵AB为⊙O的直径,∴∠ACB=∠ADB=90°,∵CA=CB,∴∠ADC=∠BDC,同(1)得:四边形DEPF是正方形,∴PE=PF,∠APE+∠BPF=90°,∠PEA=∠PFB=90°,∴将△APE绕点P逆时针旋转90°,得到△A′PF,P A′=P A,如图3所示:则A′、F、B三点共线,∠APE=∠A′PF,∴∠A′PF+∠BPF=90°,即∠A′PB=90°,∴S△P AE+S△PBF=S△P A′B=P A′•PB=x(70﹣x),在Rt△ACB中,AC=BC=AB=×70=35,∴S△ACB=AC2=×(35)2=1225,∴y=S△P A′B+S△ACB=x(70﹣x)+1225=﹣x2+35x+1225;②当AP=30时,A′P=30,PB=AB﹣AP=70﹣30=40,在Rt△A′PB中,由勾股定理得:A′B===50,∵S△A′PB=A′B•PF=PB•A′P,∴×50×PF=×40×30,解得:PF=24,∴S四边形PEDF=PF2=242=576(m2),∴当AP=30m时.室内活动区(四边形PEDF)的面积为576m2.荆州市2020年初中学业水平考试数学试题一、选择题1. 有理数2-的相反数是( ) A. 2 B.12 C. 2- D. 12- 2. 下列四个几何体中,俯视图与其他三个不同的是( )A. B. C. D.3. 在平面直角坐标系中,一次函数1y x =+的图像是( )A. B.C. D.4. 将一张矩形纸片折叠成如图所示的图形,若30CAB ︒∠=,则ACB ∠的度数是( )A. 45︒B. 55︒C. 65︒D. 75︒5. 八年级学生去距学校10km 的荆州博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度,若设骑车学生的速度为xkm/h,则可列方程为( ) A.1010202x x -= B. 1010202x x -= C. 1010123x x -= D. 1010123x x -=6. 若x 为实数,在)1x 的中添上一种运算符号(在+,-,×、÷中选择) 后,其运算的结果是有理数,则x 不可能的是( )A.1 B. 1 C. D. 17.如图,点E 在菱形ABCD 的AB 边上,点F 在BC 边的延长线上,连接CE,DF ,对于下列条件:①BE CF =②,CE AB DF BC ⊥⊥③CE DF =④BCE CDF ∠=∠只选其中一个添加,不能确定的是( )A. ①B. ②C. ③D. ④8. 如图,在平面直角坐标系中,Rt OAB ∆的斜边OA 在第一象限,并与x 轴的正半轴夹角为30度,C 为OA 的中点,BC=1,则A 点的坐标为( )A.B.) C. ()2,1 D. (9. 定义新运算a b *,对于任意实数a,b 满足()()1a b a b a b *=+--,其中等式右边是通常的加法、减法、乘法运算,例如43(43)(43)1716*=+--=-=,若x k x *=(k 为实数) 是关于x 的方程,则它的根的情况是( ) A. 有一个实根 B. 有两个不相等的实数根 C. 有两个相等的实数根 D.没有实数根10. 如图,在66⨯ 正方形网格中,每个小正方形的边长都是1,点A,B,C 均在网格交点上,O 是ABC ∆的外接圆,则cos BAC ∠的值是( )A.B. C. 12D. 二、填空题11.若()112020,,32a b c π-⎛⎫=-=-=- ⎪⎝⎭,则a,b,c 的大小关系是_________________.(用<号连接)12.若单项式32m x y 与3m nxy +_____________________.13.已知:ABC ∆,求作ABC ∆的外接圆,作法:①分别作线段BC,AC 的垂直平分线EF 和MN,它们交于点O ;②以点O 为圆心,OB 的长为半径画弧,如图O 即为所求,以上作图用到的数学依据是___________________.14.若标有A,B,C 的三只灯笼按图示悬挂,每次摘取一只(摘B 先摘C ),直到摘完,则最后一只摘到B 的概率是___________.15.“健康荆州,你我同行”,市民小张积极响应“全民健身动起来”号召,坚持在某环形步道上跑步,已知此步道外形近似于如图所示的Rt ABC ∆,其中90C ︒∠=,AB 与BC 间另有步道DE 相连,D 地在AB 的正中位置,E 地与C 地相距1km,若3tan ,454ABC DEB ︒∠=∠=,小张某天沿A C E B D A →→→→→路线跑一圈,则他跑了___________________km.16.我们约定:(),,a b c 为函数2y ax bx c =++的关联数,当其图象与坐标轴交点的横、纵坐标均为整数时,该交点为“整交点”,若关联数为(),2,2m m --的函数图象与x 轴有两个整交点(m 为正整数),则这个函数图象上整交点的坐标为____________. 三、解答题17.先化简,再求值2211121a a a a -⎛⎫-÷ ⎪++⎝⎭:其中a 是不等式组22(1)213(2)a a a a -≥-⎧⎨-<+⎩的最小整数解;18.阅读下列问题与提示后,将解方程的过程补充完整,求出x 的值问题:解方程2250x x ++= 提示:可以用换元法解方程()0t t =≥,则有222x x t +=原方程可化为:2450t t +-= 续解:19.如图,将ABC ∆绕点B 顺时针旋转60度得到DBE ∆,点C 的对应点E 恰好落在AB 的延长线上,连接AD. (1)求证://BC AD ;(2)若AB=4,BC=1,求A,C 两点旋转所经过的路径长之和.20.6月26日是“国际禁毒日”某中学组织七、八年级全体学生开展了“禁毒知识”网上竞赛活动,为了解竞赛情况,从两个年级各抽取10名学生的成绩(满分为100分),收集数据为:七年级90,95,95,80,85,90,85,90,85100;八年级:85,85,95,80,95,90,90,90,100,90;整理数据:分析数据:根据以上信息回答下列问题:(1)请直接写出表格中,,,a b c d的值(2)通过数据分析,你认为哪个年级的成绩比较好?说明理由;(3)该校七八年级共600人,本次竞赛成绩不低于90分的为“优秀”估计这两个年级共多少名学生达到“优秀”?21.九年级某数学兴趣小组在学习了反比例函数的图像和性质后,进一步研究了函数2 yx的图像与性质,其探究过程如下:(1)绘制函数图像,如图1,列表;下表是x 与y 的几组对应值,其中______m =;描点:根据表中各组对应值(x,y )在平面直角坐标系中描出了各点; 连线:用平滑的曲线顺次连接各点,画出了部分图像,请你把图像补充完整; (2)通过观察图1,写出该函数的两条性质:①_______________;②_______________; (3)①观察发现:如图2,若直线y=2交函数2y x=的图像于A,B 两点,连接OA,过点B 作BC//OA 交x 轴于点C,则________OABC S =;②探究思考:将①的直线y=2改为直线y=a(a>0),其他条件不变,则________OABC S =; ③类比猜想:若直线y=a(a>0)交函数(0)ky k x=>的图像于A,B 两点,连接OA,过点B 作BC//OA 交x 轴于C,则________OABC S =;22.如图矩形ABCD 中,AB=20,点E 是BC 上一点,将ABE ∆沿着AE 折叠,点B 刚好落在CD 边上的点G 处,点F 在DG 上,将ADF ∆沿着AF 折叠,点D 刚好落在AG 上点H 处,此时:2:3CFE AFH S S ∆∆=. (1)求证:EGC GFH ∆∆(2)求AD 的长; (3)求tan GFH ∠的值。

云南省2020年中考数学试题及详细解析

云南省2020年中考数学试题及详细解析

云南省2020年中考数学试题(答案及详细解析从第7页开始)一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉7吨,记为+7吨,那么运出面粉8吨应记为 吨.2.(3分)如图,直线c与直线a、b都相交.若a∥b,∠1=54°,则∠2= 度.3.(3分)要使有意义,则x的取值范围是 .4.(3分)已知一个反比例函数的图象经过点(3,1),若该反比例函数的图象也经过点(﹣1,m),则m= .5.(3分)若关于x的一元二次方程x2+2x+c=0有两个相等的实数根,则实数c的值为 .6.(3分)已知四边形ABCD是矩形,点E是矩形ABCD的边上的点,且EA=EC.若AB =6,AC=2,则DE的长是 .二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分) 7.(4分)千百年来的绝对贫困即将消除,云南省95%的贫困人口脱贫,95%的贫困村出列,90%的贫困县摘帽,1500000人通过异地扶贫搬迁实现“挪穷窝”,“斩穷根”(摘自2020年5月11日云南日报).1500000这个数用科学记数法表示为( )A.15×106 B.1.5×105 C.1.5×106 D.1.5×1078.(4分)下列几何体中,主视图是长方形的是( )A. B.C. D.9.(4分)下列运算正确的是( )A.=±2 B.()﹣1=﹣2C.(﹣3a)3=﹣9a3 D.a6÷a3=a3(a≠0)10.(4分)下列说法正确的是( )A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360°是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为、,方差分别为s 甲2、s乙2,若=,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定 D.一个抽奖活动中,中奖概率为,表示抽奖20次就有1次中奖11.(4分)如图,平行四边形ABCD的对角线AC,BD相交于点O,E是CD的中点.则△DEO与△BCD的面积的比等于( )A. B. C. D.12.(4分)按一定规律排列的单项式:a,﹣2a,4a,﹣8a,16a,﹣32a,…,第n个单项式是( )A.(﹣2)n﹣1a B.(﹣2)n a C.2n﹣1a D.2n a13.(4分)如图,正方形ABCD的边长为4,以点A为圆心,AD为半径,画圆弧DE得到扇形DAE(阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是( )A . B.1 C . D .14.(4分)若整数a使关于x 的不等式组,有且只有45个整数解,且使关于y 的方程+=1的解为非正数,则a的值为( )A.﹣61或﹣58 B.﹣61或﹣59C.﹣60或﹣59 D.﹣61或﹣60或﹣59三、解答题(本大题共9小题,共70分)15.(6分)先化简,再求值:÷,其中x =.16.(6分)如图,已知AD=BC,BD=AC.求证:∠ADB=∠BCA.17.(8分)某公司员工的月工资如下:员工 经理 副经理 职员A职员B职员C职员D职员E职员F 杂工G 月工资/元7000 4400 2400 2000 1900 1800 1800 1800 1200经理、职员C、职员D从不同的角度描述了该公司员工的收入情况.设该公司员工的月工资数据(见上述表格)的平均数、中位数、众数分别为k、m、n,请根据上述信息完成下列问题:(1)k= ,m= ,n= ;(2)上月一个员工辞职了,从本月开始,停发该员工工资,若本月该公司剩下的8名员工的月工资不变,但这8名员工的月工资数据(单位:元)的平均数比原9名员工的月工资数据(见上述表格)的平均数减小了.你认为辞职的那名员工可能是 . 18.(6分)某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活动,绿化升级改造了总面积为360万平方米的区域.实际施工中,由于采用了新技术,实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务.实际平均每年绿化升级改造的面积是多少万平方米?19.(7分)甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游.假设这两个家庭选择到哪个城市旅游不受任何因素影响,上述三个城市中的每一个被选到的可能性相同,甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率为P.(1)直接写出甲家庭选择到大理旅游的概率;(2)用列表法或树状图法(树状图也称树形图)中的一种方法,求P的值.20.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CE,垂足为D,AC平分∠DAB. (1)求证:CE是⊙O的切线;(2)若AD=4,cos∠CAB =,求AB的长.21.(8分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:A地(元/辆) B地(元/辆)目的地车型大货车 900 1000小货车 500 700现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数解析式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.22.(9分)如图,四边形ABCD是菱形,点H为对角线AC的中点,点E在AB的延长线上,CE⊥AB,垂足为E,点F在AD的延长线上,CF⊥AD,重足为F,(1)若∠BAD=60°,求证:四边形CEHF是菱形;(2)若CE=4,△ACE的面积为16,求菱形ABCD的面积.23.(12分)抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),点C的坐标为(0,﹣3).点P为抛物线y=x2+bx+c上的一个动点.过点P作PD⊥x轴于点D,交直线BC于点E.(1)求b、c的值;(2)设点F在抛物线y=x2+bx+c的对称轴上,当△ACF的周长最小时,直接写出点F 的坐标;(3)在第一象限,是否存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍?若存在,求出点P所有的坐标;若不存在,请说明理由.云南省2020年中考数学试题答案及详细解析一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉7吨,记为+7吨,那么运出面粉8吨应记为 ﹣8吨.【分析】根据正负数的意义,直接写出答案即可.【解答】解:因为题目运进记为正,那么运出记为负.所以运出面粉8吨应记为﹣8吨.故答案为:﹣8.【点评】本题考查了正数和负数.根据互为相反意义的量,确定运出的符号是解决本题的关键.2.(3分)如图,直线c与直线a、b都相交.若a∥b,∠1=54°,则∠2= 54度.【分析】直接利用平行线的性质:两直线平行,同位角相等,即可得出答案.【解答】解:∵a∥b,∠1=54°,∴∠2=∠1=54°.故答案为:54.【点评】此题主要考查了平行线的性质,正确掌握平行线的基本性质是解题关键.3.(3分)要使有意义,则x的取值范围是 x≥2.【分析】根据二次根式有意义的条件得到x﹣2≥0,然后解不等式即可.【解答】解:∵有意义,∴x﹣2≥0,∴x≥2.故答案为x≥2.【点评】本题考查了二次根式有意义的条件:二次根式有意义的条件为被开方数为非负数,即当a≥0时有意义;若含分母,则分母不能为0.4.(3分)已知一个反比例函数的图象经过点(3,1),若该反比例函数的图象也经过点(﹣1,m),则m= ﹣3.【分析】设反比例函数的表达式为y=,依据反比例函数的图象经过点(3,1)和(﹣1,m),即可得到k=3×1=﹣m,进而得出m=﹣3.【解答】解:设反比例函数的表达式为y=,∵反比例函数的图象经过点(3,1)和(﹣1,m),∴k=3×1=﹣m,解得m=﹣3,故答案为:﹣3.【点评】本题主要考查了反比例函数图象上点的坐标特征,解题时注意:反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.5.(3分)若关于x的一元二次方程x2+2x+c=0有两个相等的实数根,则实数c的值为 1. 【分析】若一元二次方程有两个相等的实数根,则根的判别式△=b2﹣4ac=0,建立关于c的方程,求出c的值即可.【解答】解:∵关于x的一元二次方程x2+2x+c=0有两个相等的实数根,∴△=b2﹣4ac=22﹣4c=0,解得c=1.故答案为1.【点评】此题考查了根的判别式.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.(3分)已知四边形ABCD是矩形,点E是矩形ABCD的边上的点,且EA=EC.若AB =6,AC=2,则DE的长是 或.【分析】由勾股定理可求BC=2,分点E在CD上或在AB上两种情况讨论,由勾股定理可求解.【解答】解:如图,∵四边形ABCD是矩形,∴CD=AB=6,AD=BC,∠ABC=∠ADC=90°,∴BC===2,∴AD=2,当点E在CD上时,∵AE2=DE2+AD2=EC2,∴(6﹣DE)2=DE2+4,∴DE=;当点E在AB上时,∵CE2=BE2+BC2=EA2,∴AE2=(6﹣AE)2+4,∴AE=,∴DE===,综上所述:DE=或,故答案为:或.【点评】本题考查了矩形的性质,勾股定理,利用分类讨论思想解决问题是本题的关键. 二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分) 7.(4分)千百年来的绝对贫困即将消除,云南省95%的贫困人口脱贫,95%的贫困村出列,90%的贫困县摘帽,1500000人通过异地扶贫搬迁实现“挪穷窝”,“斩穷根”(摘自2020年5月11日云南日报).1500000这个数用科学记数法表示为( )A.15×106 B.1.5×105 C.1.5×106 D.1.5×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1500000=1.5×106,故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(4分)下列几何体中,主视图是长方形的是( )A. B.C. D.【分析】根据各个几何体的主视图的形状进行判断即可.【解答】解:圆柱体的主视图是长方形,圆锥的主视图是等腰三角形,球的主视图是圆形,四面体的主视图是三角形,故选:A.【点评】本题考查简单几何体的三视图,主视图就是从正面看该物体所得到的图形. 9.(4分)下列运算正确的是( )A.=±2 B.()﹣1=﹣2C.(﹣3a)3=﹣9a3 D.a6÷a3=a3(a≠0)【分析】根据二次根式的性质,负整数指数幂法则,幂的性质进行解答便可.【解答】解:A.,选项错误;B.原式=2,选项错误;C.原式=﹣27a3,选项错误;D.原式=a6﹣3=a3,选项正确.故选:D.【点评】本题主要考查了二次根式的性质,负整数指数幂的运算法则,幂的运算法则,关键是熟记性质和法则.10.(4分)下列说法正确的是( )A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360°是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为、,方差分别为s 甲2、s乙2,若=,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定 D.一个抽奖活动中,中奖概率为,表示抽奖20次就有1次中奖【分析】根据普查、抽查,三角形的内角和,方差和概率的意义逐项判断即可.【解答】解:了解三名学生的视力情况,由于总体数量较少,且容易操作,因此宜采取普查,因此选项A不符合题意;任意画一个三角形,其内角和是360°是不可能事件,因此选项B不符合题意;根据平均数和方差的意义可得选项C符合题意;一个抽奖活动中,中奖概率为,表示中奖的可能性为,不代表抽奖20次就有1次中奖,因此选项D不符合题意;故选:C.【点评】本题考查普查、抽查,三角形的内角和,方差和概率的意义,理解各个概念的内涵是正确判断的前提.11.(4分)如图,平行四边形ABCD的对角线AC,BD相交于点O,E是CD的中点.则△DEO与△BCD的面积的比等于( )A. B. C. D.【分析】利用平行四边形的性质可得出点O为线段BD的中点,结合点E是CD的中点可得出线段OE为△DBC的中位线,利用三角形中位线定理可得出OE∥BC,OE=BC,进而可得出△DOE∽△DBC,再利用相似三角形的面积比等于相似比的平方,即可求出△DEO与△BCD的面积的比.【解答】解:∵平行四边形ABCD的对角线AC,BD相交于点O,∴点O为线段BD的中点.又∵点E是CD的中点,∴线段OE为△DBC的中位线,∴OE∥BC,OE=BC,∴△DOE∽△DBC,∴=()2=.故选:B.【点评】本题考查了平行四边形的性质、三角形中位线定理以及相似三角形的判定与性质,利用平行四边形的性质及三角形中位线定理,找出OE∥BC且OE=BC是解题的关键.12.(4分)按一定规律排列的单项式:a,﹣2a,4a,﹣8a,16a,﹣32a,…,第n个单项式是( )A.(﹣2)n﹣1a B.(﹣2)n a C.2n﹣1a D.2n a【分析】根据题意,找出规律:单项式的系数为(﹣2)的幂,其指数为比序号数少1,字母为a.【解答】解:∵a=(﹣2)1﹣1a,﹣2a=(﹣2)2﹣1a,4a=(﹣2)3﹣1a,﹣8a=(﹣2)4﹣1a,16a=(﹣2)5﹣1a,﹣32a=(﹣2)6﹣1a,…由上规律可知,第n个单项式为:(﹣2)n﹣1a.故选:A.【点评】本题主要考查了单项式的有关知识,在解题时要能通过观察得出规律是本题的关键.13.(4分)如图,正方形ABCD的边长为4,以点A为圆心,AD为半径,画圆弧DE得到扇形DAE(阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是( )A. B.1 C. D.【分析】根据圆锥的底面周长与展开后所得扇形的弧长相等列式计算即可.【解答】解:设圆椎的底面圆的半径为r,根据题意可知:AD=AE=4,∠DAE=45°,∴2πr=,解得r=.答:该圆锥的底面圆的半径是.故选:D.【点评】本题考查了圆锥的计算,解决本题的关键是掌握圆锥的底面周长与展开后所得扇形的弧长相等.14.(4分)若整数a使关于x的不等式组,有且只有45个整数解,且使关于y的方程+=1的解为非正数,则a的值为( )A.﹣61或﹣58 B.﹣61或﹣59C.﹣60或﹣59 D.﹣61或﹣60或﹣59【分析】解不等式组,得<x≤25,根据不等式组有且只有45个整数解,可得﹣61≤a<﹣58,根据关于y的方程+=1的解为非正数:解得a≥﹣61,又y+1不等于0,进而可得a的值.【解答】解:解不等式组,得<x≤25,∵不等式组有且只有45个整数解,∴﹣20≤<﹣19,解得﹣61≤a<﹣58,因为关于y的方程+=1的解为:y=﹣a﹣61,y≤0,∴﹣a﹣61≤0,解得a≥﹣61,∵y+1≠0,∴y≠﹣1,∴a≠﹣60则a的值为:﹣61或﹣59.故选:B.【点评】本题考查了分式方程的解、解一元一次不等式组、一元一次不等式组的整数解,解决本题的关键是确定一元一次不等式组的整数解.三、解答题(本大题共9小题,共70分)15.(6分)先化简,再求值:÷,其中x=.【分析】原式利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值. 【解答】解:原式=÷=•=,当x=时,原式=2.【点评】本题考查分式的化简求值,掌握分式的运算法则是解题的关键.16.(6分)如图,已知AD=BC,BD=AC.求证:∠ADB=∠BCA.【分析】根据SSS推出△ADB和△BCA全等,再根据全等三角形的性质得出即可. 【解答】证明:在△ADB和△BCA中,,∴△ADB≌△BCA(SSS),∴∠ADB=∠BCA.【点评】本题考查了全等三角形的判定和性质.解题的关键是掌握全等三角形的性质和判定的运用,注意:全等三角形的对应边相等,对应角相等.17.(8分)某公司员工的月工资如下:员工 经理 副经理 职员A职员B职员C职员D职员E职员F 杂工G 7000 4400 2400 2000 1900 1800 1800 1800 1200 月工资/元经理、职员C、职员D从不同的角度描述了该公司员工的收入情况.设该公司员工的月工资数据(见上述表格)的平均数、中位数、众数分别为k、m、n,请根据上述信息完成下列问题:(1)k= 2700,m= 1900,n= 1800;(2)上月一个员工辞职了,从本月开始,停发该员工工资,若本月该公司剩下的8名员工的月工资不变,但这8名员工的月工资数据(单位:元)的平均数比原9名员工的月工资数据(见上述表格)的平均数减小了.你认为辞职的那名员工可能是 经理或副经理 .【分析】(1)求出9个数据之和再除以总个数即可;对于中位数,按从大到小的顺序排列,找出最中间的那个数即可;出现频数最多的数据即为众数;(2)根据剩下的8名员工的月工资数据的平均数比原9名员工的月工资数据的平均数减小,得出辞职的那名员工工资高于2700元,从而得出辞职的那名员工可能是经理或副经理.【解答】解:(1)平均数k=(7000+4400+2400+2000+1900+1800×3+1200)÷9=2700, 9个数据从大到小排列后,第5个数据是1900,所以中位数m=1900,1800出现了三次,次数最多,所以众数n=1800.故答案为:2700,1900,1800;(2)由题意可知,辞职的那名员工工资高于2700元,所以辞职的那名员工可能是经理或副经理.故答案为:经理或副经理.【点评】本题考查了确定一组数据的平均数、中位数和众数的能力.平均数是指在一组数据中所有数据之和再除以数据的个数.注意找中位数的时候一定要先排好顺序,然后根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两个数的平均数.一组数据中出现次数最多的数据叫做众数. 18.(6分)某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活动,绿化升级改造了总面积为360万平方米的区域.实际施工中,由于采用了新技术,实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务.实际平均每年绿化升级改造的面积是多少万平方米?【分析】设原计划每年绿化升级改造的面积是x万平方米,则实际每年绿化升级改造的面积是2x万平方米,根据“实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务”列出方程即可求解.【解答】解:设原计划每年绿化升级改造的面积是x万平方米,则实际每年绿化升级改造的面积是2x万平方米,根据题意,得:﹣=4,解得:x=45,经检验,x=45是原分式方程的解,则2x=2×45=90.答:实际平均每年绿化升级改造的面积是90万平方米.【点评】此题考查了分式方程的应用,解答本题的关键是读懂题意,根据题意设出适当的未知数,找出等量关系,列方程求解,注意检验.19.(7分)甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游.假设这两个家庭选择到哪个城市旅游不受任何因素影响,上述三个城市中的每一个被选到的可能性相同,甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率为P.(1)直接写出甲家庭选择到大理旅游的概率;(2)用列表法或树状图法(树状图也称树形图)中的一种方法,求P的值.【分析】(1)直接用概率公式求解可得;(2)记到大理、丽江、西双版纳三个城市旅游分别为A、B、C,列表得出所有等可能结果,从中找到甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的结果数,根据概率公式求解可得.【解答】解:(1)甲家庭选择到大理旅游的概率为;(2)记到大理、丽江、西双版纳三个城市旅游分别为A、B、C,列表得:A B CA (A,A) (A,B) (A,C)B (B,A) (B,B) (B,C)C (C,A) (C,B) (C,C)由表格可知,共有9种等可能性结果,其中甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的有3种结果,所以甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率P==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率. 20.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CE,垂足为D,AC平分∠DAB. (1)求证:CE是⊙O的切线;(2)若AD=4,cos∠CAB=,求AB的长.【分析】(1)连接OC.只要证明OC⊥DE即可解决问题;(2)连接BC,根据圆周角定理得到∠ACB=90°,根据角平分线的定义得到∠DAC=∠CAB,根据相似三角形的性质即可得到结论.【解答】(1)证明:连接OC.∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠CAD=∠CAB,∴∠DAC=∠ACO,∴AD∥OC,∵AD⊥DE,∴OC⊥DE,∴直线CE是⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ADC=∠ACB,∵AC平分∠DAB,∴∠DAC=∠CAB,∴△DAC∽△CAB,∴=,∵cos∠CAB==,∴设AC=4x,AB=5x,∴=,∴x =,∴AB =.【点评】本题考查切线的判定和性质,相似三角形的判定和性质,平行线的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.21.(8分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:A地(元/辆) B地(元/辆)目的地车型大货车 900 1000小货车 500 700现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数解析式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.【分析】(1)设大货车、小货车各有x与y辆,根据题意列出方程组即可求出答案. (2)根据题中给出的等量关系即可列出y与x的函数关系.(3)先求出x的范围,然后根据y与x的函数关系式即可求出y的最小值.【解答】解:(1)设大货车、小货车各有x与y辆,由题意可知:,解得:,答:大货车、小货车各有12与8辆(2)设到A地的大货车有x辆,则到A地的小货车有(10﹣x)辆,到B地的大货车有(12﹣x)辆,到B地的小货车有(x﹣2)辆,∴y=900x+500(10﹣x)+1000(12﹣x)+700(x﹣2)=100x+15600,其中2<x<10.(3)运往A地的物资共有[15x+10(10﹣x)]吨,15x+10(10﹣x)≥140,解得:x≥8,∴8≤x<10,当x=8时,y有最小值,此时y=100×8+15600=16400元,答:总运费最小值为16400元.【点评】本题考查一次函数,解题的关键是正确求出大货车、小货车各有12与8辆,并正确列出y与x的函数关系式,本题属于中等题型.22.(9分)如图,四边形ABCD是菱形,点H为对角线AC的中点,点E在AB的延长线上,CE⊥AB,垂足为E,点F在AD的延长线上,CF⊥AD,重足为F,(1)若∠BAD=60°,求证:四边形CEHF是菱形;(2)若CE=4,△ACE的面积为16,求菱形ABCD的面积.【分析】(1)根据菱形的性质得到∠ABC=∠ADC=120°,根据角平分线的性质得到CE=CF,根据直角三角形的性质得到EH=FH=AC,于是得到结论;(2)根据三角形的面积公式得到AE=8,根据勾股定理得到AC==4,连接BD,则BD⊥AC,AH=AC=2,根据相似三角形的性质得到BD=2BH=2,由菱形的面积公式即可得到结论.【解答】解:(1)∵四边形ABCD是菱形,∠BAD=60°,∴∠EAC=∠F AC=30°,又∵CE⊥AB,CF⊥AD,∴CE=CF=1/2AC,∵点H为对角线AC的中点,∴EH=FH=AC,∴CE=CF=EH=FH,∴四边形CEHF是菱形;(2)∵CE⊥AB,CE=4,△ACE的面积为16,∴AE=8,∴AC==4,连接BD,则BD⊥AC,AH=AC=2,∵∠AHB=∠AEC=90°,∠BAH=∠EAC,∴△ABH∽△ACE,∴=,∴=,∴BH=,∴BD=2BH=2,∴菱形ABCD的面积=AC•BD==20.【点评】本题考查了菱形的判定和性质,直角三角形的性质,角平分线的性质,勾股定理,相似三角形的判定和性质,正确的识别图形是解题的关键.23.(12分)抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),点C的坐标为(0,﹣3).点P为抛物线y=x2+bx+c上的一个动点.过点P作PD⊥x轴于点D,交直线BC于点E.(1)求b、c的值;(2)设点F在抛物线y=x2+bx+c的对称轴上,当△ACF的周长最小时,直接写出点F 的坐标;(3)在第一象限,是否存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍?若存在,求出点P所有的坐标;若不存在,请说明理由.【分析】(1)把A、C点的坐标代入抛物线的解析式列出b、c的方程组,解得b、c便可;(2)连接BC与对称轴交于点F,此时△ACF的周长最小,求得BC的解析式,再求得BC与对称轴的交点坐标便可;(3)设P(m,m2﹣2m﹣3)(m>3),根据相似三角形的比例式列出m的方程解答便可. 【解答】解:(1)把A、C点的坐标代入抛物线的解析式得,,解得,;(2)连接BC,与抛物线的对称轴交于点F,连接AF,如图1,此时,AF+CF=BF+CF=BC的值最小,∵AC为定值,∴此时△AFC的周长最小,由(1)知,b=﹣2,c=﹣3,∴抛物线的解析式为:y=x2﹣2x﹣3,∴对称轴为x=1,令y=0,得y=x2﹣2x﹣3=0,解得,x=﹣1,或x=3,∴B(3,0),令x=0,得y=x2﹣2x﹣3=﹣3,∴C(0,﹣3),设直线BC的解析式为:y=kx+b(k≠0),得,解得,,∴直线BC的解析式为:y=x﹣3,当x=1时,y=x﹣3=﹣2,∴F(1,﹣2);(3)设P(m,m2﹣2m﹣3)(m>3),过P作PH⊥BC于H,过D作DG⊥BC于G,如图2,则PH=5DG,E(m,m﹣3),∴PE=m2﹣3m,DE=m﹣3,∵∠PHE=∠DGE=90°,∠PEH=∠DEG,∴△PEH∽△DEG,∴,∴,∵m=3(舍),或m=5,∴点P的坐标为P(5,12).故存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍,其P点坐标为(5,12).【点评】本题是二次函数的综合题,主要考查了待定系数法,二次函数的图象与性质,相似三角形的性质与判定,轴对称的性质应用求线段的最值,第(2)题关键是确定F点的位置,第(3)题关键在于构建相似三角形.。

2020年全国中考数学试卷分类汇编(一)专题2 实数(无理数,平方根,立方根)(含解析)

2020年全国中考数学试卷分类汇编(一)专题2 实数(无理数,平方根,立方根)(含解析)

实数(无理数,平方根,立方根)一.选择题1.(2020•湖北武汉•3分)式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x≤2C.x≥﹣2 D.x≥2【分析】根据二次根式有意义的条件可得x﹣2≥0,再解即可.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故选:D.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.2.(2020•江苏省盐城市•3分)实数a,b在数轴上表示的位置如图所示,则()A.a>0 B.a>b C.a<b D.|a|<|b|【分析】根据在数轴上表示的两个实数,右边的总比左边的大,即可判断.【解答】解:根据实数a,b在数轴上表示的位置可知:a<0,b>0,∴a<b.故选:C.【点评】本题考查了实数与数轴、绝对值,解决本题的关键是掌握数轴.3.(2020•湖北武汉•3分)式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x≤2C.x≥﹣2 D.x≥2【分析】根据二次根式有意义的条件可得x﹣2≥0,再解即可.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故选:D.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.4. (2020•江苏省常州市•2分)计算m6÷m2的结果是()A.m3B.m4C.m8D.m12【分析】利用同底数幂的除法运算法则计算得出答案.【解答】解:m6÷m2=m6﹣2=m4.故选:B.【点评】此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.5. (2020•江苏省常州市•2分)8的立方根为()A.B.C.2 D.±2【分析】根据立方根的定义求出的值,即可得出答案.【解答】解:8的立方根是==2,故选:C.【点评】本题考查了对立方根的定义的理解和运用,注意:a的立方根是.6 (2020•江苏省淮安市•3分)如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A.205 B.250 C.502 D.520【分析】设较小的奇数为x,较大的为x+2,根据题意列出方程,求出解判断即可.【解答】解:设较小的奇数为x,较大的为x+2,根据题意得:(x+2)2﹣x2=(x+2﹣x)(x+2+x)=4x+4,若4x+4=205,即x=,不为整数,不符合题意;若4x+4=250,即x=,不为整数,不符合题意;若4x+4=502,即x=,不为整数,不符合题意;若4x+4=520,即x=129,符合题意.故选:D.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.7. (2020•江苏省连云港市•3分)3的绝对值是()A.﹣3 B.3 C.D.【分析】根据绝对值的意义,可得答案.【解答】解:|3|=3,故选:B.【点评】本题考查了实数的性质,利用绝对值的意义是解题关键.8. (2020•江苏省苏州市•3分)在下列四个实数中,最小的数是()A. 2B. 13C. 0D. 3【答案】A【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】解:根据实数大小比较的方法,可得-2<0<13<3,所以四个实数中,最小的数是-2.故选:A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.9. (2020•江苏省南京市•2分)3的平方根是()A.9 B.C.﹣D.±【分析】如果一个数的平方等于a,那么这个数就叫做a的平方根,也叫做a的二次方根.一个正数有正、负两个平方根,他们互相为相反数;零的平方根是零,负数没有平方根.【解答】解:∵()2=3,∴3的平方根.故选:D.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10. (2020•湖南省怀化市•3分)下列数中,是无理数的是()A.﹣3 B.0 C.D.【分析】根据无理数的三种形式求解即可.【解答】解:﹣3,0,是有理数,是无理数.故选:D.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.11. (2020•湖南省株洲市·4分)下列不等式错误的是()A.﹣2<﹣1 B.π<C.D.>0.3【分析】对于选项A,根据两个负数绝对值大的反而小即可得﹣2<﹣1;对于选项B,由3<π<4,,即可得;对于选项C,由,6.25<10,可得;对于选项D,由实数大小的比较可得.由此可得只有选项C错误.【解答】解:A.根据两个负数绝对值大的反而小可得﹣2<﹣1,原不等式正确,故此选项不符合题意;B.由3<π<4,可得,原不等式正确,故此选项不符合题意;C.由,6.25<10,可得,原不等式错误,故此选项符合题意;D.由=0.3333…,可得,原不等式正确,故此选项不符合题意.故选:C.【点评】本题考查了实数的大小比较及无理数的估算,熟练运用实数大小的比较方法及无理数的估算方法是解决问题的关键.12. (2020•湖南省长沙市·3分)2020年3月14日,是人类第一个“国际数学日”.这个节日的昵称是“π(Day)”.国际数学日之所以定在3月14日,是因为“3.14”是与圆周率数值最接近的数字.在古代,一个国家所算得的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展水平的一个主要标志.我国南北朝时的祖冲之是世界上最早把圆周率的精确值计算到小数点后第7位的科学巨匠,该成果领先世界一千多年.以下对于圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆的大小有关的常数,它等于该圆的周长与半径的比.其中表述正确的序号是()A.②③B.①③C.①④D.②④【分析】根据实数的分类和π的特点进行解答即可得出答案.【解答】解:因为圆周率是一个无理数,是一个与圆的大小无关的常数,它等于该圆的周长与直径的比,所以表述正确的序号是②③;故选:A.【点评】此题考查了实数,熟练掌握实数的分类和“π”的意义是解题的关键.二.填空题1.(2020•湖北武汉•3分)计算的结果是3.【分析】根据二次根式的性质解答.【解答】解:==3.故答案为:3.【点评】解答此题利用如下性质:=|a|.2.(2020•湖北襄阳•3分)函数y=中自变量x的取值范围是x≥2.【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解答】解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.【点评】本题主要考查函数自变量的取值范围,考查的知识点为:二次根式的被开方数是非负数.3.(2020•湖南省常德•3分)若代数式在实数范围内有意义,则x的取值范围是x>3.【分析】根据二次根式有意义的条件可得2x﹣6>0,再解即可.【解答】解:由题意得:2x﹣6>0,解得:x>3,故答案为:x>3.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数.分式分母不为零.4.(2020•湖南省常德•3分)计算:﹣+=3.【分析】直接化简二次根式进而合并得出答案.【解答】解:原式=﹣+2=3.故答案为:3.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.5.(2020•湖北省黄冈市•3分)计算=﹣2.【分析】依据立方根的定义求解即可.【解答】解:=﹣2.故答案为:﹣2.【点评】本题主要考查的是立方根的性质,熟练掌握立方根的性质是解题的关键.6.(2020•湖北省黄冈市•3分)若|x﹣2|+=0,则﹣xy=2.【分析】根据非负数的性质进行解答即可.【解答】解:∵|x﹣2|+=0,∴x﹣2=0,x+y=0,∴x=2,y=﹣2,∴,故答案为2.【点评】本题考查了非负数的性质,掌握几个非负数的和为0,这几个数都为0,是解题的关键.。

2020年全国中考数学试卷分类汇编(一)专题35 尺规作图(含解析)

2020年全国中考数学试卷分类汇编(一)专题35 尺规作图(含解析)

尺规作图一.选择题1.(2020年内蒙古通辽市3分)6.根据圆规作图的痕迹,可用直尺成功地找到三角形内心的是()A. B.C. D.【答案】B【解析】【分析】根据三角形内心的定义,三角形内心为三边的垂直平分线的交点,然后利用基本作图和选项进行判断.【详解】解:三角形内心为三个角的角平分线的交点,由基本作图得到B选项作了两个角的角平分线,而三角形三条角平分线交于一点,从而可用直尺成功找到三角形内心.故选:B.【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形的内心.2. (2020•湖北襄阳•3分)如图,Rt△ABC中,∠ABC=90°,根据尺规作图的痕迹判断以下结论错误的是()A.DB=DE B.AB=AE C.∠EDC=∠BAC D.∠DAC=∠C 【分析】证明△ADE≌△ADB即可判断A,B正确,再根据同角的补角相等,证明∠EDC =∠BAC即可.【解答】解:由作图可知,∠DAE=∠DAB,∠DEA=∠B=90°,∵AD=AD,∴△ADE≌△ADB(AAS),∴DB=DE,AB=AE,∵∠AED+∠B=180°∴∠BAC+∠BDE=180°,∵∠EDC+∠BDE=180°,∴∠EDC=∠BAC,故A,B,C正确,故选:D.【点评】本题考查作图﹣基本作图,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3(2020•贵州省贵阳市•3分)如图,Rt△ABC中,∠C=90°,利用尺规在BC,BA上分别截取BE,BD,使BE=BD;分别以D,E为圆心、以大于DE的长为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值为()A.无法确定B.C.1 D.2【分析】如图,过点G作GH⊥AB于H.根据角平分线的性质定理证明GH=GC=1,利用垂线段最短即可解决问题.【解答】解:如图,过点G作GH⊥AB于H.由作图可知,GB平分∠ABC,∵GH⊥BA,GC⊥BC,∴GH=GC=1,根据垂线段最短可知,GP的最小值为1,故选:C.【点评】本题考查作图﹣基本作图,垂线段最短,角平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4(2020•河北省•3分)如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.a,b均无限制B.a>0,b>DE的长C.a有最小限制,b无限制D.a≥0,b<DE的长【分析】根据角平分线的画法判断即可.【解答】解:以B 为圆心画弧时,半径a 必须大于0,分别以D ,E 为圆心,以b 为半径画弧时,b 必须大于DE ,否则没有交点,故选:B .【点评】本题考查作图﹣基本作图,解题的关键是熟练掌握五种基本作图,属于中考常考题型.5.6.7.8.9.10.二.填空题1. (2020•江苏省苏州市•3分)如图,已知MON ∠是一个锐角,以点O 为圆心,任意长为半径画弧,分别交OM 、ON 于点A 、B ,再分别以点A 、B 为圆心,大于12AB 长为半径画弧,两弧交于点C ,画射线OC .过点A 作AD ON ,交射线OC 于点D ,过点D 作DE OC ⊥,交ON 于点E .设10OA =,12DE =,则sin MON ∠=________.【答案】2425【解析】【分析】 连接AB 交OD 于点H ,过点A 作AG ⊥ON 于点G ,根据等腰三角形的性质得OH ⊥AB ,AH =BH ,从而得四边形ABED 是平行四边形,利用勾股定理和三角形的面积法,求得AG 的值,进而即可求解.【详解】连接AB 交OD 于点H ,过点A 作AG ⊥ON 于点G ,由尺规作图步骤,可得:OD 是∠MON 的平分线,OA =OB ,∴OH ⊥AB ,AH =BH ,∵DE OC ⊥,∴DE ∥AB ,∵AD ON ,∴四边形ABED 是平行四边形,∴AB =DE =12,∴AH =6,∴OH =22221068AO AH -=-=,∵OB ∙AG =AB ∙OH ,∴AG =AB OH OB ⋅=12810⨯=485, ∴sin MON ∠=AG OA =2425. 故答案是:2425.【点睛】本题主要考查等腰三角形的性质,平行四边形的判定和性质定理,勾股定理,锐角三角函数的定义,添加合适的辅助线,构造直角三角形是解题的关键.2.(2020•湖南省郴州•3分)如图,在矩形ABCD 中,4,8AD AB ==.分别以点,B D 为圆心,以大于12BD 的长为半径画弧,两弧相交于点E 和F .作直线EF 分别与,,DC DB AB 交于点,,M O N ,则MN =__________.【答案】25.【解析】【分析】连接DN,在矩形ABCD中,AD=4,AB=8,根据勾股定理可得BD的长,根据作图过程可得,MN是BD的垂直平分线,所以DN=BN,在Rt△ADN中,根据勾股定理得DN的长,在Rt△DON中,根据勾股定理得ON的长,进而可得MN的长.【详解】如图,连接DN,在矩形ABCD中,AD=4,AB=8,∴BD2245+=,AB AD根据作图过程可知:MN是BD的垂直平分线,∴DN=BN,OB=OD5∴AN=AB-BN=AB-DN=8-DN,在Rt△ADN中,根据勾股定理,得DN2=AN2+AD2,∴DN2=(8-DN)2+42,解得DN=5,在Rt△DON中,根据勾股定理,得ON225DN OD-=,∵CD∥AB,∴∠MDO=∠NBO,∠DMO=∠BNO,∵OD=OB,∴△DMO≌△BNO(AAS),∴OM=ON=5,∴MN=25.故答案为:25.【点睛】本题考查了作图-基本作图、线段垂直平分线的性质、勾股定理、矩形的性质,解决本题的关键是掌握线段垂直平分线的性质.3(2020•江苏省扬州市•3分)如图,在△ABC中,按以下步骤作图:①以点B为圆心,任意长为半径作弧,分别交AB,BC于点D,E.②分别以点D,E为圆心,大于DE的同样长为半径作弧,两弧交于点F.③作射线BF交AC于点G.如果AB=8,BC=12,△ABG的面积为18,则△CBG的面积为27.【分析】过点G作GM⊥AB于点M,GN⊥AC于点N,根据作图过程可得AG是∠ABC的平分线,根据角平分线的性质可得GM=GN,再根据△ABG的面积为18,求出GM的长,进而可得△CBG的面积.【解答】解:如图,过点G作GM⊥AB于点M,GN⊥AC于点N,根据作图过程可知:BG是∠ABC的平分线,∴GM=GN,∵△ABG的面积为18,∴AB×GM=18,∴4GM=18,∴GM=,∴△CBG的面积为:BC×GN=12×=27.故答案为27.【点评】本题考查了作图-基本作图、角平分线的性质,解决本题的关键是掌握角平分线的性质.4(2020年辽宁省辽阳市)16.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=2BC,分别以点A和B为圆心,以大于AB的长为半径作弧,两弧相交于点M和N,作直线MN,交AC于点E,连接BE,若CE=3,则BE的长为5.【分析】设BE=AE=x,在Rt△BEC中,利用勾股定理构建方程即可解决问题.【解答】解:由作图可知,MN垂直平分线段AB,∴AE=EB,设AE=EB=x,∵EC=3,AC=2BC,∴BC=(x+3),在Rt△BCE中,∵BE2=BC2+EC2,∴x2=32+[(x+3)]2,解得,x=5或﹣3(舍弃),∴BE=5,故答案为5.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.5.6.7.8.9.10.三.解答题1.(2020•黑龙江省哈尔滨市•7分)如图,方格纸中每个小正方形的边长均为1,线段AB和线段CD的端点均在小正方形的顶点上.(1)在图中画出以AB为边的正方形ABEF,点E和点F均在小正方形的顶点上;(2)在图中画出以CD为边的等腰三角形CDG,点G在小正方形的顶点上,且△CDG 的周长为10+.连接EG,请直接写出线段EG的长.【分析】(1)画出边长为的正方形即可.(2)画出两腰为10,底为的等腰三角形即可.【解答】解:(1)如图,正方形ABEF即为所求.(2)如图,△CDG即为所求.【点评】本题考查作图﹣应用与设计,等腰三角形的判定,勾股定理等知识,解题的关键是学会利用数形结合的思想思考问题,属于中考常考题型.2. (2020•湖北武汉•8分)在8×5的网格中建立如图的平面直角坐标系,四边形OABC的顶点坐标分别为O(0,0),A(3,4),B(8,4),C(5,0).仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB绕点C逆时针旋转90°,画出对应线段CD;(2)在线段AB上画点E,使∠BCE=45°(保留画图过程的痕迹);(3)连接AC,画点E关于直线AC的对称点F,并简要说明画法.【分析】(1)利用网格特点和旋转的性质画出B点的对称点D即可;(2)作出BC为边的正方形,找到以C点为一个顶点的对角线与AB的交点E即为所求;(3)利用网格特点,作出E点关于直线AC的对称点F即可.【解答】解:(1)如图所示:线段CD即为所求;(2)如图所示:∠BCE即为所求;(3)连接(5,0),(0,5),可得与AC的交点F,点F即为所求,如图所示:【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.3 (2020•湖南省长沙市·6分)人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法:已知:∠AO B.求作:∠AOB的平分线.作法:(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC,射线OC即为所求(如图).请你根据提供的材料完成下面问题.(1)这种作已知角的平分线的方法的依据是①.(填序号)①SSS②SAS③AAS④ASA(2)请你证明OC为∠AOB的平分线.【分析】(1)直接利用角平分线的作法得出基本依据;(2)直接利用全等三角形的判定与与性质得出答案.【解答】解:(1)这种作已知角的平分线的方法的依据是①SSS.故答案为:①(2)由基本作图方法可得:OM=ON,OC=OC,MC=NC,则在△OMC和△ONC中,,∴△OMC≌△ONC(SSS),∴∠AOC=∠BOC,即OC为∠AOB的平分线.【点评】此题主要考查了应用设计与作图,正确掌握全等三角形的判定方法是解题关键.4.(2020•湖北孝感•8分)如图,在平面直角坐标系中,已知点A(﹣1,5),B(﹣3,1)和C(4,0),请按下列要求画图并填空.(1)平移线段AB,使点A平移到点C,画出平移后所得的线段CD,并写出点D的坐标为(2,﹣4);(2)将线段AB绕点A逆时针旋转90°,画出旋转后所得的线段AE,并直接写出cos ∠BCE的值为;(3)在y轴上找出点F,使△ABF的周长最小,并直接写出点F的坐标为(0,4).【分析】(1)根据点A平移到点C,即可得到平移的方向和距离,进而画出平移后所得的线段CD;(2)根据线段AB绕点A逆时针旋转90°,即可画出旋转后所得的线段AE;(3)先作出点A关于y轴的对称点A',连接A'B交y轴于点F,依据两点之间,线段最短,即可得到此时△ABF的周长最小,根据待定系数法即可得出直线A'B的解析式,令x =0,进而得到点F的坐标.【解答】解:(1)如图所示,线段CD即为所求,点D的坐标为(2,﹣4);(2)如图所示,线段AE即为所求,cos∠BCE===;(3)如图所示,点F即为所求,点F的坐标为(0,4).故答案为:(2,﹣4);;(0,4).【点评】本题主要考查了利用平移变换和旋转变换作图,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.5 (2020•江苏省泰州市•10分)如图,已知线段a,点A在平面直角坐标系xOy内.(1)用直尺和圆规在第一象限内作出点P,使点P到两坐标轴的距离相等,且与点A的距离等于a.(保留作图痕迹,不写作法)(2)在(1)的条件下,若a≈2,A点的坐标为(3,1),求P点的坐标.【分析】(1)根据角平分线的性质即可用直尺和圆规在第一象限内作出点P,使点P到两坐标轴的距离相等,且与点A的距离等于a;(2)在(1)的条件下,根据a≈2,A点的坐标为(3,1),利用勾股定理即可求P点的坐标.【解答】解:(1)如图,点P即为所求;(2)由(1)可得OP是角平分线,设点P(x,x),过点P作PE⊥x轴于点E,过点A作AF⊥x 轴于点F,AD⊥PE于点D,∵P A=a≈2,A点的坐标为(3,1),∴PD=x-1,AD=x-3,根据勾股定理,得P A2=PD2+AD2,∴(2)2=(x-1)2+(x-3)2,解得x1=5,x2=-1(舍去).所以P点的坐标为(5,5).【点评】本题考查了作图-复杂作图、坐标与图形的性质、角平分线的性质、勾股定理,解决本题的关键是掌握角平分线的性质.6(2020•江苏省无锡市•8分)如图,已知△ABC是锐角三角形(AC<AB).(1)请在图1中用无刻度的直尺和圆规作图:作直线l,使l上的各点到B.C两点的距离相等;设直线l与A B.BC分别交于点M、N,作一个圆,使得圆心O在线段MN上,且与边A B.BC相切;(不写作法,保留作图痕迹)(2)在(1)的条件下,若BM=,BC=2,则⊙O的半径为.【分析】(1)作线段BC的垂直平分线交AB于M,交BC于N,作∠ABC的角平分线交MN 于点O,以O为圆心,ON为半径作⊙O即可.(2)过点O作OE⊥AB于E.设OE=ON=r,利用面积法构建方程求解即可.【解答】解:(1)如图直线l,⊙O即为所求.(2)过点O作OE⊥AB于E.设OE=ON=r,∵BM=,BC=2,MN垂直平分线段BC,∴BN=CN=1,∴MN===,∵S△BNM=S△BNO+S△BOM,∴×1×=×1×r+××r,解得r=.故答案为.【点评】本题考查作图-复杂作图,角平分线的性质,线段的垂直平分线的性质,切线的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.7(2020•江苏省盐城市•8分)如图,点O是正方形ABCD的中心.(1)用直尺和圆规在正方形内部作一点E(异于点O),使得EB=EC;(保留作图痕迹,不写作法)(2)连接E B.E C.EO,求证:∠BEO=∠CEO.【分析】(1)作BC的垂直平分线,在BC的垂直平分线上(正方形内部异于点O)的点E即为所求;(2)根据等腰三角形的性质和角的和差关系即可求解.【解答】解:(1)如图所示,点E即为所求(2)证明:连结OB,OC,∵点O是正方形ABCD的中心,∴OB=OC,∴∠OBC=∠OCB,∵EB=EC,∴∠EBC=∠ECB,∴∠BEO=∠CEO.【点评】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.8.9.10.。

2020全国中考数学试卷分类汇编第二期专题2 实数(无理数,平方根,立方根)(含解析)

2020全国中考数学试卷分类汇编第二期专题2 实数(无理数,平方根,立方根)(含解析)

实数(无理数,平方根,立方根)一.选择题1.(2020•山东省枣庄市•3分)实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|<1 B.ab>0 C.a+b>0 D.1-a>1【分析】直接利用a,b在数轴上位置进而分别分析得出答案.【解答】解:A.|a|>1,故本选项错误;B.∵a<0,b>0,∴ab<0,故本选项错误;C.a+b<0,故本选项错误;D.∵a<0,∴1-a>1,故本选项正确;故选D.【点评】此题主要考查了实数与数轴,正确结合数轴分析是解题关键.2. (2020•四川省达州市•3分)下列各数中,比3大比4小的无理数是()A.3.14 B.C.D.【分析】由于带根号的要开不尽方是无理数,无限不循环小数为无理数,根据无理数的定义即可求解.解:3=,4=,A.3.14是有理数,故此选项不合题意;B.是有理数,故此选项不符合题意;C.是比3大比4小的无理数,故此选项符合题意;D.比4大的无理数,故此选项不合题意;故选:C.3. (2020•山东东营市•3分)利用科学计算器求值时,小明的按键顺序为,则计算器面板显示的结果为()A. 2-B. 2C. 2±D. 4【答案】B【解析】【分析】根据算术平方根的求解方法进行计算即可得解.【详解】4的算术平方根42,故选:B.【点睛】本题主要考查了算术平方根的求解方法,考生需要将其与平方根进行对比掌握.4.(2020•山东聊城市•3分)在实数﹣1,﹣,0,中,最小的实数是()A.﹣1 B.C.0 D.﹣【分析】直接利用实数比较大小的方法得出答案.【解答】解:∵|﹣|>|﹣1|,∴﹣1>﹣,∴实数﹣1,﹣,0,中,﹣<﹣1<0<.故4个实数中最小的实数是:﹣.故选:D.【点评】此题主要考查了实数比较大小,正确掌握实数大小比较方法是解题关键.5. (2020•四川省凉山州•4分)下列等式成立的是()A.=±9 B.|﹣2|=﹣+2C.(﹣)﹣1=﹣2 D.(tan45°﹣1)0=1【分析】根据算术平方根的定义、绝对值的性质、负整数指数幂和零指数幂的规定逐一判断即可得.【解答】解:A.=9,此选项计算错误;B.|﹣2|=﹣2,此选项错误;C.(﹣)﹣1=﹣2,此选项正确;D.(tan45°﹣1)0无意义,此选项错误;故选:C.【点评】本题主要考查实数的运算,解题的关键是掌握算术平方根的定义、绝对值的性质、负整数指数幂和零指数幂的规定.6. (2020•四川省凉山州•4分)函数y=中,自变量x的取值范围是x≥﹣1.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x +1≥0, 解得x ≥﹣1. 故答案为:x ≥﹣1.【点评】本题考查了函数自变量的范围,一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负. 二.填空题1. (2020•四川省遂宁市•4分)下列各数3.1415926,,1.212212221…,,2﹣π,﹣2020,中,无理数的个数有 3 个.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【解答】解:在所列实数中,无理数有1.212212221…,2﹣π,这3个,故答案为:3.【点评】本题考查了无理数的知识,解答本题的掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数. 2. (2020•山东省潍坊市•3分)若|a -2|+=0,则a +b = .【分析】根据非负数的性质列式求出A.b 的值,然后代入代数式进行计算即可得解. 【解答】解:根据题意得,a -2=0,b -3=0,解得a =2,b =3,∴a +b =2+3=5. 故答案为5.【点评】本题考查了绝对值非负性,算术平方根非负性的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键. 3. 2020年内蒙古通辽市计算:(1)0(3.14)π-= ______;(2)2cos45︒=______;(3)21-= ______.【答案】 (1). 1 (2). 2 (3). -1【解析】 【分析】根据零指数幂,特殊角的三角函数值,乘方运算法则分别计算即可.【详解】解:0(3.14)π-=1,2cos45︒=2×22=2, 21-=-1,故答案为:1,2,-1.【点睛】本题考查了零指数幂,特殊角的三角函数值,乘方运算,掌握运算法则是关键. 4. (2020•山东淄博市•4分)计算:+= 2 .【分析】分别根据立方根的定义与算术平方根的定义解答即可. 【解答】解:+=﹣2+4=2.故答案为:2【点评】本题主要考查了立方根与算术平方根,熟记立方根与二次根式的性质是解答本题的关键.5. (2020•陕西•3分)计算:(2+)(2﹣)= 1 .【分析】先利用平方差公式展开得到原式=22﹣()2,再利用二次根式的性质化简,然后进行减法运算. 【解答】解:原式=22﹣()2=4﹣3 =1.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.6. (2020•广东省•4分)若2-a +|b +1|=0,则(a +b )2020=_________. 【答案】1【解析】算术平方根、绝对值都是非负数,∴a =2,b =-1,-1的偶数次幂为正 【考点】非负数、幂的运算 7. (2020•北京市•2分)写出一个比大且比小的整数 2或3(答案不唯一) .【分析】先估算出和的大小,再找出符合条件的整数即可.【解答】解:∵1<<2,3<<4,∴比大且比小的整数2或3(答案不唯一).故答案为:2或3(答案不唯一).【点评】本题主要考查了估算无理数的大小,根据题意估算出和的大小是解答此题的关键.8. (2020•四川省南充市•4分)计算:0122+=__________. 2 【解析】 【分析】原式利用绝对值的代数意义,以及零指数幂法则计算即可求出值. 【详解】解:0122+ 2-1+1 22.【点睛】此题考查了实数的运算,零指数幂,熟练掌握运算法则是解本题的关键.三、解答题1.(2020•山东东营市•4分)(1()220201272603232cos -⎛⎫+--+ ⎪⎝⎭; 【答案】(136-; 【分析】(1)根据算术平方根、特殊角三角函数值、负整数指数评价的人意义以及绝对值的意义进行计算即可; 【详解】()1()220201272603232cos -⎛⎫+--+ ⎪⎝⎭3314323=+---36=-;2.(2020•山东菏泽市•3分)计算:2﹣1+|﹣3|+2sin 45°﹣(﹣2)2020•()2020.【分析】直接利用特殊角的三角函数值以及积的乘方运算法则、负整数指数幂的性质、绝对值的性质分别化简得出答案. 【解答】解:原式=+3﹣+2×﹣(﹣2×)2020=+3﹣+﹣1=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键. 3. (2020•山东东营市•4分)(1)计算:()220201272603232cos -⎛⎫+--+ ⎪⎝⎭; 【答案】(1)36-; 【分析】(1)根据算术平方根、特殊角三角函数值、负整数指数评价的人意义以及绝对值的意义进行计算即可; 【详解】()1()220201272603232cos -⎛⎫+--+ ⎪⎝⎭3314323=+--- 36=-;4.(2020•山东菏泽市•3分)计算:2﹣1+|﹣3|+2sin 45°﹣(﹣2)2020•()2020.【分析】直接利用特殊角的三角函数值以及积的乘方运算法则、负整数指数幂的性质、绝对值的性质分别化简得出答案. 【解答】解:原式=+3﹣+2×﹣(﹣2×)2020=+3﹣+﹣1=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.5.(2020•广东省深圳市•5分)计算:【考点】实数的计算【答案】2【解析】6.(2020•广西省玉林市•6分)计算:•(π﹣3.14)0﹣|﹣1|+()2.【分析】先计算(π﹣3.14)0、|﹣1|、()2,再加减求值.【解答】解:原式=×1﹣(﹣1)+9=﹣+1+9=10.【点评】本题考查了零指数幂的意义、绝对值的化简、及开平方乘方运算.掌握零指数幂及绝对值的意义,是解决本题的关键.7. (2020•甘肃省天水市•6分)计算:114sin60|32|2020124-︒⎛⎫--+-+ ⎪⎝⎭【答案】33+;【解析】【分析】先代入三角函数值、去绝对值符号、计算零指数幂、化简二次根式、计算负整数指数幂,再计算乘法、去括号,最后计算加减可得;【详解】原式34(23)12342=⨯--+-+,23231234=-++-+,33=+;【点睛】本题主要考查实数的混合运算,解题的关键是熟练掌握运算法则.8.(2020•北京市•5分)计算:()﹣1++|﹣2|﹣6sin45°.【分析】直接利用负整数指数幂的性质以及二次根式的性质和特殊角的三角函数值分别化简得出答案. 【解答】解:原式=3+3+2﹣6×=3+3+2﹣3=5.【点评】此题主要考查了实数运算,正确化简各数是解题关键. 9.(2020•贵州省黔西南州•12分)计算(﹣2)2﹣|﹣|﹣2cos 45°+(2020﹣π)0;【分析】直接利用零指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案;【解答】解:原式=4﹣﹣2×+1=4﹣﹣+1=5﹣2;【点评】此题主要考查了实数运算,正确掌握相关运算法则是解题关键. 10. (2020•四川省内江市•7分)计算:(﹣)﹣1﹣|﹣2|+4sin 60°﹣+(π﹣3)0.【分析】先计算负整数指数幂、去绝对值符号、代入三角函数值、化简二次根式、计算零指数幂,再计算乘法,最后计算加减可得. 【解答】解:原式=﹣2﹣2+4×﹣2+1=﹣2﹣2+2﹣2+1=﹣3.【点评】本题主要考查实数的运算,解题的关键是掌握负整数指数幂和零指数幂的规定、熟记三角函数值、绝对值的性质、二次根式的性质.11. (2020•四川省乐山市•9分)计算:022cos60(2020)π--︒+-. 【答案】2 【解析】 【分析】根据绝对值,特殊三角函数值,零指数幂对原式进行化简计算即可.【详解】解:原式=12212-⨯+ =2.【点睛】本题考查了绝对值,特殊三角函数值,零指数幂,掌握运算法则是解题关键. 12. (2020•四川省遂宁市•7分)计算:﹣2sin 30°﹣|1﹣|+()﹣2﹣(π﹣2020)0.【分析】先化简二次根式、代入三角函数值、去绝对值符号、计算负整数指数幂和零指数幂,再计算乘法,最后计算加减可得. 【解答】解:原式=2﹣2×﹣(﹣1)+4﹣1=2﹣1﹣+1+4﹣1=+3.【点评】本题主要考查实数的运算,解题的关键是掌握二次根式和绝对值的性质、熟记特殊锐角三角函数值、负整数指数幂与零指数幂的规定.13. (2020•四川省自贡市•8分)计算:)-⎛⎫--+- ⎪⎝⎭11256π. 【解析】561)61(1121-=-=-+- (2020•四川省自贡市•10分)我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”;数形结合是解决数学问题的重要思想方法.例如,代数式-x 2的几何意义是数轴上x 所对应的点与2所对应的点之间的距离;因为()+=--x 1x 1,所以+x 1的几何意义就是数轴上x 所对应的点与-1所对应的点之间的距离. ⑴. 发现问题:代数式++-x 1x 2的最小值是多少?⑵. 探究问题:如图,点A,B,P 分别表示的是-1,2,x ,=AB 3.∵++-x 1x 2的几何意义是线段PA 与PB 的长度之和∴当点P 在线段AB 上时,+=PA PB 3;当点点P 在点A 的左侧或点B 的右侧时+>PA PB 3∴++-x 1x 2的最小值是3. ⑶.解决问题:①.-++x 4x 2的最小值是;②.利用上述思想方法解不等式:++->x 3x 14x–1–2–3–412340A BP③.当a 为何值时,代数式++-x a x 3的最小值是2.【解析】(3)①设A 表示4,B 表示-2,P 表示x ∴线段AB 的长度为6,则|2||4|++-x x 的几何意义表示为P A +PB ,当P 在线段AB 上时取得最小值6 ②设A 表示-3,B 表示1,P 表示x ,∴线段AB 的长度为4,则|1||3|-++x x 的几何意义表示为P A +PB ,∴不等式的几何意义是P A +PB >AB ,∴P 不能在线段AB 上,应该在A 的左侧或者B 的右侧,即不等式的解集为3-<x 或1>x③设A 表示-a ,B 表示3,P 表示x ,则线段AB 的长度为|3|--a ,|3|||-++x a x 的几何意义表示为P A +PB ,当P 在线段AB 上时P A +PB 取得最小值,∴2|3|=--a ∴23=+a 或23-=+a ,即1-=a 或5-=a ;14. (2020•新疆维吾尔自治区新疆生产建设兵团•6分)计算:()()213π-++-【解析】 【分析】分别计算平方,绝对值,零次幂,算术平方根,再合并即可得到答案. 【详解】解: ()()213π-++-112=-=【点睛】本题考查的是乘方,绝对值,零次幂,算术平方根的运算,掌握以上运算是解题的关键.–1–2–3–41234。

江苏省13市2020年部编人教版中考数学试题分类汇编精析:探索型问题

江苏省13市2020年部编人教版中考数学试题分类汇编精析:探索型问题

江苏省13市2020年中考数学试题分类解析汇编(20专题)专题15:探索型问题1. (2020年江苏泰州3分)如图,△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线分别交 AC 、AD 、AB 于点E 、O 、F ,则图中全等的三角形的对数是【 】A. 1对B. 2对C. 3对D. 4对 【答案】D.【考点】等腰三角形的性质;线段垂直平分线的性质;全等三角形的判定. 【分析】∵AB =AC ,D 是BC 的中点,∴根据等腰三角形三线合一的性质,易得,,ADB ADC ODB ODC AOB AOC ∆∆∆∆∆∆ ≌≌≌. ∵EF 是AC 的垂直平分线,∴根据线段垂直平分线上的点到线段两端的距离相等的性质,易得AOE COE ∆∆≌. 综上所述,图中全等的三角形的对数是4对. 故选D.2. (2020年江苏扬州3分)如图,若锐角△ABC 内接于⊙O ,点D 在⊙O 外(与点C 在AB 同侧), 则下列三个结论:①D C ∠>∠sin sin ;②D C ∠>∠cos cos ;③D C ∠>∠tan tan 中,正确的结论为【 】A. ①②B. ②③C. ①②③D. ①③ 【答案】D.【考点】圆周角定理;三角形外角性质;锐角三角函数的性质. 【分析】如答图,设AD 与⊙O 相交于点E ,连接BE .∵,>C AEB AEB D ∠=∠∠∠ ,∴>C D ∠∠.∵正弦、正切函数值随锐角的增大而增大,余弦函数值随锐角的增大而减小, ∴sin sin C D ∠>∠, cos <cos C D ∠∠, tan tan C D ∠>∠. ∴正确的结论为①③. 故选D.3. (2020年江苏常州2分)将一张宽为4cm 的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是【 】A. 833cm2 B.8 cm2 C.1633cm2 D. 16cm2【答案】B.【考点】翻折变换(折叠问题);等腰直角三角形的性质..【分析】如答图,当AC⊥AB时,三角形面积最小,∵∠BA C=90°,∠ACB=45°,∴AB=AC=4cm.∴S△ABC=12×4×4=8cm2.故选B.4. (2020年江苏宿迁3分)在平面直角坐标系中,点A,B的坐标分别为(﹣3,0),(3,0),点P在反比例函数2yx=的图象上,若△P AB为直角三角形,则满足条件的点P的个数为【】A. 2个B. 4个C. 5个D. 6个【答案】D.【考点】反比例函数图象上点的坐标特征;圆周角定理;分类思想和数形结合思想的应用.【分析】如答图,若△P AB为直角三角形,分三种情况:①当∠P AB=90°时,P点的横坐标为﹣3,此时P点有1个;②当∠PBA=90°时,P点的横坐标为3,此时P点有1个;③当∠APB=90°,以点O为圆心AB长为直径的圆与2yx=的图象交于4点,此时P点有4个.综上所述,满足条件的P点有6个.故选D.1. (2020年江苏无锡2分)某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过500元,则不予优惠;②如果超过500元,但不超过800元,则按购物总额给予8折优惠;③如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款▲ 元.【答案】838或910.【考点】函数模型的选择与应用;函数思想和分类思想的应用.【分析】由题意知:小红付款单独付款480元,实际标价为480或480×0.8=600元,小红母亲单独付款520元,实际标价为520×0.8=650元,如果一次购买标价480+650=1130元的商品应付款800×0.8+(1130﹣800)×0.6=838元;如果一次购买标价600+650=1250元的商品应付款800×0.8+(1250﹣800)×0.6=910元.∴答案为:838或910.2. (2020年江苏徐州3分)如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为▲ .【答案】1 2n-.【考点】探索规律题(图形的变化类);正方形的性质. 【分析】根据正方形的性质,知:第一个正方形ABCD 的边长为()12=,第二个正方形ACEF 的边长为2, 第三个正方形AEGH 的边长为()222=,第四个正方形的边长为()3222=,……∴第n 个正方形的边长为()12n -.3. (2020年江苏盐城3分)如图,在矩形ABCD 中,AB =4,AD =3,以顶点D 为圆心作半径为r 的圆,若要求另外三个顶点A 、B 、C 中至少有一个点在圆内,且至少有一个点在圆外,则r 的取值范围是 ▲ .【答案】3<<5r .【考点】矩形的性质;勾股定理;点与圆的位置关系;分类思想的应用. 【分析】如答图,连接BD ,∵AB =4,AD =3,∴根据勾股定理,得BD =5. ∵<<AB AD BD ,∴当<<AB r BD 时,点A 、B 、C 中至少有一个点在圆内,且至少有一个点在圆外. ∴r 的取值范围是3<<5r .4. (2020年江苏盐城3分)设△ABC 的面积为1,如图①将边BC 、AC 分别2等份,1BE 、1AD 相交于点O ,△AOB 的面积记为1S ;如图②将边BC 、AC 分别3等份,1BE 、1AD 相交于点O ,△AOB 的面积记为2S ;……, 依此类推,则n S 可表示为 ▲ .(用含n 的代数式表示,其中n 为正整数)【答案】121n +. 【考点】探索规律题(图形的变化类);平行的判定和性质;相似三角形的判定和性质;等底或等高三角形面积的性质.【分析】如答图,连接11D E ,可知11D E ∥BA .在图①中,由题意,得11ABO OD E ∆∆∽,且1112D E BA =,∴1111123OE OB OE BE =⇒=. ∴1AE O ∆和1BE A ∆的1AE 边上高的比是13.∴1111233AE OBE A ABO BE A S S S S ∆∆∆∆=⇒=. 又∵112AE B ABC S S ∆∆=,∴1211323ABO ABC ABC S S S S ∆∆∆==⋅=.在图②中,由题意,得11ABO OD E ∆∆∽,且1123D E BA =,∴1112235OE OB OE BE =⇒=.∴1AE O ∆和1BE A ∆的1AE 边上高的比是25.∴1112355AE O BE A ABO BE A S S S S ∆∆∆∆=⇒=.又∵113AE B ABC S S ∆∆=,∴2311535ABO ABC ABC S S S S ∆∆∆==⋅=.在图③中,由题意,得11ABO OD E ∆∆∽,且1134D E BA =,∴1113347OE OB OE BE =⇒=.∴1AE O ∆和1BE A ∆的1AE 边上高的比是37.∴1113477AE O BE A ABO BE A S S S S ∆∆∆∆=⇒=.又∵114AE B ABC S S ∆∆=,∴3411747ABO ABC ABC S S S S ∆∆∆==⋅=.……依此类推, n S 可表示为121n ABC S S n ∆=+,∵1ABC S ∆=,∴121n S n =+.5. (2020年江苏常州2分)数学家歌德巴赫通过研究下面一系列等式,作出了一个著名的猜想. 4=2+2; 12=5+7; 6=3+3 14=3+11=7+7; 8=3+5; 16=3+13=5+11; 10=3+7=5+5 18=5+13=7+11; …通过这组等式,你发现的规律是 ▲ (请用文字语言表达). 【答案】所有大于2的偶数都可以写成两个素数之和. 【考点】探索规律型题(数字的变化类)..【分析】根据以上等式得出规律,此规律用文字语言表达为:所有大于2的偶数都可以写成两个素数之和. 6. (2020年江苏淮安3分)将连续正整数按如下规律排列:若正整数565位于第a 行,第b 列,则b a += ▲ . 【答案】147.【考点】探索规律题(数字的变化类——循环问题). 【分析】分别根据行和列的循环规律求解:∵行的排列规律是4个数一行,而565114144=+,∴142a =. ∵列的排列规律是按照1—2—3—4—5—4—3—2列的顺序8个数一循环, 而56557088=+, ∴5b =. ∴147a b +=.7. (2020年江苏南通3分)关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a 的取值范围是 ▲ . 【答案】9<<24a --.【考点】一元二次方程与二次函数的关系;一元二次方程根的判别式;二次函数的性质;分类思想和数形结合思想的应用.【分析】∵关于x 的一元二次方程2310ax x --=的两个不相等的实数根,∴()()2009>94>341>04a a a a a ≠⎧≠⎧⎪⎪⇒⇒-⎨⎨-∆=--⋅⋅-⎪⎪⎩⎩且0a ≠. 设231y ax x =--∵实数根都在﹣1和0之间, ∴当a >0时,如答图1,由图可知, 当0x =时,>0y ;但0011y =--=-,矛盾, ∴此种情况不存在. 当a <0时,如答图2,由图可知, 当1x =-时,<0y ,即31<0<2a a +-⇒-. 综上所述,a 的取值范围是9<<24a --.8. (2020年江苏宿迁3分)如图,在平面直角坐标系中,点P 的坐标为(0,4),直线334y x =-与x 轴、y 轴分别交于点A ,B ,点M 是直线AB 上的一个动点,则PM 长的最小值为 ▲ .【答案】285. 【考点】单动点问题;直线上点的坐标与方程的关系;垂线段最短的性质;勾股定理;相似三角形的判定和性质.【分析】根据垂线段最短得出PM ⊥AB 时线段PM 最短,分别求出PB 、OB 、OA 、AB 的长度,利用△PBM ∽△ABO ,即可求出答案如答图,过点P 作PM ⊥AB ,则:∠PMB =90°, 当PM ⊥AB 时,P M 最短, ∵直线334y x =-与x 轴、y 轴分别交于点A ,B , ∴点A 的坐标为(4,0),点B 的坐标为(0,﹣3). 在Rt △AOB 中,∵AO =4,BO =3,∴根据勾股定理,得AB =5. ∵∠BMP =∠AOB =90°,∠ABO =∠PBM ,∴△PBM ∽△ABO . ∴PB PM AB AO =,即:4354PM +=,解得285PM =.1. (2020年江苏连云港10分)已知如图,在平面直角坐标系xOy 中,直线323y x =-与x 轴、y 轴分别交于A ,B 两点,P 是直线AB 上一动点,⊙P 的半径为1. (1)判断原点O 与⊙P 的位置关系,并说明理由; (2)当⊙P 过点B 时,求⊙P 被y 轴所截得的劣弧的长; (3)当⊙P 与x 轴相切时,求出切点的坐标.【答案】解:(1)原点O 在⊙P 外.理由如下:∵直线323y x =-与x 轴、y 轴分别交于A ,B 两点, ∴点()()20023A B - ,,,.在Rt △OAB 中,∵323OA tan OBA OB ∠===, ∴∠OBA =30°,如答图1,过点O 作OH ⊥AB 于点H , 在Rt △OBH 中,3OH OB sin OBA =⋅∠=, ∵3>1,∴原点O 在⊙P 外.(2)如答图2,当⊙P 过点B 时,点P 在y 轴右侧时,∵PB =PC ,∴∠PCB =∠OBA =30°.∴⊙P 被y 轴所截的劣弧所对的圆心角为:180°﹣30°﹣30°=120°. ∴弧长为:120121803ππ⋅⋅=. 同理:当⊙P 过点B 时,点P 在y 轴左侧时,弧长同样为:23π. ∴当⊙P 过点B 时,⊙P 被y 轴所截得的劣弧的长为:23π. (3)如答图3,当⊙P 与x 轴相切时,且位于x 轴下方时,设切点为D ,∵PD ⊥x 轴,∴PD ∥y 轴. ∴∠APD =∠ABO =30°. ∴在Rt △DAP 中,3130AD DP tan DPA tan =⋅∠=⨯︒=,∴323OD OA AD =-=-, ∴此时点D 的坐标为:(323-,0). 当⊙P 与x 轴相切时,且位于x 轴上方时,根据对称性可以求得此时切点的坐标为:(323+,0).综上所述,当⊙P 与x 轴相切时,切点的坐标为:(323-,0)或(323+,0). 【考点】圆和一次函数的的综合题;单动点问题;直线上点的坐标与方程的关系;锐角三角函数定义;特殊角的三角函数值;点与圆的位置关系的判定;扇形弧长的计算;直线与圆相切的性质;分类思想的应用. 【分析】(1)作辅助线“过点O 作OH ⊥AB 于点H ”,由直线323y x =-与x 轴、y 轴分别交于A ,B 两点,可求得点A 、B 的坐标,从而根据锐角三角函数定义和特殊角的三角函数值求得∠OBA =30°,进而应用三角函数可求得OH 的长,继而根据点与圆的位置关系的判定求得结论.(2)分点P 在y 轴右侧和点P 在y 轴左侧两种情况讨论:求得⊙P 被y 轴所截的劣弧所对的圆心角,则可求得弧长.(3)分⊙P 位于x 轴下方和⊙P 位于x 轴上方两种情况讨论即可.2. (2020年江苏连云港12分)在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD 与边长为22的正方形AEFG 按图1位置放置,AD 与AE 在同一直线上,AB 与A G 在同一直线上. (1)小明发现DG ⊥BE ,请你帮他说明理由.(2)如图2,小明将正方形ABCD 绕点A 逆时针旋转,当点B 恰好落在线段DG 上时,请你帮他求出此时BE 的长.(3)如图3,小明将正方形ABCD 绕点A 继续逆时针旋转,将线段DG 与线段BE 相交,交点为H ,写出△GHE 与△BHD 面积之和的最大值,并简要说明理由.【答案】解:(1)∵四边形ABCD 和四边形AEFG 都为正方形,∴AD =AB ,∠DAG =∠BAE =90°,AG =AE ,∴△ADG ≌△ABE (SAS ).∴∠AGD =∠AEB . 如答图1,延长EB 交DG 于点H ,在△ADG 中,∵∠AGD +∠ADG =90°, ∴∠A EB +∠ADG =90°.在△EDH 中,∵∠AEB +∠ADG +∠DHE =180°, ∴∠DH E=90°. ∴DG ⊥BE .(2)∵四边形ABCD 和四边形AEFG 都为正方形,∴AD =AB ,∠DAB =∠GAE =90°,AG =AE ,∴∠DAB +∠BAG =∠GAE +∠BAG ,即∠DAG =∠BAE , ∴△ADG ≌△ABE (SAS ).∴DG =BE .如答图2,过点A 作AM ⊥DG 交DG 于点M ,则∠AMD =∠AMG =90°, ∵BD 为正方形AB CD 的对角线,∴∠MDA =45°. 在Rt △AMD 中,∵∠MDA =45°,AD =2, ∴2DM AM =在Rt △AMG 中,根据勾股定理得:226GM AG AM =-=∵26DG DM GM =+,∴26BE DG == (3)△GHE 和△BHD 面积之和的最大值为6,理由如下:∵对于△EGH ,点H 在以E G 为直径的圆上,∴当点H 与点A 重合时,△EGH 的高最大; ∵对于△BDH ,点H 在以BD 为直径的圆上,∴当点H 与点A 重合时,△BDH 的高最大. ∴△GHE 和△BHD 面积之和的最大值为2+4=6.【考点】面动旋转问题;正方形的性质;全等三角形的判定和性质;三角形内角和定理;等腰直角三角形的性质,勾股定理;数形结合思想的应用.【分析】(1)由四边形ABCD 与四边形AEFG 为正方形,利用正方形的性质得到两对边相等,且夹角相等,利用SAS 得到△ADG ≌△ABE ,利用全等三角形对应角相等得∠AGD =∠AEB ,作辅助线“延长EB 交DG 于点H ”,利用等角的余角相等得到∠DHE =90°,从而利用垂直的定义即可得DG ⊥BE .(2)由四边形ABCD 与四边形AEFG 为正方形,利用正方形的性质得到两对边相等,且夹角相等,利用SAS 得到△ADG ≌△ABE ,利用全等三角形对应边相等得到DG =BE ,作辅助线“过点A 作AM ⊥DG 交DG 于点M ”,则∠AMD =∠AMG =90°,在Rt △AMD 中,根据等腰直角三角形的性质求出AM 的长,即为DM 的长,根据勾股定理求出GM 的长,进而确定出DG 的长,即为BE 的长.(3)△GHE 和△BHD 面积之和的最大值为6,理由为:对两个三角形,点H 分别在以EG 为直径的圆上和以BD 为直径的圆上,当点H 与点A 重合时,两个三角形的高最大,即可确定出面积的最大值.3. (2020年江苏连云港14分)如图,已知一条直线过点(0,4),且与抛物线214y x =交于A ,B 两点,其中点A 的横坐标是﹣2.(1)求这条直线的函数关系式及点B 的坐标. (2)在x 轴上是否存在点C ,使得△ABC 是直角三角形?若存在,求出点C 的坐标,若不存在,请说明理由;(3)过线段AB 上一点P ,作P M ∥x 轴,交抛物线于点M ,点M 在第一象限,点N (0,1),当点M 的横坐标为何值时,MN +3MP 的长度最大?最大值是多少?【答案】解:(1)∵点A 是直线与抛物线的交点,且横坐标为﹣2, ∴()21214y =⨯-=.∴A 点的坐标为(2,﹣1). 设直线AB 的函数关系式为y kx b =+,将(0,4),(﹣2,1)代入得421b k b =⎧⎨-+=⎩,解得324k b ⎧=⎪⎨⎪=⎩. ∴直线AB 的函数关系式为342y x =+. ∵直线与抛物线相交,∴联立,得234214y x y x ⎧=+⎪⎪⎨⎪=⎪⎩,解得:21x y =-⎧⎨=⎩或816x y =⎧⎨=⎩. ∴点B 的坐标为(8,16).(2)如答图1,过点B 作BG ∥x 轴,过点A 作AG ∥y 轴,交点为G ,∴222AG BG AB +=,∵由A (﹣2,1),B (8,16)根据勾股定理,得AB 2=325.设点C (c ,0),根据勾股定理,得()22222145AC c c c =++=++, ()222281616320BC c c c =-+=-+,①若∠BAC =90°,则222AB AC BC +=,即223254516320c c c c +++=-+,解得:12c =-.②若∠ACB =90°,则222AB AC BC =+,即223254516320c c c c =+++-+,解得:c =0或c =6.③若∠ABC =90°,则222AB BC AC +=,即224516320325c c c c ++=-++,解得:c =32.∴点C 的坐标为(12-,0),(0,0),(6,0),(32,0). (3)如答图2,设MP 与y 轴交于点Q ,设214M m m ⎛⎫ ⎪⎝⎭ ,, 在Rt △MQN 中,由勾股定理得,2222111144MN m m m ⎛⎫=+-=+ ⎪⎝⎭, 又∵点P 与点M 纵坐标相同,∴231424x m +=,∴2166m x -= ∴点P 的横坐标为2166m -. ∴221661666m m m PM m --++=-=. ∴()2222161611313396184644m m MN PM m m m m -+++=++⋅=-++=--+. 又∵1<04-,2≤6≤8, ∴当M 的横坐标为6时,3MN PM +的长度的最大值是18.【考点】二次函数综合题;待定系数的应用;曲线上点的坐标与方程的关系;直角三角形存在性问题;勾股定理;二次函数的最值;分类思想和方程思想的应用.【分析】(1)首先求得点A 的坐标,然后利用待定系数法确定直线的解析式,从而求得直线与抛物线的交点坐标.(2)作辅助线“过点B 作BG ∥x 轴,过点A 作AG ∥y 轴,交点为G ”,分若∠BAC =90°,∠ACB =90°,∠ABC =90°三种情况根据勾股定理列方程确定点C 的坐标.(3)设MP 与y 轴交于点Q ,设214M m m ⎛⎫ ⎪⎝⎭ ,,,首先在R t △MQN 中,由勾股定理得2114MN m =+,然后根据点P 与点M 纵坐标相同得到点P 的横坐标2166m -,从而得到213394MN PM m m +=-++,根据二次函数的最值原理求解即可.4. (2020年江苏苏州10分)如图,已知二次函数()21y x m x m =+--(其中0<m <1)的图像与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴为直线l .设P 为对称轴l 上的点,连接P A 、PC ,P A =PC .(1)∠ABC 的度数为 ▲ °;(2)求P 点坐标(用含m 的代数式表示);(3)在坐标轴上是否存在点Q (与原点O 不重合),使得以Q 、B 、C 为顶点的三角形与△P AC 相似,且线段PQ 的长度最小?如果存在,求出所有满足条件的点Q 的坐标;如果不存在,请说明理由.【答案】解:(1)45.(2)如答图1,过P 点作PD y ⊥轴于点D ,设l 与x 轴交于点E ,根据题意,得抛物线的对称轴为12m x -=, 设点P 的坐标为1,2m n -⎛⎫ ⎪⎝⎭, ∵P A =PC ,∴22PA PC =.∴2222AE PE CD PD +=+,即()222211122m m n m n --⎛⎫⎛⎫-+=++ ⎪ ⎪⎝⎭⎝⎭. 解得12m n -=. ∴P 点坐标为11,22m m --⎛⎫ ⎪⎝⎭. (3)存在点Q 满足题意.∵P 点坐标为11,22m m --⎛⎫ ⎪⎝⎭ , ∴222222PA PC AE PE CD PD +=+++222221111112222m m m m m m ----⎛⎫⎛⎫⎛⎫⎛⎫=+++++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. ∵221AC m =+,∴222PA PC AC +=.∴090APC ∠=.∴PAC ∆是等腰直角三角形.∵以Q 、B 、C 为顶点的三角形与△P AC 相似,∴QBC ∆是等腰直角三角形.∴由题意知,满足条件的点Q 的坐标为(),0m - 或()0,m .①当点Q 的坐标为(),0m - 时,如答图2,若PQ 与x 垂直,则12m m -=-,解得13m =,即13PQ =. 若PQ 与x 不垂直, 则22222221151521222222510m m PQ PE EQ m m m m --⎛⎫⎛⎫⎛⎫=+=++=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭有,∵0<m <1,∴当2m =时,2PQ 取得最小值110,PQ .1<03=1<3.∴当25m =时,点Q 的坐标为2,05⎛⎫- ⎪⎝⎭,PQ . ②当点Q 的坐标为()0,m 时,如答图3,若PQ 与y 垂直,则12m m -=,解得13m =,即13PQ =. 若PQ 与y 不垂直,则22222221151521222222510m m PQ PD DQ m m m m --⎛⎫⎛⎫⎛⎫=+=+-=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭有,∵0<m <1,∴当2m =时,2PQ 取得最小值110,PQ 取得最小值10.1<03=1<3.∴当25m =时,点Q 的坐标为20,5⎛⎫ ⎪⎝⎭,PQ . 综上所述,点Q 的坐标为2,05⎛⎫- ⎪⎝⎭ 或20,5⎛⎫ ⎪⎝⎭时,PQ 的长度最小. 【考点】二次函数综合题;相似三角形的存在性问题;二次函数的性质;曲线上点的坐标与方程的关系;等腰直角三角形的判定和性质;勾股定理;相似三角形的性质;实数的大小比较;分类思想的应用.【分析】(1)令0x =,则y m =-,点C 的坐标为()0,m - ,令0y =,即()210x m x m +--=,解得121,x x m =-= , ∵0<m <1,点A 在点B 的左侧,∴点B 的坐标为(),0m .∴OB OC m ==.∵∠BOC =90°,∴BOC ∆是等腰直角三角形.∴∠OBC =45°.(2)过P 点作PD y ⊥轴于点D ,设l 与x 轴交于点E ,求出抛物线的对称轴为12m x -=,则可设点P 的坐标为1,2m n -⎛⎫ ⎪⎝⎭,由P A =PC 即22PA PC =,根据勾股定理得到2222AE PE CD PD +=+,解出n 即可求解.(3)根据相似和PAC ∆是等腰直角三角形证明QBC ∆是等腰直角三角形,由题意知,满足条件的点Q 的坐标为(),0m - 或()0,m ,从而分点Q 的坐标为(),0m - 或()0,m 两种情况讨论即可.5. (2020年江苏泰州12分)如图,正方形ABCD 的边长为8cm ,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 上的动点,且AE =BF =CG =DH .(1)求证:四边形EFGH 是正方形;(2)判断直线EG 是否经过一个定点,并说明理由;(3)求四边形EFGH 面积的最小值.【答案】解:(1)证明:∵四边形ABC D 是正方形,∴90,A B C D AB BC CD DA ∠=∠=∠=∠=︒=== .∵AE BF CG DH ===,∴BE CF DG AH ===.∴()AEH BFE CGF DHG SAS ∆∆∆∆≌≌≌.∴,EH FE GF HG AHF BEF ===∠=∠ .∴四边形EFGH 是菱形.∵90AHF AEH ∠+∠=︒,∴90BEF AEH ∠+∠=︒.∴90HEF ∠=︒.∴四边形EFGH 是正方形.(2)直线EG 经过定点-----正方形ABCD 的中心. 理由如下:如答图,连接,,,DE BG BD EG ,BD 、EG 相交于点O ,∵四边形ABCD 是正方形,∴AB ∥DC .∵BE DG =,∴四边形BGDE 是平行四边形.∴BO DO =,即点O 是正方形ABCD 的中心.∴直线EG 经过定点----正方形ABCD 的中心.(3)设AE BF CG DH x ====,则8BE CF DG AH x ====-,∵()()22222228216642432EFGH S EF BE BF x x x x x ==+=+-=-+=-+四边形,∴当4x =时,四边形EFGH 面积的最小值为32.【考点】单动点和定值问题;正方形的判定和性质;全等三角形的判定和性质;平行四边形的判定和性质;勾股定理;二次函数的应用(实际问题).【分析】(1)由SAS 证明AEH BFE CGF DHG ∆∆∆∆≌≌≌,即可证明四边形EFGH 是一个角是直角的菱形----正方形.(2)作辅助线“连接,,,DE BG BD EG ,BD 、EG 相交于点O ”构成平行四边形BGDE ,根据平行四边形对角线互分的性质即可证明直线EG 经过定点-----正方形ABCD 的中心.(3)设AE BF CG DH x ====,根据正方形的性质和勾股定理得到EFGH S 四边形关于x 的二次函数,应用二次函数最值原理求解即可.6. (2020年江苏无锡8分)(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”或“列表”等方式给出分析过程)(2)如果甲跟另外n (n ≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是 ▲ (请直接写出结果).【答案】解:(1)画树状图如下:∵共有9种等可能的结果,其中符合要求的结果有3种,∴P (第2次传球后球回到甲手里)=3193=. (2)21n n- 【考点】列表法或树状图法;概率;探索规律题(数字的变化类)..【分析】(1)画树状图或列表,根据图表,可得总结果与传到甲手里的情况,根据传到甲手里的情况比上总结果,可得答案.(2)根据第一步传的总结果是n ,第二步传的总结果是2n ,第三步传的总结果是3n ,传给甲的结果是()1n n -,根据概率的意义,第三次传球后球回到甲手里的概率是()2211n n n n n--=. 7. (2020年江苏无锡10分)已知:平面直角坐标系中,四边形OABC 的顶点分别为O (0,0)、A (5,0)、B (m ,2)、C (m -5,2).(1)问:是否存在这样的m ,使得在边BC 上总存在点P ,使∠OPA =90º?若存在,求出m 的取值范围,若不存在,请说明理由;(2)当∠AOC 与∠OAB 的平分线的交点Q 在边BC 上时,求m 的值.【答案】解:(1)存在.∵()()()()0050252O A B m C m - ,、,、,、,,∴OA =BC =5,BC ∥OA .如答图1,以OA 为直径作⊙D ,与直线BC 分别交于点E 、F ,则∠OEA =∠OF A =90°,过点D 作DG ⊥EF 于G ,连接DE ,则DE =OD =2.5,DG =2,EG =GF , ∴22 1.5EG DE DG =-=.∴E (1,2),F (4,2).由541m m -≤⎧⎨≥⎩解得,19m ≤≤, ∴当19m ≤≤时,边BC 上总存在这样的点P ,使∠OP A =90°.(2)如答图2,∵BC =OA =5,BC ∥OA ,∴四边形OABC 是平行四边形. ∴OC ∥AB .∴∠AOC +∠OAB =180°.∵OQ 平分∠AOC ,AQ 平分∠OAB ,∴∠AOQ =12∠AOC ,∠OAQ =12∠OAB . ∴∠AOQ +∠OAQ =90°. ∴∠AQO =90°.以OA 为直径作⊙D ,与直线BC 分别交于点E 、F ,则∠OEA =∠OF A =90°,∴点Q 只能是点E 或点F .当Q 在F 点时,∵OF 、AF 分别是∠AOC 与∠OAB 的平分线,BC ∥OA ,∴∠CFO =∠FOA =∠FOC ,∠BF A =∠F AO =∠F AB . ∴CF =OC ,BF =AB .而OC =AB ,∴CF =BF ,即F 是BC 的中点.而F 点为 (4,2),∴此时m 的值为6.5.当Q 在E 点时,同理可求得此时m 的值为3.5.综上所述,m 的值为3.5或6.5.【考点】圆的综合题;垂径定理;圆周角定理;平行四边形的判定和性质;坐标与图形性质;勾股定理;分类思想的应用.【分析】(1)由四边形四个点的坐标易得OA =BC =5,BC ∥OA ,以OA 为直径作⊙D ,与直线BC 分别交于点E 、F ,根据圆周角定理得∠OEA =∠OF A =90°,如图1,作DG ⊥EF 于G ,连DE ,则DE =OD =2.5,DG =2,根据垂径定理得EG =GF ,利用勾股定理可计算出EG =1.5,于是得到E (1,2),F (4,2),即点P 在E 点和F 点时,满足条件,此时541m m -≤⎧⎨≥⎩,即1≤m ≤9时,边BC 上总存在这样的点P ,使∠OP A =90°;(2)如图2,先判断四边形OABC 是平行四边形,再利用平行线的性质和角平分线定义可得到∠AQO =90°,以OA 为直径作⊙D ,与直线BC 分别交于点E 、F ,则∠OEA =∠OF A =90°,于是得到点Q 只能是点E 或点F ,当Q 在F 点时,证明F 是BC 的中点.而F 点为 (4,2),得到m 的值为6.5;当Q 在E 点时,同理可求得m 的值为3.5.8. (2020年江苏无锡10分)如图,C 为∠AOB 的边OA 上一点,OC =6,N 为边OB 上异于点O 的一动点,P 是线段05上一点,过点P 分别作PQ ∥OA 交OB 于点Q ,PM ∥OB 交OA 于点M .(1)若∠AOB =60º,OM =4,OQ =1,求证:05⊥OB ;(2)当点N 在边OB 上运动时,四边形OMPQ 始终保持为菱形; ①问:11OM ON-的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由; ②设菱形OMPQ 的面积为S 1,△NOC 的面积为S 2,求12S S 的取值范围.【答案】解:(1)证明:如答图,过点P 作PE ⊥OA 于点E ,∵PQ ∥OA ,PM ∥OB ,∴四边形OMPQ 为平行四边形.∵OQ =1,∠AOB =60°,∴PM =OQ =1,∠PME =∠AOB =60°.∴16022PE PM sin ME =⋅︒==. ∴32CE OC OM ME =--=.∴3PE tan PCE CE ∠==. ∴∠PCE =30°. ∴∠CPM =90°, 又∵PM ∥OB ,∴∠05O =∠CPM =90°,即05⊥OB .(2)①11OM ON-的值不发生变化,理由如下:设OM x ON y ==,,∵四边形OMPQ 为菱形,∴OQ QP OM x NQ y x ====-,.∵PQ ∥OA ,∴∠NQP =∠O .又∵∠QNP =∠ONC ,∴△NQP ∽△NOC . ∴QP NQ OC ON=,即6x y x y -=, 化简,得111166y x xy x y -=⇒-=. ∴1116OM ON -=不变化. ②如答图,过点P 作PE ⊥OA 于点E ,过点N 作NF ⊥OA 于点F ,设OM x =, 则1212S OM PE S OC NF =⋅=⋅,,∴123S xPE S NF =. ∵PM ∥OB ,∴∠MCP =∠O .又∵∠PCM =∠NCO ,∴△CPM ∽△05O. ∴66PE CM x NF CO -==. ∴()()212611318182x x S x S -==--+ ∵0<x <6,∴根据二次函数的图象可知, 1210<2S S ≤. 【考点】相似形综合题;单动点问题;定值问题;锐角三角函数定义;特殊角的三角函数值;相似三角形的判定和性质;二次函数的性质;平行四边形的判定和性质;菱形的性质.【分析】(1)作辅助性线,过点P 作PE ⊥OA 于E ,利用两组对边平行的四边形为平行四边形得到OMPQ 为平行四边形,利用平行四边形的对边相等,对角相等得到PM =OQ =1,∠PME =∠AOB =60°,进而求出PE 与ME 的长,得到CE 的长,求出tan ∠PCE 的值,利用特殊角的三角函数值求出∠PCE 的度数,得到PM 于NC 垂直,而PM 与ON 平行,即可得到05与OB 垂直.(2)①11OM ON-的值不发生变化,理由如下:设OM =x ,ON =y ,根据OMPQ 为菱形,得到PM =PQ =OQ =x ,QN=y ﹣x ,根据平行得到△NQP 与△NOC 相似,由相似得比例即可确定出所求式子的值.②作辅助性线,过点P 作PE ⊥OA 于点E ,过点N 作NF ⊥OA 于点F ,表示出菱形OMPQ 的面积为S 1,△NOC 的面积为S 2,得到12S S ,由PM 与OB 平行,得到△CPM 与△05O 相似,由相似得比例求出所求式子12S S 的范围即可. 9. (2020年江苏徐州8分)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C 落在第二象限. 其斜边两端点A 、B 分别落在x 轴、y 轴上,且AB =12cm(1)若OB =6cm .①求点C 的坐标;②若点A 向右滑动的距离与点B 向上滑动的距离相等,求滑动的距离;(2)点C 与点O 的距离的最大值= ▲ cm .【答案】解:(1)①如答图1,过点C 作y 轴的垂线,垂足为D ,在Rt △ABC 中,AB =12,∠BAC =30°,∴BC =6. 在Rt △AOB 中,AB =12, OB =6,∴∠BAO =30°,∠ABO =60°.又∵∠CBA =60°,∴∠CBD =60°,∠BCD =30°.∴BD =3,CD =33.∴OD =9.∴点C 的坐标为()33,9- .②如答图2,设点A 向右滑动的距离'AA x =,根据题意得点B 向动的距离'BB x =.∵在Rt △AOB 中,AB =12, OB =6,∴3AO =∴'3,'6,''12A O x B O x A B AB ==+== .在△A 'O B '中,由勾股定理得,()()22263612xx ++=, 解得,12636,0x x == (舍去).∴滑动的距离为636.(2)12.【考点】面动问题;含30度角直角三角形的性质;勾股定理;点的坐标;二次函数最值的应用;方程思想的应用.【分析】(1)①作辅助线“过点C 作y 轴的垂线,垂足为D ”,应用含30度角直角三角形的性质求出CD 和BD 的长,即可求出点C 的坐标.②设点A 向右滑动的距离'AA x =,用表示出'A O 和'B O 的长,在△A 'O B '中,应用勾股定理列方程求解即可.(2)设点C 的坐标为(),x y ,如答图3,过点C 作CE ⊥x 轴,CD ⊥y 轴, 垂足分别为E ,D ,则OE =-x ,OD =y .∵∠ACE +∠BCE =90°,∠DCB +∠BCE =90°, ∴∠ACE =∠DCB .又∵∠AEC =∠BDC =90°,∴△ACE ∽△BCD . ∴CE ACCD BC=,即63y x =-. ∴3y x =-. ∴()()22222234OC x y x xx =-+=+=.∴当x 取最大值,即点C 到y 轴距离最大时,2OC 有最大值,即OC 取最大值,如图,即当''C B 转到与y 轴垂时. 此时OC =12.10. (2020年江苏徐州12分)如图,在平面直角坐标系中,点A (10,0),以OA 为直径在第一象限内作半圆,B 为半圆上一点,连接AB 并延长至C ,使BC =AB ,过C 作CD ⊥x 轴于点D ,交线段OB 于点E ,已知CD =8,抛物线经过O 、E 、A 三点. (1)∠OBA = ▲ °; (2)求抛物线的函数表达式;(3)若P 为抛物线上位于第一象限内的一个动点,以P 、O 、A 、E 为顶点的四边形面积记作S ,则S 取何值时,相应的点P 有且只有....3个?【答案】解:(1)90.(2)如答图1,连接OC ,∵由(1)知OB ⊥AC ,又AB =BC , ∴OB 是的垂直平分线. ∴OC =OA =10.在Rt △OCD 中,OC =10,CD =8,∴OD =6. ∴C (6,8),B (8,4).∴OB 所在直线的函数关系为12y x =. 又E 点的横坐标为6,∴E 点纵坐标为3,即E (6,3). ∵抛物线过O (0,0),E (6,3) ,A (10,0), ∴设此抛物线的函数关系式为()10y ax x =-, 把E 点坐标代入得()36610a =-,解得18a =-. ∴此抛物线的函数关系式为()1108y x x =--,即21584y x x =-+. (3)设点15²84P p p p ⎛⎫-+ ⎪⎝⎭,, ①若点P 在CD 的左侧,延长OP 交CD 于Q ,如答图2,∵OP 所在直线函数关系式为:1584y x ⎛⎫=-+ ⎪⎝⎭, ∴当x =6时,31542y p =-+,即Q 点纵坐标为31542p -+. ∴3153934242QE p p =-+-=-+. ∴S 四边形POAE = S △OAE +S △OPE = S △OAE +S △OQE -S △PQE =()111222x x x OA DE QE D QE D P ⋅⋅+⋅⋅-⋅⋅- =()()221139139393571036615622422428482p p p p p p ⎛⎫⎛⎫⋅⋅+⋅-+⋅-⋅-+⋅-=-++=--+ ⎪ ⎪⎝⎭⎝⎭.②若点P 在CD 的右侧,延长AP 交CD 于Q ,如答图3,15²84P p p p ⎛⎫-+⎪⎝⎭,,A (10,0), ∴设AP 所在直线方程为:y =kx +b ,把P 和A 坐标代入得,21001584k b pk b p p +=⎧⎪⎨+=-+⎪⎩,解得1854k p b p ⎧=-⎪⎪⎨⎪=⎪⎩.∴AP 所在直线方程为:1584y px p =-+. ∴当x =6时,651842y p p p =-+=,即Q 点纵坐标为12p .∴QE =132p -.∴S 四边形POAE = S △OAE +S △APE = S △OAE +S △AQE -S △PQE =()111222x x OA DE QE DA QE P D ⋅⋅+⋅⋅-⋅⋅- =()()221111111103343648162222244p p p p p p ⎛⎫⎛⎫⋅⋅+⋅-⋅-⋅-⋅-=-+=--+ ⎪ ⎪⎝⎭⎝⎭. ∴当P 在CD 右侧时,四边形POAE 的面积最大值为16,此时点P 的位置就一个,令239151684p p -++=,解得,573p =±.∴当P 在CD 左侧时,四边形POAE 的面积等于16的对应P 的位置有两个.综上知,以P 、O 、A 、E 为顶点的四边形面积S 等于16时,相应的点P 有且只有3个.【考点】二次函数综合题;单动点问题;圆周角定理;线段垂直平分线的性质;勾股定理;待定系数洪都拉斯应用;曲线上点的坐标与方程的关系;分类思想、转换思想和方程思想的应用. 【分析】(1)根据直径所对的圆周角定理直接得出结论.(2)作辅助线:连接OC ,根据线段垂直平分线的性质和勾股定理求出点E 、A 的坐标,从而应用待定系数法求出抛物线的函数关系式.(3)设点15²84P p p p ⎛⎫-+ ⎪⎝⎭,,分点P 在CD 的左侧和右侧两种情况求出S 四边形POAE 关于p 的二次函数关系式,根据二次函数的最值原理求解即可.11. (2020年江苏盐城12分)如图,在平面直角坐标系xOy 中,将抛物线2y x =的对称轴绕着点P (0,2)顺时针旋转45°后与该抛物线交于A 、B 两点,点Q 是该抛物线上的一点. (1)求直线AB 的函数表达式;(2)如图①,若点Q 在直线AB 的下方,求点Q 到直线AB 的距离的最大值;(3)如图②,若点Q 在y 轴左侧,且点T (0,t )(t <2)是直线PO 上一点,当以P 、B 、Q 为顶点的三角形与△P AT 相似时,求所有满足条件的t 的值.【答案】解:(1)如答图1,设直线AB 与x 轴的交点为M ,∵45OPA ∠=︒,P (0,2),∴()2,0M - . 设直线AB 的解析式为y kx b =+,则202k b b -+=⎧⎨=⎩,解得12k b =⎧⎨=⎩.∴直线AB 的解析式为2y x =+.。

2020年中考数学试卷(含答案及试题解析)

2020年中考数学试卷(含答案及试题解析)

2020年中考数学试卷一、选择题(本大题共有10个小题,每小题3分,共30分) 1.(3分)(2020•荆州)有理数﹣2的相反数是( ) A .2B .12C .﹣2D .−122.(3分)(2020•荆州)下列四个几何体中,俯视图与其它三个不同的是( )A .B .C .D .3.(3分)(2020•荆州)在平面直角坐标系中,一次函数y =x +1的图象是( )A .B .C .D .4.(3分)(2020•荆州)将一张矩形纸片折叠成如图所示的图形,若∠CAB =30°,则∠ACB 的度数是( )A .45°B .55°C .65°D .75°5.(3分)(2020•荆州)八年级学生去距学校10km 的荆州博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.若设骑车学生的速度为xkm /h ,则可列方程为( )A .102x −10x =20 B .10x −102x =20C .10x−102x=13D .102x−10x=136.(3分)(2020•荆州)若x 为实数,在“(√3+1)□x ”的“□”中添上一种运算符号(在“+,﹣,×,÷”中选择)后,其运算的结果为有理数,则x 不可能是( ) A .√3+1B .√3−1C .2√3D .1−√37.(3分)(2020•荆州)如图,点E 在菱形ABCD 的AB 边上,点F 在BC 边的延长线上,连接CE ,DF ,对于下列条件:①BE =CF ;②CE ⊥AB ,DF ⊥BC ;③CE =DF ;④∠BCE =∠CDF .只选取其中一条添加,不能确定△BCE ≌△CDF 的是( )A .①B .②C .③D .④8.(3分)(2020•荆州)如图,在平面直角坐标系中,Rt △OAB 的斜边OA 在第一象限,并与x 轴的正半轴夹角为30°.C 为OA 的中点,BC =1,则点A 的坐标为( )A .(√3,√3)B .(√3,1)C .(2,1)D .(2,√3)9.(3分)(2020•荆州)定义新运算“a *b ”:对于任意实数a ,b ,都有a *b =(a +b )(a ﹣b )﹣1,其中等式右边是通常的加法、减法、乘法运算,例4*3=(4+3)(4﹣3)﹣1=7﹣1=6.若x *k =x (k 为实数)是关于x 的方程,则它的根的情况为( ) A .有一个实数根 B .有两个相等的实数根 C .有两个不相等的实数根D .没有实数根10.(3分)(2020•荆州)如图,在6×6的正方形网格中,每个小正方形的边长都是1,点A ,B ,C 均在网格交点上,⊙O 是△ABC 的外接圆,则cos ∠BAC 的值为( )A .√55B .2√55C .12D .√32二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2020•荆州)若a =(π﹣2020)0,b =﹣(12)﹣1,c =|﹣3|,则a ,b ,c 的大小关系为 .(用“<”号连接)12.(3分)(2020•荆州)若单项式2x m y 3与3xy m +n 是同类项,则√2m +n 的值为 . 13.(3分)(2020•荆州)已知:△ABC ,求作:△ABC 的外接圆.作法:①分别作线段BC ,AC 的垂直平分线EF 和MN ,它们相交于点O ;②以点O 为圆心,OB 的长为半径画圆.如图,⊙O 即为所求,以上作图用到的数学依据有: .(只需写一条)14.(3分)(2020•荆州)若标有A ,B ,C 的三只灯笼按图所示悬挂,每次摘取一只(摘B 前需先摘C ),直到摘完,则最后一只摘到B 的概率是 .15.(3分)(2020•荆州)“健康荆州,你我同行”,市民小张积极响应“全民健身动起来”号召,坚持在某环形步道上跑步.已知此步道外形近似于如图所示的Rt △ABC ,其中∠C =90°,AB 与BC 间另有步道DE 相连,D 地在AB 正中位置,E 地与C 地相距1km .若tan ∠ABC =34,∠DEB =45°,小张某天沿A →C →E →B →D →A 路线跑一圈,则他跑了 km .16.(3分)(2020•荆州)我们约定:(a ,b ,c )为函数y =ax 2+bx +c 的“关联数”,当其图象与坐标轴交点的横、纵坐标均为整数时,该交点为“整交点”.若关联数为(m ,﹣m ﹣2,2)的函数图象与x 轴有两个整交点(m 为正整数),则这个函数图象上整交点的坐标为 .三、解答题(本大题共有8个小题,共72分)17.(8分)(2020•荆州)先化简,再求值:(1−1a )÷a 2−1a 2+2a+1,其中a 是不等式组{a −2≥2−a ①2a −1<a +3②的最小整数解. 18.(8分)(2020•荆州)阅读下列“问题”与“提示”后,将解方程的过程补充完整,求出x 的值.【问题】解方程:x 2+2x +4√x 2+2x −5=0. 【提示】可以用“换元法”解方程. 解:设√x 2+2x =t (t ≥0),则有x 2+2x =t 2 原方程可化为:t 2+4t ﹣5=0 【续解】19.(8分)(2020•荆州)如图,将△ABC 绕点B 顺时针旋转60°得到△DBE ,点C 的对应点E 恰好落在AB 的延长线上,连接AD . (1)求证:BC ∥AD ;(2)若AB =4,BC =1,求A ,C 两点旋转所经过的路径长之和.20.(8分)(2020•荆州)6月26日是“国际禁毒日”,某中学组织七、八年级全体学生开展了“禁毒知识”网上竞赛活动.为了解竞赛情况,从两个年级各随机抽取了10名同学的成绩(满分为100分),收集数据为:七年级90,95,95,80,90,80,85,90,85,100;八年级85,85,95,80,95,90,90,90,100,90.整理数据:分数人数年级80859095100七年级22321八年级124a1分析数据:平均数中位数众数方差七年级89b9039八年级c90d30根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)通过数据分析,你认为哪个年级的成绩比较好?请说明理由;(3)该校七、八年级共有600人,本次竞赛成绩不低于90分的为“优秀”.估计这两个年级共有多少名学生达到“优秀”?21.(8分)(2020•荆州)九年级某数学兴趣小组在学习了反比例函数的图象与性质后,进一步研究了函数y=2|x|的图象与性质共探究过程如下:(1)绘制函数图象,如图1.列表:下表是x与y的几组对应值,其中m=;x…﹣3﹣2﹣1−1212123…y (2)312442m23…描点:根据表中各组对应值(x,y),在平面直角坐标系中描出了各点;连线:用平滑的曲线顺次连接各点,画出了部分图象.请你把图象补充完整;(2)通过观察图1,写出该函数的两条性质;①;②;(3)①观察发现:如图2.若直线y=2交函数y=2|x|的图象于A,B两点,连接OA,过点B作BC∥OA交x轴于C.则S四边形OABC=;②探究思考:将①中“直线y=2”改为“直线y=a(a>0)”,其他条件不变,则S四边形OABC=;③类比猜想:若直线y=a(a>0)交函数y=k|x|(k>0)的图象于A,B两点,连接OA,过点B作BC∥OA交x轴于C,则S四边形OABC=.22.(10分)(2020•荆州)如图,在矩形ABCD中,AB=20,点E是BC边上的一点,将△ABE沿着AE折叠,点B刚好落在CD边上点G处;点F在DG上,将△ADF沿着AF 折叠,点D刚好落在AG上点H处,此时S△GFH:S△AFH=2:3,(1)求证:△EGC∽△GFH;(2)求AD的长;(3)求tan∠GFH的值.23.(10分)(2020•荆州)为了抗击新冠疫情,我市甲、乙两厂积极生产了某种防疫物资共500吨,乙厂的生产量是甲厂的2倍少100吨.这批防疫物资将运往A地240吨,B地260吨,运费如下表(单位:元/吨).A B目的地生产厂甲2025乙1524(1)求甲、乙两厂各生产了这批防疫物资多少吨?(2)设这批物资从乙厂运往A地x吨,全部运往A,B两地的总运费为y元.求y与x 之间的函数关系式,并设计使总运费最少的调运方案;(3)当每吨运费均降低m元(0<m≤15且m为整数)时,按(2)中设计的调运方案运输,总运费不超过5200元.求m的最小值.24.(12分)(2020•荆州)如图1,在平面直角坐标系中,A(﹣2,﹣1),B(3,﹣1),以O为圆心,OA的长为半径的半圆O交AO延长线于C,连接AB,BC,过O作ED∥BC 分别交AB和半圆O于E,D,连接OB,CD.(1)求证:BC是半圆O的切线;(2)试判断四边形OBCD的形状,并说明理由;(3)如图2,若抛物线经过点D且顶点为E.①求此抛物线的解析式;②点P是此抛物线对称轴上的一个动点,以E,D,P为顶点的三角形与△OAB相似,问抛物线上是否存在一点Q.使S△EPQ=S△OAB?若存在,请直接写出Q点的横坐标;若不存在,说明理由.2020年中考数学试卷参考答案与试题解析一、选择题(本大题共有10个小题,每小题3分,共30分) 1.(3分)(2020•荆州)有理数﹣2的相反数是( ) A .2B .12C .﹣2D .−12【解答】解:有理数﹣2的相反数是:2. 故选:A .2.(3分)(2020•荆州)下列四个几何体中,俯视图与其它三个不同的是( )A .B .C .D .【解答】解:选项A 的俯视图是三角形,选项B 、C 、D 的俯视图均为圆. 故选:A .3.(3分)(2020•荆州)在平面直角坐标系中,一次函数y =x +1的图象是( )A .B .C .D .【解答】解:一次函数y =x +1中,令x =0,则y =1;令y =0,则x =﹣1, ∴一次函数y =x +1的图象经过点(0,1)和(﹣1,0), ∴一次函数y =x +1的图象经过一二三象限, 故选:C .4.(3分)(2020•荆州)将一张矩形纸片折叠成如图所示的图形,若∠CAB =30°,则∠ACB的度数是( )A .45°B .55°C .65°D .75°【解答】解:如图所示:∵将一张矩形纸片折叠成如图所示的图形, ∴ED ∥F A ,∠EBC =∠CBA ,∴∠EBC =∠ACB ,∠CAB =∠DBA =30°, ∵∠EBC +∠CBA +∠ABD =180°, ∴∠ACB +∠ACB +30°=180°, ∴∠ACB =75°, 故选:D .5.(3分)(2020•荆州)八年级学生去距学校10km 的荆州博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.若设骑车学生的速度为xkm /h ,则可列方程为( ) A .102x −10x =20 B .10x −102x =20C .10x−102x=13D .102x−10x=13【解答】解:设骑车学生的速度为xkm /h ,则乘车学生的速度为2xkm /h , 依题意,得:10x−102x=13.故选:C .6.(3分)(2020•荆州)若x 为实数,在“(√3+1)□x ”的“□”中添上一种运算符号(在“+,﹣,×,÷”中选择)后,其运算的结果为有理数,则x 不可能是( ) A .√3+1B .√3−1C .2√3D .1−√3【解答】解:A.(√3+1)﹣(√3+1)=0,故本选项不合题意;B.(√3+1)(√3−1)=2,故本选项不合题意;C.(√3+1)与2√3无论是相加,相减,相乘,相除,结果都是无理数,故本选项符合题意;D.(√3+1)(1−√3)=﹣2,故本选项不合题意.故选:C.7.(3分)(2020•荆州)如图,点E在菱形ABCD的AB边上,点F在BC边的延长线上,连接CE,DF,对于下列条件:①BE=CF;②CE⊥AB,DF⊥BC;③CE=DF;④∠BCE=∠CDF.只选取其中一条添加,不能确定△BCE≌△CDF的是()A.①B.②C.③D.④【解答】解:∵四边形BCD是菱形,∴BC=CD,AB∥CD,∴∠B=∠DCF,①∵添加BE=CF,∴△BCE≌△CDF(SAS),②∵添加CE⊥AB,DF⊥BC,∴∠CEB=∠F=90°,∴△BCE≌△CDF(AAS),③∵添加CE=DF,不能确定△BCE≌△CDF;④∵添加∠BCE=∠CDF,∴△BCE≌△CDF(ASA),故选:C.8.(3分)(2020•荆州)如图,在平面直角坐标系中,Rt△OAB的斜边OA在第一象限,并与x轴的正半轴夹角为30°.C为OA的中点,BC=1,则点A的坐标为()A.(√3,√3)B.(√3,1)C.(2,1)D.(2,√3)【解答】解:如图,∵Rt△OAB的斜边OA在第一象限,并与x轴的正半轴夹角为30°.∴∠AOD=30°,∴AD=12OA,∵C为OA的中点,∴AD=AC=OC=BC=1,∴OA=2,∴OD=√3,则点A的坐标为:(√3,1).故选:B.9.(3分)(2020•荆州)定义新运算“a*b”:对于任意实数a,b,都有a*b=(a+b)(a﹣b)﹣1,其中等式右边是通常的加法、减法、乘法运算,例4*3=(4+3)(4﹣3)﹣1=7﹣1=6.若x*k=x(k为实数)是关于x的方程,则它的根的情况为()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根【解答】解:∵x*k=x(k为实数)是关于x的方程,∴(x+k)(x﹣k)﹣1=x,整理得x2﹣x﹣k2﹣1=0,∵△=(﹣1)2﹣4(﹣k2﹣1)=4k 2+5>0,∴方程有两个不相等的实数根. 故选:C .10.(3分)(2020•荆州)如图,在6×6的正方形网格中,每个小正方形的边长都是1,点A ,B ,C 均在网格交点上,⊙O 是△ABC 的外接圆,则cos ∠BAC 的值为( )A .√55B .2√55C .12D .√32【解答】解:如图,作直径BD ,连接CD , 由勾股定理得,BD =√22+42=2√5, 在Rt △BDC 中,cos ∠BDC =CD BD =25=2√55, 由圆周角定理得,∠BAC =∠BDC , ∴cos ∠BAC =cos ∠BDC =2√55, 故选:B .二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2020•荆州)若a =(π﹣2020)0,b =﹣(12)﹣1,c =|﹣3|,则a ,b ,c 的大小关系为 b <a <c .(用“<”号连接)【解答】解:∵a =(π﹣2020)0=1,b =﹣(12)﹣1=﹣2,c =|﹣3|=3,∴b<a<c.故答案为:b<a<c.12.(3分)(2020•荆州)若单项式2x m y3与3xy m+n是同类项,则√2m+n的值为2.【解答】解:根据题意得:m=1,m+n=3,解得n=2,所以2m+n=2+2=4,√2m+n=√4=2.故答案是:2.13.(3分)(2020•荆州)已知:△ABC,求作:△ABC的外接圆.作法:①分别作线段BC,AC的垂直平分线EF和MN,它们相交于点O;②以点O为圆心,OB的长为半径画圆.如图,⊙O即为所求,以上作图用到的数学依据有:线段的垂直平分线的性质.(只需写一条)【解答】解:∵点O为AC和BC的垂直平分线的交点,∴OA=OC=OB,∴⊙O为△ABC的外接圆.故答案为:线段的垂直平分线的性质.14.(3分)(2020•荆州)若标有A,B,C的三只灯笼按图所示悬挂,每次摘取一只(摘B前需先摘C),直到摘完,则最后一只摘到B的概率是23.【解答】解:画树状图如图:共有3个可能的结果,最后一只摘到B 的结果有2个, ∴最后一只摘到B 的概率为23;故答案为:23.15.(3分)(2020•荆州)“健康荆州,你我同行”,市民小张积极响应“全民健身动起来”号召,坚持在某环形步道上跑步.已知此步道外形近似于如图所示的Rt △ABC ,其中∠C =90°,AB 与BC 间另有步道DE 相连,D 地在AB 正中位置,E 地与C 地相距1km .若tan ∠ABC =34,∠DEB =45°,小张某天沿A →C →E →B →D →A 路线跑一圈,则他跑了 24 km .【解答】解:过D 点作DF ⊥BC , 设EF =xkm ,则DF =xkm ,BF =43xkm , 在Rt △BFD 中,BD =√BF 2+DF 2=53xkm , ∵D 地在AB 正中位置, ∴AB =2BD =103xkm , ∵tan ∠ABC =34, ∴cos ∠ABC =45, ∴x+43x+1103x =45,解得x =3,则BC=8km,AC=6km,AB=10km,小张某天沿A→C→E→B→D→A路线跑一圈,他跑了8+10+6=24(km).故答案为:24.16.(3分)(2020•荆州)我们约定:(a,b,c)为函数y=ax2+bx+c的“关联数”,当其图象与坐标轴交点的横、纵坐标均为整数时,该交点为“整交点”.若关联数为(m,﹣m ﹣2,2)的函数图象与x轴有两个整交点(m为正整数),则这个函数图象上整交点的坐标为(1,0)、(2,0)或(0,2).【解答】解:根据题意,令y=0,将关联数(m,﹣m﹣2,2)代入函数y=ax2+bx+c,则有mx2+(﹣m﹣2)x+2=0,△=(﹣m﹣2)2﹣4×2m=(m﹣2)2>0,∴mx2+(﹣m﹣2)x+2=0有两个根,由求根公式可得x=m+2±√(−m−2)2−8m2mx=m+2±|m−2|2mx1=m+2+(m−2)2m=1,此时m为不等于0的任意数,不合题意;x2=m+2+2−m2m=42m,当m=1或2时符合题意;x2=2或1;x3=m+2−m+22m=42m,当m=1或2时符合题意;x3=2或1;x4=m+2−2+m2m=1,此时m为不等于0的任意数,不合题意;所以这个函数图象上整交点的坐标为(2,0),(1,0);令x=0,可得y=c=2,即得这个函数图象上整交点的坐标(0,2).综上所述,这个函数图象上整交点的坐标为(2,0),(1,0)或(0,2);故答案为:(2,0),(1,0)或(0,2).三、解答题(本大题共有8个小题,共72分)17.(8分)(2020•荆州)先化简,再求值:(1−1a)÷a 2−1a 2+2a+1,其中a 是不等式组{a −2≥2−a ①2a −1<a +3②的最小整数解. 【解答】解:原式=a−1a •(a+1)2(a+1)(a−1)=a+1a . 解不等式组{a −2≥2−a ①2a −1<a +3②中的①,得a ≥2.解不等式②,得a <4. 则2≤a <4.所以a 的最小整数值是2, 所以,原式=2+12=32. 18.(8分)(2020•荆州)阅读下列“问题”与“提示”后,将解方程的过程补充完整,求出x 的值.【问题】解方程:x 2+2x +4√x 2+2x −5=0. 【提示】可以用“换元法”解方程. 解:设√x 2+2x =t (t ≥0),则有x 2+2x =t 2 原方程可化为:t 2+4t ﹣5=0 【续解】【解答】解:(t +5)(t ﹣1)=0, t +5=0或t ﹣1=0, ∴t 1=﹣5,t 2=1,当t =﹣5时,√x 2+2x =−5,此方程无解;当t =1时,√x 2+2x =1,则x 2+2x =1,配方得(x +1)2=2,解得x 1=﹣1+√2,x 2=﹣1−√2;经检验,原方程的解为x 1=﹣1+√2,x 2=﹣1−√2.19.(8分)(2020•荆州)如图,将△ABC 绕点B 顺时针旋转60°得到△DBE ,点C 的对应点E 恰好落在AB 的延长线上,连接AD . (1)求证:BC ∥AD ;(2)若AB=4,BC=1,求A,C两点旋转所经过的路径长之和.【解答】(1)证明:由题意,△ABC≌△DBE,且∠ABD∠CBE=60°,∴AB=DB,∴△ABD是等边三角形,∴∠DAB=60°,∴∠CBE=∠DAB,∴BC∥AD.(2)解:由题意,BA=BD=4,BC=BE=1,∠ABD=∠CBE=60°,∴A,C两点旋转所经过的路径长之和=60⋅π⋅4180+60⋅π⋅1180=5π3.20.(8分)(2020•荆州)6月26日是“国际禁毒日”,某中学组织七、八年级全体学生开展了“禁毒知识”网上竞赛活动.为了解竞赛情况,从两个年级各随机抽取了10名同学的成绩(满分为100分),收集数据为:七年级90,95,95,80,90,80,85,90,85,100;八年级85,85,95,80,95,90,90,90,100,90.整理数据:分数人数年级80859095100七年级22321八年级124a1分析数据:平均数中位数众数方差七年级 89 b 90 39 八年级c90d30根据以上信息回答下列问题:(1)请直接写出表格中a ,b ,c ,d 的值;(2)通过数据分析,你认为哪个年级的成绩比较好?请说明理由;(3)该校七、八年级共有600人,本次竞赛成绩不低于90分的为“优秀”.估计这两个年级共有多少名学生达到“优秀”?【解答】解:(1)观察八年级95分的有2人,故a =2; 七年级的中位数为90+902=90,故b =90;八年级的平均数为:112[85+85+95+80+95+90+90+90+100+90]=90,故c =90;八年级中90分的最多,故d =90;(2)七、八年级学生成绩的中位数和众数相同,但八年级的平均成绩比七年级高,且从方差看,八年级学生成绩更整齐,综上,八年级的学生成绩好;(3)∵600×1320=390(人),∴估计该校七、八年级这次竞赛达到优秀的有390人.21.(8分)(2020•荆州)九年级某数学兴趣小组在学习了反比例函数的图象与性质后,进一步研究了函数y =2|x|的图象与性质共探究过程如下: (1)绘制函数图象,如图1.列表:下表是x 与y 的几组对应值,其中m = 1 ; x … ﹣3﹣2 ﹣1 −12121 2 3… y…2312442m23…描点:根据表中各组对应值(x ,y ),在平面直角坐标系中描出了各点; 连线:用平滑的曲线顺次连接各点,画出了部分图象.请你把图象补充完整; (2)通过观察图1,写出该函数的两条性质; ① 函数的图象关于y 轴对称 ;②当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小;(3)①观察发现:如图2.若直线y=2交函数y=2|x|的图象于A,B两点,连接OA,过点B作BC∥OA交x轴于C.则S四边形OABC=4;②探究思考:将①中“直线y=2”改为“直线y=a(a>0)”,其他条件不变,则S四边形OABC=4;③类比猜想:若直线y=a(a>0)交函数y=k|x|(k>0)的图象于A,B两点,连接OA,过点B作BC∥OA交x轴于C,则S四边形OABC=2k.【解答】解:(1)当x<0时,xy=﹣2,而当x>0时,xy=2,∴m=1,故答案为:1;补全图象如图所示:(2)故答案为:①函数的图象关于y轴对称,②当x<0时,y随x的增大而增大,当x >0时,y随x的增大而减小;(3)如图,①由A,B两点关于y轴对称,由题意可得四边形OABC是平行四边形,且S四边形OABC=4S△OAM=4×12|k|=2|k|=4,②同①可知:S四边形OABC=2|k|=4,③S四边形OABC=2|k|=2k,故答案为:4,4,2k.22.(10分)(2020•荆州)如图,在矩形ABCD中,AB=20,点E是BC边上的一点,将△ABE沿着AE折叠,点B刚好落在CD边上点G处;点F在DG上,将△ADF沿着AF 折叠,点D刚好落在AG上点H处,此时S△GFH:S△AFH=2:3,(1)求证:△EGC∽△GFH;(2)求AD的长;(3)求tan∠GFH的值.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=∠C=90°,由折叠对称知:∠AGE=∠B=90°,∠AHF=∠D=90°,∴∠GHF=∠C=90°,∠EGC+∠HGF=90°,∠GFH+∠HGF=90°,∴∠EGC=∠GFH,∴△EGC∽△GFH.(2)解:∵S △GFH :S △AFH =2:3,且△GFH 和△AFH 等高, ∴GH :AH =2:3,∵将△ABE 沿着AE 折叠,点B 刚好落在CD 边上点G 处, ∴AG =AB =GH +AH =20, ∴GH =8,AH =12, ∴AD =AH =12.(3)解:在Rt △ADG 中,DG =√AG 2−AD 2=√202−122=16, 由折叠的对称性可设DF =FH =x ,则GF =16﹣x , ∵GH 2+HF 2=GF 2, ∴82+x 2=(16﹣x )2, 解得:x =6, ∴HF =6,在Rt △GFH 中,tan ∠GFH =GH HF =86=43. 23.(10分)(2020•荆州)为了抗击新冠疫情,我市甲、乙两厂积极生产了某种防疫物资共500吨,乙厂的生产量是甲厂的2倍少100吨.这批防疫物资将运往A 地240吨,B 地260吨,运费如下表(单位:元/吨).目的地 生产厂 AB甲 20 25 乙1524(1)求甲、乙两厂各生产了这批防疫物资多少吨?(2)设这批物资从乙厂运往A 地x 吨,全部运往A ,B 两地的总运费为y 元.求y 与x 之间的函数关系式,并设计使总运费最少的调运方案;(3)当每吨运费均降低m 元(0<m ≤15且m 为整数)时,按(2)中设计的调运方案运输,总运费不超过5200元.求m 的最小值.【解答】解:(1)设这批防疫物资甲厂生产了a 吨,乙厂生产了b 吨,则: {a +b =5002a −b =100,解得{a =200b =300,即这批防疫物资甲厂生产了200吨,乙厂生产了300吨;(2)由题意得:y=20(240﹣x)+25[260﹣(300﹣x)]+15x+24(300﹣x)=﹣4x+11000,∵{x≥0240−x≥0300−x≥0x−40≥0,解得:40≤x≤240,又∵﹣4<0,∴y随x的增大而减小,∴当x=240时,可以使总运费最少,∴y与x之间的函数关系式为y=﹣4x+11000;使总运费最少的调运方案为:甲厂的200吨物资全部运往B地,乙厂运往A地240吨,运往B地60吨;(3)由题意和(2)的解答得:y=﹣4x+11000﹣500m,当x=240时,y最小=﹣4×240+11000﹣500m=10040﹣500m,∴10040﹣500m≤5200,解得:m≥9.68,而0<m≤15且m为整数,∴m的最小值为10.24.(12分)(2020•荆州)如图1,在平面直角坐标系中,A(﹣2,﹣1),B(3,﹣1),以O为圆心,OA的长为半径的半圆O交AO延长线于C,连接AB,BC,过O作ED∥BC 分别交AB和半圆O于E,D,连接OB,CD.(1)求证:BC是半圆O的切线;(2)试判断四边形OBCD的形状,并说明理由;(3)如图2,若抛物线经过点D且顶点为E.①求此抛物线的解析式;②点P是此抛物线对称轴上的一个动点,以E,D,P为顶点的三角形与△OAB相似,问抛物线上是否存在一点Q.使S△EPQ=S△OAB?若存在,请直接写出Q点的横坐标;若不存在,说明理由.【解答】(1)证明:如图1,设AB 与y 轴交于M ,∵A (﹣2,﹣1),B (3,﹣1),∴AB ∥x 轴,且AM =2,OM =1,AB =5, ∴OA =OC =√5,∵DE ∥BC ,O 是AC 的中点, ∴OE 是△ABC 的中位线, ∴AE =12AB ,BC =2OE , ∴E (12,﹣1),∴EM =12,∴OE =√OM 2+ME 2=√12+(12)2=√52, ∴BC =2OE =√5,在△ABC 中,∵AC 2+BC 2=(2√5)2+(√5)2=25,AB 2=52=25, ∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠ACB =90°, ∴BC ⊥AC ,∵AC 为半圆O 的直径,∴BC 是半圆O 的切线;(2)解:四边形OBCD 是平行四边形,理由是: 如图1,由(1)得:BC =OD =OA =√5, ∵OD ∥BC ,∴四边形OBCD 是平行四边形;(3)解:①如图2,由(1)知:OD =OA =√5,E 是AB 的中点,且E (12,﹣1),OE =√52,过D 作DN ⊥y 轴于N ,则DN ∥EM ,∴△ODN ∽△OEM , ∴ON OM=DN EM=OD OE,即ON 1=DN12=√5√52,∴ON =2,DN =1, ∴N (﹣1,2),设此抛物线的解析式为:y =a (x −12)2﹣1, 把N (﹣1,2)代入得:2=a (﹣1−12)2﹣1, 解得:a =43,∴此抛物线的解析式为:y =43(x −12)2﹣1,即y =43x 2−43x −23; ②存在,过D 作DG ⊥EP 于G ,设Q 的横坐标为x ,∵DG =1+12=32,EG =2+1=3,∴DE =√DG 2+EG 2=√(32)2+32=3√52,tan ∠DEG =DG EG =323=12,∵tan ∠OAM =OM AM =12,且∠DEG 和∠OAM 都是锐角, ∴∠DEG =∠OAM ,如图3,当△EPD ∽△AOB 时,EPAO=DE AB,即√5=3√525,∴EP =32,∵S △AOB =12AB ⋅OM =12×5×1=52, ∵S △EPQ =S △OAB , ∴12⋅EP ⋅|x −12|=52,即12×32×|x −12|=52,解得:x =236或−176;如图4,当△OAB ∽△DEP 时,AB EP=OA DE,即5EP=√53√52,∴EP =152, 同理得:12⋅152⋅|x −12|=52,解得:x =76或−16;综上,存在符合条件的点Q ,Q 点的横坐标为236或−176或76或−16.。

2020年中考数学试卷分类汇编:一元二次方程及其应用(1)解析

2020年中考数学试卷分类汇编:一元二次方程及其应用(1)解析

3一.选择题(共 26 小题)1.(2020•随州)用配方法解一元二次方程 x 2﹣6x ﹣4=0,下列变形正确的是()A . (x ﹣6)2=﹣4+36B . (x ﹣6)2=4+36C . (x ﹣3)2=﹣4+9D . (x ﹣3)2=4+92.(2020•安顺)三角形两边的长是 3 和 4,第三边的长是方程 x 2﹣12x +35=0 的根,则该三角形的周长为()A . 14B . 12C . 12 或 14D . 以上都不对3.(2020•广安)一个等腰三角形的两条边长分别是方程 x 2﹣7x +10=0 的两根,则该等腰三角形的周长是()A . 12B . 9C . 13D . 12 或 94.(2020•广州)已知 2 是关于 x 的方程 x 2﹣2mx +3m =0 的一个根,并且这个方程的两个根恰好是等腰三角形 ABC 的两条边长,则三角形 ABC 的周长为()A . 10B . 14C . 10 或 14D . 8 或 105.(2020•烟台)如果 x 2﹣x ﹣1=(x +1) ,那么 x 的值为( )A . 2 或﹣1B . 0 或 1C . 2D . ﹣16.(2020•山西)我们解一元二次方程 3x 2﹣6x =0 时,可以运用因式分解法,将此方程化为 3x (x ﹣2)=0,从而得到两个一元一次方程: x =0 或 x ﹣2=0,进而得到原方程的解为 x 1=0,x 2=2.这种解法体现的数学思想是()(( x +A . 转化思想B . 函数思想C . 数形结合思想D . 公理化思想7.(2020•贵港)若关于 x 的一元二次方程(a ﹣1)x 2﹣2x +2=0有实数根,则整数 a 的最大值为()A . ﹣1B . 0C . 1D . 28. 2020•河北)若关于 x 的方程 x 2+2x +a =0 不存在实数根,则 a 的取值范围是()A . a <1B . a >1C . a ≤1D . a ≥19.(2020•张家界)若关于 x 的一元二次方程 kx 2﹣4x +3=0有实数根,则 k 的非负整数值是()A . 1B . 0,1C . 1,2D . 1,2,310.(2020•达州)方程(m ﹣2)x 2﹣ x + =0 有两个实数根,则 m 的取值范围()A . m >B . m ≤ 且 m ≠2C . m ≥3D . m ≤3 且 m ≠211. 2020•攀枝花)关于 x 的一元二次方程(m ﹣2)2 (2m +1)x +m ﹣2﹣0 有两个不相等的正实数根,则 m 的取值范围是()A . m >B . m > 且 m ≠2C . ﹣ <m <2D .<m <212.(2020•安顺)若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第()象限.A.四B.三C.二D.一13.(2020•株洲)有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中a•c≠0,a≠c.下列四个结论中,错误的是()A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根B.如果方程M的两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=114.(2020•烟台)等腰直角三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n 的值为()A.9B.10C.9或10D.8或10 15.(2020•南充)关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②(m ﹣1)2+(n ﹣1)2≥2;③﹣1≤2m ﹣2n ≤1,其中正确结论的个数是()A . 0 个B . 1 个C . 2 个D . 3 个16.(2020•广西)已知实数 x 1,x 2 满足 x 1+x 2=7,x 1x 2=12,则以 x 1,x 2 为根的一元二次方程是()A . x 2﹣7x +12=0B . x 2+7x +12=0C . x 2+7x ﹣12=0D . x 2﹣7x ﹣12=017.(2020•怀化)设 x 1,x 2 是方程 x 2+5x ﹣3=0 的两个根,则 x 12+x 22 的值是()A . 19B . 25C . 31D . 3018.(2020•酒泉)今年来某县加大了对教育经费的投入, 2013 年投入 2500 万元,2020 年投入 3500 万元.假设该县投入教育经费的年平均增长率为 x ,根据题意列方程,则下列方程正确的是()A . 2500x 2=3500B . 2500(1+x )2=3500C . 2500(1+x %)2=3500D . 2500(1+x )+2500(1+x )2=350019.(2020•衡阳)绿苑小区在规划设计时,准备在两幢楼 房之间,设置一块面积为 900 平方米的矩形绿地,并且长比宽多 10 米.设绿地的宽为 x 米,根据题意,可列方程为()A . x (x ﹣10)=900B . x (x +10)=900C . 10(x +10)=900 D . 2[x +(x +10)]=90020.(2020•兰州)股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x,则x满足的方程是()A.(1+x)2=B.(1+x)2=C.1+2x= D.1+2x=21.(2020•益阳)沅江市近年来大力发展芦笋产业,某芦笋生产企业在两年内的销售额从20万元增加到80万元.设这两年的销售额的年平均增长率为x,根据题意可列方程为()A.20(1+2x)=80B.2×20(1+x)=80C.20(1+x2)=80D.20(1+x)2=8022.(2020•巴中)某种品牌运动服经过两次降价,每件件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315B.560(1﹣x)2=315C.560(1﹣2x)2=315D.560(1﹣x2)=315 23.(2020•宁夏)如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是()A.x2+9x﹣8=0B.x2﹣9x﹣8=0C.x2﹣9x+8=0D.2x2﹣9x+8=024.(2020•哈尔滨)今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加1600m2.设扩大后的正方形绿地边长为x m,下面所列方程正确的是()A.x(x﹣60)=1600B.x(x+60)=1600C.60(x+60)=1600D.60(x﹣60)=1600 25.(2020•日照)某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,那么每年投资的增长率为()A.20%B.40%C.﹣220%D.30%26.(2014•菏泽)已知关于x的一元二次方程x2+ax+b=0有一个非零根﹣b,则a﹣b的值为()A.1B.﹣1C.0D.﹣2(1)参考答案与试题解析一.选择题(共26小题)1.(2020•随州)用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是()A.(x﹣6)2=﹣4+36B.(x﹣6)2=4+36C.(x﹣3)2=﹣4+9D.(x﹣3)2=4+9考点:解一元二次方程-配方法.菁优网版权所有分析:根据配方法,可得方程的解.解答:解:x2﹣6x﹣4=0,移项,得x2﹣6x=4,配方,得(x﹣3)2=4+9.故选:D.点评:本题考查了解一元一次方程,利用配方法解一元一次方程:移项、二次项系数化为1,配方,开方.2.(2020•安顺)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14B.12C.12或14D.以上都不对考点: 解一元二次方程-因式分解法;三角形三边关系.菁优网版权所有分析: 易得方程的两根,那么根据三角形的三边关系,排 除不合题意的边,进而求得三角形周长即可.解答: 解:解方程 x 2﹣12x +35=0 得:x =5 或 x =7.当 x =7 时,3+4=7,不能组成三角形;当 x =5 时,3+4>5,三边能够组成三角形.∴该三角形的周长为 3+4+5=12,故选 B .点评: 本题主要考查三角形三边关系,注意在求周长时一 定要先判断是否能构成三角形.3.(2020•广安)一个等腰三角形的两条边长分别是方程 x 2﹣7x +10=0 的两根,则该等腰三角形的周长是()A . 12B . 9C . 13D . 12 或 9考点: 解一元二次方程-因式分解法;三角形三边关系;等 腰三角形的性质.菁优网版权所有分析: 求出方程的解,即可得出三角形的边长,再求出即 可.解答: 解:x 2﹣7x +10=0,(x ﹣2)(x ﹣5)=0,x ﹣2=0,x ﹣5=0,x 1=2,x 2=5,①等腰三角形的三边是 2,2,5x∵2+2<5,∴不符合三角形三边关系定理,此时不符合题意;②等腰三角形的三边是 2,5,5,此时符合三角形三边关系 定理,三角形的周长是 2+5+5=12; 即等腰三角形的周长是 12.故选:A .点评: 本题考查了等腰三角形性质、解一元二次方程、三 角形三边关系定理的应用等知识,关键是求出三角形的三边 长.4.(2020•广州)已知 2 是关于 x 的方程 x 2﹣2mx +3m =0 的一个根,并且这个方程的两个根恰好是等腰三角形 ABC 的两条边长,则三角形 ABC 的周长为()A . 10B . 14C . 10 或 14D . 8 或 10考点: 解一元二次方程-因式分解法;一元二次方程的解; 三角形三边关系;等腰三角形的性质.菁优网版权所有分析: 先将 x =2 代入 x 2﹣2mx +3m =0,求出 m =4,则方程即为 x 2﹣8x +12=0,利用因式分解法求出方程的根 x 1=2,2=6,分两种情况:①当 6 是腰时,2 是等边;②当 6 是底边时,2 是腰进行讨论.注意两种情况都要用三角形三边关系定理 进行检验.解答: 解:∵2 是关于 x 的方程 x 2﹣2mx +3m =0 的一个根,∴22﹣4m +3m =0,m =4,∴x 2﹣8x +12=0,解得 x 1=2,x 2=6.①当 6 是腰时,2 是等边,此时周长=6+6+2=14;②当 6 是底边时,2 是腰,2+2<6,不能构成三角形. 所以它的周长是 14.故选 B .点评: 此题主要考查了一元二次方程的解,解一元二次方 程﹣因式分解法,三角形三边关系定理以及等腰三角形的性 质,注意求出三角形的三边后,要用三边关系定理检验.5.(2020•烟台)如果 x 2﹣x ﹣1=(x +1) ,那么 x 的值为( )A . 2 或﹣1B . 0 或 1C . 2D . ﹣1考点: 解一元二次方程-因式分解法;零指数幂.菁优网版 权所有分析: 首先利用零指数幂的性质整理一元二次方程,进而 利用因式分解法解方程得出即可.解答: 解:∵x 2﹣x ﹣1=(x +1)0,∴x 2﹣x ﹣1=1,即(x ﹣2)(x +1)=0,解得:x 1=2,x 2=﹣1,当 x =﹣1 时,x +1=0,故 x ≠﹣1,故选:C .3 点评: 此题主要考查了因式分解法解一元二次方程以及零指数幂的性质,注意 x +1≠0 是解题关键.6.(2020•山西)我们解一元二次方程 3x 2﹣6x =0 时,可以运用因式分解法,将此方程化为 3x (x ﹣2)=0,从而得到两个一元一次方程: x =0 或 x ﹣2=0,进而得到原方程的解为 x 1=0,x 2=2.这种解法体现的数学思想是()A . 转化思想B . 函数思想C . 数形结合思想D . 公理化思想考点: 解一元二次方程-因式分解法.菁优网版权所有专题: 计算题.分析: 上述解题过程利用了转化的数学思想.解答: 解:我们解一元二次方程 3x 2﹣6x =0 时,可以运用因式分解法,将此方程化为 3x (x ﹣2)=0,从而得到两个一元一次方程:3x =0 或 x ﹣2=0,进而得到原方程的解为 x 1=0,x 2=2.这种解法体现的数学思想是转化思想,故选 A .点评: 此题考查了解一元二次方程﹣因式分解法,熟练掌握 因式分解的方法是解本题的关键.7.(2020•贵港)若关于 x 的一元二次方程(a ﹣1)x 2﹣2x +2=0有实数根,则整数 a 的最大值为()A . ﹣1B . 0C . 1D . 2(考点: 根的判别式;一元二次方程的定义.菁优网版权所有分析: 由关于 x 的一元二次方程(a ﹣1)x 2﹣2x +2=0 有实数根,则 △a ﹣1≠0,且 ≥0,即△=(﹣2)2﹣8(a ﹣1)=12﹣8a ≥0,解不等式得到 a 的取值范围,最后确定 a 的最大整数值.解答: 解:∵关于 x 的一元二次方程(a ﹣1)x 2﹣2x +2=0 有实数根,∴△=(﹣2)2﹣8(a ﹣1)=12﹣8a ≥0 且 a ﹣1≠0,∴a ≤ 且 a ≠1,∴整数 a 的最大值为 0.故选:B .点评: 本题考查了一元二次方程 ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)根的判别式△=b 2﹣4△ac .当 >0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△< 0, 方程没有实数根.也考查了一元二次方程的定义和不等式的 特殊解.8. 2020•河北)若关于 x 的方程 x 2+2x +a =0 不存在实数根,则 a 的取值范围是()A . a <1B . a >1C . a ≤1D . a ≥1考点: 根的判别式.菁优网版权所有分析:根据根的判别式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.解答:解:∵关于x的方程x2+2x+a=0不存在实数根,∴b2﹣4ac=22﹣4×1×a<0,解得:a>1.故选B.点评:此题主要考查了一元二次方程根的情况与判别式,关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.9.(2020•张家界)若关于x的一元二次方程kx2﹣4x+3=0有实数根,则k的非负整数值是()A.1B.0,1C.1,2D.1,2,3考点:根的判别式;一元二次方程的定义.菁优网版权所有分析:根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集得到k的范围,即可确定出k的非负整数值.解答:解:根据题意得:△=16﹣12k≥0,且k≠0,解得:k≤,则k的非负整数值为1.故选:A.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4△ac.当>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根10.(2020•达州)方程(m﹣2)x 2﹣x+=0有两个实数根,则m的取值范围()A.m>B.m≤且m≠2C.m≥3D.m≤3且m≠2考点:根的判别式;一元二次方程的定义.菁优网版权所有专题:计算题.分析:根据一元二次方程的定义、二次根式有意义的条件和判别式的意义得到,然后解不等式组即可.解答:解:根据题意得,解得m≤且m≠2.( x +故选 B .点评: 本题考查了根的判别式:一元二次方程ax 2+bx +c =0(△a ≠0)的根与 =b 2﹣4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0 时,方程有两 个相等的两个实数根;当△<0 时,方程无实数根.11. 2020•攀枝花)关于 x 的一元二次方程(m ﹣2)2 (2m +1)x +m ﹣2﹣0 有两个不相等的正实数根,则 m 的取值范围是()A . m >B . m > 且 m ≠2C . ﹣ <m <2D .<m <2考点: 根的判别式;一元二次方程的定义.菁优网版权所 有专题: 计算题.分析: 根据一元二次方程的定义和根的判别式的意义得到m ﹣2≠0 且 =(△2m +1)2﹣4(m ﹣2)(m ﹣2)>0,解得 m > 且m ≠2,再利用根与系数的关系得到﹣ >0,则 m ﹣2<0 时,方程有正实数根,于是可得到 m 的取值范围为 <m <2.解答: 解:根据题意得 m ﹣2≠0 且△=(2m +1)2﹣4(m ﹣2)(m ﹣2)>0,解得 m > 且 m ≠2,设方程的两根为a、b,则a+b=﹣>0,ab==1>0,而2m+1>0,∴m﹣2<0,即m<2,∴m的取值范围为<m<2.故选D.点评:本题考查了根的判别式:一元二次方程ax2+bx+c=0(△a≠0)的根与=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.也考查了根与系数的关系.12.(2020•安顺)若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第()象限.A.四B.三C.二D.一考点:根的判别式;一次函数图象与系数的关系.菁优网版权所有分析:根据判别式的意义得到△=(﹣2)2+4m<0,解得m <﹣1,然后根据一次函数的性质可得到一次函数y=(m+1)x+m﹣1图象经过的象限.解答:解:∵一元二次方程x2﹣2x﹣m=0无实数根,∴△<0,∴△=4﹣4(﹣m)=4+4m<0,∴m<﹣1,∴m+1<1﹣1,即m+1<0,m﹣1<﹣1﹣1,即m﹣1<﹣2,∴一次函数y=(m+1)x+m﹣1的图象不经过第一象限,故选D.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4△ac:当>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一次函数图象与系数的关系.13.(2020•株洲)有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中a•c≠0,a≠c.下列四个结论中,错误的是()A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根B.如果方程M的两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=1考点:根的判别式;一元二次方程的解;根与系数的关系.菁优网版权所有Ax x分析: 利用根的判别式判断 A ;利用根与系数的关系判断B ;利用一元二次方程的解的定义判断C 与D .解答: 解: 、如果方程 M 有两个相等的实数根,那么△=b 2﹣4ac =0,所以方程 N 也有两个相等的实数根,结论正确,不符合题意;B 、如果方程 M 的两根符号相同,那么方程 N 的两根符号也相同,那么△=b 2﹣4ac ≥0, >0,所以 a 与 c 符号相同, >0,所以方程 N 的两根符号也相同,结论正确,不符合题意;C 、如果 5 是方程 M 的一个根,那么 25a +5b +c =0,两边同时除以 25,得 c + b +a =0,所以 是方程 N 的一个根,结论正确,不符合题意;D 、如果方程 M 和方程 N 有一个相同的根,那么ax 2+bx +c =cx 2+bx +a ,(a ﹣c ) 2=a ﹣c ,由 a ≠c ,得 x 2=1, =±1, 结论错误,符合题意;故选 D .点评: 本题考查了一元二次方程根的情况与判别式△的关 系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个 相等的实数根;△<0⇔方程没有实数根.也考查了根与系数的关系,一元二次方程的解的定义.14.(2020•烟台)等腰直角三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n 的值为()A.9B.10C.9或10D.8或10考点:根的判别式;一元二次方程的解;等腰直角三角形.菁优网版权所有分析:由三角形是等腰直角三角形,得到①a=2,或b=2,②a=b①当a=2,或b=2时,得到方程的根x=2,把x=2代入x2﹣6x+n﹣1=0即可得到结果;②当a=b时,方程x2﹣6x+n﹣1=0有两个相等的实数根,由△=(﹣6)2﹣4(n﹣1)=0可的结果.解答:解:∵三角形是等腰直角三角形,∴①a=2,或b=2,②a=b两种情况,①当a=2,或b=2时,∵a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,∴x=2,把x=2代入x2﹣6x+n﹣1=0得,22﹣6×2+n﹣1=0,解得:n=9,当n=9,方程的两根是2和4,而2,4,2不能组成三角形,故n=9不合题意,②当a=b时,方程x2﹣6x+n﹣1=0有两个相等的实数根,∴△=(﹣6)2﹣4(n ﹣1)=0解得:n =10,故选 B .点评: 本题考查了等腰直角三角形的性质,一元二次方程 的根,一元二次方程根的判别式,注意分类讨论思想的应用.15.(2020•南充)关于 x 的一元二次方程 x 2+2mx +2n =0有两个整数根且乘积为正,关于 y 的一元二次方程y 2+2ny +2m =0 同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②(m ﹣1)2+(n ﹣1)2≥2;③﹣1≤2m ﹣2n ≤1,其中正确结论的个数是()A . 0 个B . 1 个C . 2 个D . 3 个考点: 根与系数的关系;根的判别式.菁优网版权所有 专题: 计算题.分析: ①根据题意,以及根与系数的关系,可知两个整数根都是负数;②根据根的判别式,以及题意可以得出 m 2﹣2n ≥0以及 n 2﹣2m ≥0,进而得解;③可以采用举例反证的方法解决,据此即可得解.解答: 解:①两个整数根且乘积为正,两个根同号,由韦达定理有,x 1•x 2=2n >0,y 1•y 2=2m >0,y 1+y 2=﹣2n <0,x 1+x 2=﹣2m <0,这两个方程的根都为负根,①正确;②由根判别式有:△=b 2﹣4ac =4m 2﹣8△n ≥0, =b 2﹣4ac =4n 2﹣8m ≥0,4m 2﹣8n =m 2﹣2n ≥0,4n 2﹣8m =n 2﹣2m ≥0,m 2﹣2m +1+n 2﹣2n +1=m 2﹣2n +n 2﹣2m +2≥2,(m ﹣1)2+(n ﹣1)2≥2,②正确;③∵y 1+y 2=﹣2n ,y 1•y 2=2m ,∴2m ﹣2n =y 1+y 2+y 1•y 2,∵y 1 与 y 2 都是负整数,不妨令 y 1=﹣3,y 2=﹣5,则:2m ﹣2n =﹣8+15=7,不在﹣1 与 1 之间,③错误,其中正确的结论的个数是 2,故选 C .点评: 本题主要考查了根与系数的关系,以及一元二次方 程的根的判别式,还考查了举例反证法,有一定的难度,注 意总结.16.(2020•广西)已知实数 x 1,x 2 满足 x 1+x 2=7,x 1x 2=12,则以 x 1,x 2 为根的一元二次方程是()A . x 2﹣7x +12=0B . x 2+7x +12=0C . x 2+7x ﹣12=0D . x 2﹣7x ﹣12=0考点: 根与系数的关系.菁优网版权所有分析: 根据以 x 1,x 2 为根的一元二次方程是 x 2﹣(x 1+x 2)x +x 1,x 2=0,列出方程进行判断即可.解答: 解:以 x 1,x 2 为根的一元二次方程 x 2﹣7x +12=0,故选:A .点评: 本题考查的是一元二次方程根与系数的关系,掌握以 x 1,x 2 为根的一元二次方程是 x 2﹣(x 1+x 2)x +x 1,x 2=0 是具体点关键.17.(2020•怀化)设 x 1,x 2 是方程 x 2+5x ﹣3=0 的两个根,则 x 12+x 22 的值是()A . 19B . 25C . 31D . 30考点: 根与系数的关系.菁优网版权所有分析: 根据一元二次方程的根与系数的关系,即可求得 x 1与 x 2 的和与积,所求的代数式可以用两根的和与积表示出来,即可求解.解答: 解:∵x 1,x 2 是方程 x 2+5x ﹣3=0 的两个根,∴x 1+x 2=﹣5,x 1x 2=﹣3,∴x 12+x 22=(x 1+x 2)2﹣2x 1x 2=25+6=31.故选:C .点评: 此题主要考查了根与系数的关系,将根与系数的关 系与代数式变形相结合解题是一种经常使用的解题方法. 18.(2020•酒泉)今年来某县加大了对教育经费的投入, 2013 年投入 2500 万元,2020 年投入 3500 万元.假设该县投入教育经费的年平均增长率为 x ,根据题意列方程,则下列方程正确的是( )2A . 2500x 2=3500B . 2500(1+x )2=3500C . 2500(1+x %)2=3500D . 2500(1+x )+2500(1+x )2=3500考点: 由实际问题抽象出一元二次方程.菁优网版权所有 专题: 增长率问题.分析: 根据 2013 年教育经费额×(1+平均年增长率)2=2020 年教育经费支出额,列出方程即可.解答: 解:设增长率为 x ,根据题意得 2500×(1+x )=3500,故选 B .点评: 本题考查一元二次方程的应用﹣﹣求平均变化率的方法.若设变化前的量为 a ,变化后的量为 b ,平均变化率为 x ,则经过两次变化后的数量关系为 a (1±x )2=b .(当增长时中间的“±”号选“+”,当下降时中间的“±”号选“﹣”).19.(2020•衡阳)绿苑小区在规划设计时,准备在两幢楼 房之间,设置一块面积为 900 平方米的矩形绿地,并且长比宽多 10 米.设绿地的宽为 x 米,根据题意,可列方程为()A . x (x ﹣10)=900B . x (x +10)=900C . 10(x +10)=900 D . 2[x +(x +10)]=900考点: 由实际问题抽象出一元二次方程.菁优网版权所有 专题: 几何图形问题.分析: 首先用 x 表示出矩形的长,然后根据矩形面积=长×宽列出方程即可.解答:解:设绿地的宽为x,则长为10+x;根据长方形的面积公式可得:x(x+10)=900.故选B.点评:本题考查了由实际问题抽象出一元二次方程,找到关键描述语,记住长方形面积=长×宽是解决本题的关键,此题难度不大.20.(2020•兰州)股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x,则x满足的方程是()A.(1+x)2=B.(1+x)2=C.1+2x= D.1+2x=考点:由实际问题抽象出一元二次方程.菁优网版权所有专题:增长率问题.分析:股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能≤10%,所以至少要经过两天的上涨才可以.设平均每天涨x,每天相对于前一天就上涨到1+x.解答:解:设平均每天涨x.则90%(1+x)2=1,即(1+x)2=,故选B.点评:此题考查增长率的定义及由实际问题抽象出一元二次方程的知识,这道题的关键在于理解:价格上涨x%后是原来价格的(1+x)倍.21.(2020•益阳)沅江市近年来大力发展芦笋产业,某芦笋生产企业在两年内的销售额从20万元增加到80万元.设这两年的销售额的年平均增长率为x,根据题意可列方程为()A.20(1+2x)=80B.2×20(1+x)=80C.20(1+x2)=80D.20(1+x)2=80考点:由实际问题抽象出一元二次方程.菁优网版权所有专题:增长率问题.分析:根据第一年的销售额×(1+平均年增长率)2=第三年的销售额,列出方程即可.解答:解:设增长率为x,根据题意得20(1+x)2=80,故选D.点评:本题考查一元二次方程的应用﹣﹣求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当下降时中间的“±”号选“﹣”).22.(2020•巴中)某种品牌运动服经过两次降价,每件件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315B.560(1﹣x)2=315C.560(1﹣2x)2=315D.560(1﹣x2)=315考点:由实际问题抽象出一元二次方程.菁优网版权所有专题:增长率问题.分析:设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是560(1﹣x),第二次后的价格是560(1﹣x)2,据此即可列方程求解.解答:解:设每次降价的百分率为x,由题意得:560(1﹣x)2=315,故选:B.点评:此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.23.(2020•宁夏)如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是()A.x2+9x﹣8=0B.x2﹣9x﹣8=0C.x2﹣9x+8=0D.2x2﹣9x+8=0考点:由实际问题抽象出一元二次方程.菁优网版权所有专题:几何图形问题.分析:设人行道的宽度为x米,根据矩形绿地的面积之和为60米2,列出一元二次方程.解答:解:设人行道的宽度为x米,根据题意得,(18﹣3x)(6﹣2x)=60,化简整理得,x2﹣9x+8=0.故选C.点评:本题考查了由实际问题抽象出一元二次方程,利用两块相同的矩形绿地面积之和为60米2得出等式是解题关键.24.(2020•哈尔滨)今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加1600m2.设扩大后的正方形绿地边长为x m,下面所列方程正确的是()A.x(x﹣60)=1600B.x(x+60)=1600C.60(x+60)=1600D.60(x﹣60)=1600考点:由实际问题抽象出一元二次方程.菁优网版权所有专题:几何图形问题.分析:设扩大后的正方形绿地边长为xm,根据“扩大后的绿地面积比原来增加1600m2”建立方程即可.解答:解:设扩大后的正方形绿地边长为xm,根据题意得x2﹣60x=1600,即x(x﹣60)=1600.故选A.点评:本题考查了由实际问题抽象出一元二次方程,解题的关键是弄清题意,并找到等量关系.25.(2020•日照)某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,那么每年投资的增长率为()A.20%B.40%C.﹣220%D.30%考点:一元二次方程的应用.菁优网版权所有专题:增长率问题.分析: 首先设每年投资的增长率为 x .根据 2014 年县政府已投资 5 亿元人民币,若每年投资的增长率相同,预计 2016 年投资 7.2 亿元人民币,列方程求解.解答: 解:设每年投资的增长率为 x ,根据题意,得:5(1+x )2=7.2,解得:x 1=0.2=20%,x 2=﹣2.2(舍去),故每年投资的增长率为为 20%.故选:A .点评: 此题主要考查了一元二次方程的实际应用,解题的关键是掌握增长率问题中的一般公式为 a (1+x )n ,其中 n为共增长了几年,a 为第一年的原始数据,x 是增长率.26.(2014•菏泽)已知关于 x 的一元二次方程 x 2+ax +b =0有一个非零根﹣b ,则 a ﹣b 的值为()A . 1B . ﹣1C . 0D . ﹣2考点: 一元二次方程的解.菁优网版权所有分析: 由于关于 x 的一元二次方程 x 2+ax +b =0 有一个非零根﹣b ,那么代入方程中即可得到 b 2﹣ab +b =0,再将方程两边同时除以 b 即可求解.解答: 解:∵关于 x 的一元二次方程 x 2+ax +b =0 有一个非零根﹣b ,∴b 2﹣ab +b =0,∵﹣b ≠0,∴b≠0,方程两边同时除以b,得b﹣a+1=0,∴a﹣b=1.故选:A.点评:此题主要考查了一元二次方程的解,解题的关键是把已知方程的根直接代入方程进而解决问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料阅读题、定义新
1、(2020年潍坊市)对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[]12.1=,
[]33=,[]35.2-=-,若5104=⎥⎦
⎤⎢⎣⎡+x ,则x 的取值可以是( ). A.40 B.45 C.51 D.56
答案:C .
考点:新定义问题.
点评:本题需要学生先通过阅读掌握新定义公式,再利用类似方法解决问题.考查了学生观察问题,分析问题,解决问题的能力.
2、(5-&函数的综合与创新·2020东营中考)若定义:(,)(,)f a b a b =-, (,)(,)g m n m n =-,例如(1,2)(1,2)f =-,(4,5)(4,5)g --=-,则((2,3))g f -=( )
A .(2,3)-
B .(2,3)-
C .(2,3)
D .(2,3)--
6.B.解析:由题意得f(2,3)=(-2,-3),所以g(f(2,-3))=g(-2,-3)=(-2,3),故选B.
3、(2020四川宜宾)对于实数a 、b ,定义一种运算“⊗”为:a ⊗b =a 2+ab ﹣2,有下列命题:
①1⊗3=2;
②方程x ⊗1=0的根为:x 1=﹣2,x 2=1;
③不等式组的解集为:﹣1<x <4;
④点(,)在函数y =x ⊗(﹣1)的图象上.
其中正确的是( )
A .①②③④
B .①③
C .①②③
D .③④
考点:二次函数图象上点的坐标特征;有理数的混合运算;解一元二次方程-因式分解法;解一元一次不等式组;命题与定理.
专题:新定义.
分析:根据新定义得到1⊗3=12+1×3﹣2=2,则可对①进行判断;根据新定义由x ⊗1=0得到
x 2+x ﹣2=0,然后解方程可对②进行判断;根据新定义得,解得﹣1<x <4,可对③进行判断;
根据新定义得y =x ⊗(﹣1)=x 2﹣x ﹣2,然后把x =代入计算得到对应的函数值,则可对④进
行判断.
解答:解:1⊗3=12+1×3﹣2=2,所以①正确;
∵x ⊗1=0,
∴x 2+x ﹣2=0,
∴x 1=﹣2,x 2=1,所以②正确;
∵(﹣2)⊗x ﹣4=4﹣2x ﹣2﹣4=﹣2x ﹣2,1⊗x ﹣3=1+x ﹣2﹣3=x ﹣4, ∴,解得﹣1<x <4,所以③正确;
∵y =x ⊗(﹣1)=x 2﹣x ﹣2,
∴当x =时,y =﹣﹣2=﹣,所以④错误.
故选C .
点评:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足二次函数的解析式.也考查了阅读理解能力、解一元二次方程以及解一元一次不等式组.
4、(2020•舟山)对于点A (x 1,y 1),B (x 2,y 2),定义一种运算:A⊕B=(x 1+x 2)+(y 1+y 2).例如,A (﹣5,4),B (2,﹣3),A⊕B=(﹣5+2)+(4﹣3)=﹣2.若互不重合的四点C ,D ,E ,F ,满足C⊕D=D⊕E=E⊕F=F⊕D,则C ,D ,E ,F 四点( )
A . 在同一条直线上
B . 在同一条抛物线上
C . 在同一反比例函数图象上
D . 是同一个正方形的四个顶点
考点:
一次函数图象上点的坐标特征. 专题:
新定义. 分析: 如果设C (x 3,y 3),D (x 4,y 4),E (x 5,y 5),F (x 6,y 6),先根据新定义运算得出(x 3+x 4)
+(y 3+y 4)=(x 4+x 5)+(y 4+y 5)=(x 5+x 6)+(y 5+y 6)=(x 4+x 6)+(y 4+y 6),则x 3+y 3=x 4+y 4=x 5+y 5=x 6+y 6,若令x 3+y 3=x 4+y 4=x 5+y 5=x 6+y 6=k ,则C (x 3,y 3),D (x 4,y 4),E (x 5,y 5),F (x 6,y 6)都在直线y=﹣x+k 上.
解答: 解:∵对于点A (x 1,y 1),B (x 2,y 2),A⊕B=(x 1+x 2)+(y 1+y 2),
如果设C (x 3,y 3),D (x 4,y 4),E (x 5,y 5),F (x 6,y 6),
那么C⊕D=(x 3+x 4)+(y 3+y 4),
D⊕E=(x 4+x 5)+(y 4+y 5),
E⊕F =(x 5+x 6)+(y 5+y 6),
F⊕D=(x 4+x 6)+(y 4+y 6),
又∵C⊕D=D⊕E=E⊕F=F⊕D,
∴(x 3+x 4)+(y 3+y 4)=(x 4+x 5)+(y 4+y 5)=(x 5+x 6)+(y 5+y 6)=(x 4+x 6)+(y 4+y 6), ∴x 3+y 3=x 4+y 4=x 5+y 5=x 6+y 6,
令x 3+y 3=x 4+y 4=x 5+y 5=x 6+y 6=k ,
则C (x 3,y 3),D (x 4,y 4),E (x 5,y 5),F (x 6,y 6)都在直线y=﹣x+k 上,
∴互不重合的四点C ,D ,E ,F 在同一条直线上.
故选A .
点评: 本题考查了一次函数图象上点的坐标特征,以及学生的阅读理解能力,有一定难度.
5、(2020达州)已知()()
11f x x x =⨯+,则 ()()11111112f =
=⨯+⨯ ()()11222123f =
=⨯+⨯。

相关文档
最新文档