四年级数学奥数竞赛 (10)

合集下载

四年级下册数学奥数练习:第十讲 简单规划问题 全国通用(含答案)

四年级下册数学奥数练习:第十讲 简单规划问题 全国通用(含答案)

第十讲简单规划问题[同步巩固演练]1、芳芳要为奶奶冲杯热果汁,可是开水用光了,她需要烧开水(6分钟),打开果汁瓶(1分钟),洗茶杯(2分钟),她该怎样安排,才能尽快让奶奶喝上热果汁?2、小林为家里作饭,他择菜要8分钟,洗菜要5分钟,淘米2分钟,煮饭15分钟,切菜用4分钟,炒菜6分钟,如果只有单火头煤气灶做完这些事情至少需要多少分钟?3、甲、乙两人各拿一个水桶到水龙头前接水。

水龙头注满甲的水桶要5分钟,注满乙的水桶要4分钟。

现在只有一个水龙头,怎样安排两个接水的顺序,使他们所花的总时间最少?最少是多少分钟?4、甲、乙、丙、丁4人去厂长办公室谈话,甲谈完要15分钟,乙谈完要12分钟,丙谈完要18分钟、丁谈完要10分钟。

怎样安排这四从的谈话顺序,使四人花的总时间最少?最少是多少分钟?5、在一条铁路线上,依次设置了五个卸煤场,相邻两个煤场间隔都是50米,一号煤场存煤100吨,二号煤场存煤200吨,五号煤场存煤400吨,其余两个煤场是空的。

现在要把所有的煤集中至一个煤场里,集中在几号煤场最节省运输量?①②③④⑤100吨200吨400吨6、甲城有157吨货物要运到乙城。

大卡车载重量是5吨,小卡车的载重量是3吨,耗油量分别是10公升和7.5公升。

用多少辆大卡车及小卡车来运输,耗油量最省?7、在下图中,数字表示各段路的路程,求出图中从A到B的最短路程是多少?[能力拓展平台]1、小明放学回家,准备做饭、炒菜,洗饭锅用1分钟,洗米用2分钟,煮饭用20分钟,洗菜用4分钟,打鸡蛋用1分钟,炒两个菜,每个菜5分钟,厨房里有两个火头的煤气灶,请你帮小明算算,至少用多少时间才能做完这些事?2、用一只平底锅煎饼,每次只能放2只饼,煎一只饼要2分钟(正、反面各用1分钟),问:(1)煎3只饼最少需要几分钟?(2)如果要煎n(n>1)只饼,最少需要几分钟?3、学校举办运动会,在径赛方面有60米、100米、800米、1500米赛跑,每种赛跑因为报名人数不同,点名分组时间及比赛时间也有所不同,已知时间如下表所示,试安排最省时间的比赛顺序。

四年级数学奥数竞赛题

四年级数学奥数竞赛题

四年级数学奥数竞赛题一、简便运算1. 48×125解析:48×125 = 6×8×125 = 6×(8×125) = 6×1000 = 60002. 25×32×125解析:25×32×125 = 25×4×8×125 = (25×4)×(8×125) = 100×1000 = 1000003. 99×56 + 56解析:99×56 + 56 = 56×(99 + 1) = 56×100 = 56004. 102×76解析:102×76 = (100 + 2)×76 = 100×76 + 2×76 = 7600 + 152 = 7752二、找规律5. 1,4,7,10,(),16,19解析:相邻两个数的差都是 3,所以括号里应填 13。

6. 2,6,18,54,(),486,1458解析:后一个数是前一个数的 3 倍,所以括号里应填 162。

7. 1,2,4,7,11,(),22,29解析:相邻两个数的差依次是 1,2,3,4,5,6,7,所以括号里应填 16。

三、平均数问题8. 小明期中考试语文、数学、英语三科的平均分是 92 分,其中语文 89 分,数学 95 分,英语多少分?解析:三科总分为 92×3 = 276 分,英语成绩为 276 - 89 - 95 = 92 分。

9. 五个数的平均数是 30,如果把其中一个数改为 50,则五个数的平均数变为35,改动的这个数原来是多少?解析:改动前五个数的总和为 30×5 = 150,改动后五个数的总和为 35×5 = 175,总数增加了 175 - 150 = 25,所以改动的这个数原来是 50 - 25 = 25。

2020-2021学年小学四年级奥数竞赛试卷及答案

2020-2021学年小学四年级奥数竞赛试卷及答案

2020-2021学年小学四年级奥数竞赛试卷一.填空题(共12小题,满分60分,每小题5分)1.(5分)算式201×8﹣20×18的计算结果是.2.(5分)A、B两个自然数,它们的和被3除余1,它们的差能被3整除.那么A被3除的余数是.3.(5分)黑板上写着1﹣2016一共2016个数字.小新对黑板上的数字进行如下操作:擦去其中两个,然后写上它们的差(大数减小数),最后黑板上只剩下一个数,这个数是(填“奇数”或者“偶数”).4.(5分)在一张足够长的纸条上从左向右依次写上1,2,…,999这999个自然数,然后从左到右每隔三个位点一个逗号:123,456,789,101,112,…,第20个逗号前的那个数码是.5.(5分)今年妹妹5岁,哥哥的年龄是她的2倍,等到哥20岁时,妹妹岁.6.(5分)袋子里有一些桃子,园园拿出总数的一半,然后放回去3个,这时袋子里还剩8个桃子,那么袋子里原来一共有个桃子.7.(5分)一艘货船从上游A码头运货到下游B码头后返回,已知货船在静水中的速度是20千米/时,水流的速度是4千米/时.问:这艘货船往回AB两码头一次的平均速度是千米/时.8.(5分)已知A、B均为三位数,A的各位数字和为4,B的各位数字和为23,且A、B的和的各位数字之和为9.那么A、B的和的最大值为.9.(5分)在一条水平直线上放了一个正方形和两个等腰直角三角形,如果斜着放置的正方形面积为6平方厘米,那么,阴影部分的面积和是平方厘米.10.(5分)孙悟空得到如意金箍棒后,小猴们都很羡慕,于是孙悟空去傲来国借兵器分给他们.已知孙悟空共借到多件兵器共600斤,并且每件兵器都不超过30斤.小猴们要把兵器带回去,但每只小猴最多只能拿50斤.为了保证把借到的所有兵器全部带回去,最少需要只小猴.(孙悟空不拿兵器)第 1 页共9 页。

高斯小学奥数四年级下册含答案第10讲_排列组合应用

高斯小学奥数四年级下册含答案第10讲_排列组合应用

第十讲排列组合应用上一讲学习了基本的排列组合公式,本讲主要解决一些实际问题.在解决实际问题时,先要判断出顺序对于问题的结果有没有影响,再考虑应该用排列还是组合来进行计算.排列和组合的区分在这一讲是我们学习的难点和重点.接下来我们通过一些生活中的例子,进一步来体会一下排列和组合的区别.例题19支球队进行足球比赛:(1)如果实行单循环制,即每两队之间恰好比赛一场.每场比赛后,胜方得3分,负方不得分,平局双方各得1分,那么一共要举行多少场比赛?9支队伍的得分总和最多为多少?(2)如果实行双循环制,即每两队之间分主、客场.那么一共要举行多少场比赛?「分析」每场比赛有两支队伍参加,现在要从几支队伍里挑呢?挑的时候这两支队伍有没有顺序?每场比赛中,两支队伍获得的分数之和最多是多少呢?练习1棋王争霸赛在8名选手间展开:(1)如果实行单循环赛制,共要进行多少场比赛?(2)如果实行双循环赛制,共要进行多少场比赛?例题2围棋兴趣小组一共有8名同学,请问:(1)如果从中选3名同学在第二天的早上、中午、晚上分别做值日,共有多少种选法?(2)如果从中选出3名同学去参加一次全市比赛,共有多少种选法?「分析」同样都是选出3个人,这两个问题之间有什么区别?练习2一次厨艺大赛中,主办方给定的菜谱中有7道菜,请问:(1)如果要求从这7道菜中选做2道菜,共有多少种不同的选法?(2)如果要求从这7道菜中选做1道作为主菜,另外1道作为副菜,共有多少种不同的选法?从公式:n n n m m n C A A =÷,可以看出:n n nm m n A C A =⨯,所以计算从m 个元素中选出n 个元素的排列数时也可以分成两步:先计算从m 个元素中选出n 个元素的组合数,再计算这n 个元素的排列数即可.接下来我们通过例题看看排列与组合之间有什么联系. 例题3王老师带着小高、卡莉娅、萱萱一行四人去参加一次聚会,主持人要求每个人领取一个彩球,这些球的颜色各不相同,共有12个.(1)小高是第一个取球的人,他一共选出了4个球,准备回头分给大家,那么一共有多少种选法?(2)小高回到座位后,把这4个球分给大家,一共有多少种分法?(3)最后他们四人手中拿到的球一共有多少种可能?「分析」(1)、(2)恰好是(3)的两个步骤,所以不难通过(1)、(2)的结果来计算(3).(1)、(2)应该按照排列来算还是按照组合来算呢?能不能跳过(1)、(2)直接计算(3)呢? 练习3先从10名同学中选出3人作为班委,再在这3人中确定出班长、学习委员和生活委员(一人只能担任一个职位),共有多少种不同的可能?例题4周末大扫除,老师要从10名男生和10名女生中选出5名留下打扫卫生. (1)如果随意选择,一共有多少种选择方法?(2)如果老师决定选出2名男生和3名女生,一共有多少种选择方法?「分析」(1)是从几名同学出选5名?(2)选2名男生有几种选法?选3名女生有几种选法?练习4老师要从9名男生和7名女生中挑出4人参加数学竞赛,共有多少种不同的选择方法?如果4人中要求有3名男生、1名女生呢?接下来我们学习圆周排列.从m 个不同的元素中取出n 个( n m )元素,并按照一定的顺序排成一个圆周,就是圆周排列.圆周排列与排列的不同之处在于圆周排列是首尾相邻的,旋转后相同的排法视为一种排法.如下图,1、2、3的三种排列:123、231、312,在圆周排列中都是一个排列;另外三种排列:132、321、213,在圆周排列中也是一个排列,而且这两个圆周排列是不同的.例题5从7个人中选出5个人围着圆桌坐成一圈,有多少种不同的坐法?「分析」从7个人中选出5个人的圆周排列,还能按照直线上的排列57A 种方法来计算吗?在我们组合问题里面,选取出来的和没有选取出来的两个部分之间是否有区别和顺序呢? 例题6(1)6个人分成A 、B 两队拔河,要求这两队都是3个人,一共有多少种分队的方法? (2)6个人分成两队拔河,要求每个队都是3个人,一共有多少种分队的方法? 「分析」这两个问题都是要分成两个队,每个队3个人,有什么区别吗?课堂内外杨辉三角刘杨辉三角形,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列.端点数为1的杨辉三角具有如下几个性质: (1)每个数等于它上方两数之和;(2)每行数字左右对称,由1开始逐渐变大; (3)第n 行的数字有n 项; (4)第n 行数字和为()21n -;(5)第n 行的第m 个数和第-n m 个数相等,即m n m n n C C -=这是组合数性质之一; (6)每个数字等于上一行的左右两个数字之和.可用此性质写出整个杨辉三角.即第n +1行的第i 个数等于第n 行的第i -1个数和第i 个数之和,即11i i i n n n C C C -+=+这也是组合数的性质之一;(7)第n 行的m 个数课表示为1m n C -,即为从n 个不同元素中取1m -个元素的组合数.作业1.某班毕业生中有10名同学相见了,他们互相都握了一次手,请问这次聚会大家一共握了多少次手?2. 要从15名士兵中选出2名分别担任正、副班长,共有多少种不同的选法?3. 先从10名同学中选出3人作为班委,再在这3人中确定出班长、学习委员和生活委员(一人只能担任一个职位),共多少种不同的可能?4. 卡莉娅走进一家商店要买些新衣服,现在从她看中的5件上衣和4条裤子中选出3件上衣和2条裤子,一共有多少种选法?5.6个人围坐在一张圆桌旁,有多少种坐法?第十讲 排列组合应用1. 例题1答案:36场,108分;72场详解:区分单循环制和双循环制,(1)单循环是9支球队中选取2支队伍即可,2支队伍不需要排序,是组合问题,即()29982136C =⨯÷⨯=场比赛.如果是分出胜负的则一场比赛会得3分,如果不分胜负则一场比赛会得2分,所以如果要让得分最多,那么36场都应该是分出胜负的,即363108⨯=分.(2)双循环制是9支球队中选取2支队伍后要排序,分主客场的,是排列问题,即299872A =⨯=场比赛.也可以根据第一问36272⨯=场比赛得到,因为单循环制的时候两支队伍比赛一场,而双循环是比赛两场,所以是2倍的关系. 2. 例题2答案:336;56详解:(1)从8名同学中选3名同学在早上、中午、晚上做值日,那么选出的这三人改变顺序为不同种选法,为排列问题,38876336A =⨯⨯=种选法.(2)从8名同学中选3人参加比赛,改变这三人的顺序任为一种选法,为组合问题,()3887632156C =⨯⨯÷⨯⨯=种选法. 3. 例题3答案:495种;24种;11880种详解:(1)只需要从12个不同的球中选出来4个,不需要排列,是组合问题,即()41212111094321495C =⨯⨯⨯÷⨯⨯⨯=种选法;(2)把4个球分给大家,这四个球会分给不同的人,所以需要排序,是组合问题,即44432124A =⨯⨯⨯=种分法;(3)其实这一问就是按照上面的两个步骤完成后的方法数,分步是用乘法原理,即441244952411880C A ⨯=⨯=种可能;另外一种做法就是从12个球中选出来4个,排列即排列问题,即412121*********A =⨯⨯⨯=种可能.4. 例题4答案:15540种;5400种详解:(1)随意选择,即从所有人中随便选出来5个人即可,()52020191817165432115504C =⨯⨯⨯⨯÷⨯⨯⨯⨯=种选择方法;(2)首先从10名男生中选取2名男生,再从10名女生中选取3名女生,这是一个分步的过程,所以一共有()()2310101092110983215400C C ⨯=⨯÷⨯⨯⨯⨯÷⨯⨯=种选择方法.5. 例题5答案:504种详解:圆桌问题的两种做法,第一种:7个人中选出来5个人按照一定顺序去排列,这是一个排列问题,即57A ;圆桌是可以旋转的,如果这5个人的顺序是ABCDE 、BCDEA 、CDEAB 、DEABC 、EABCD 这五种排序的方法其实都是一种坐法,所以一共有575504A ÷=种不同的坐法;第二种:先从7个人中选出5个人,有5721C =种方法,再把选出的5个人排在圆桌上,有55524A ÷=种方法,一共有2124504⨯=种方法.6. 例题6答案:20种;10种详解:(1)从6个人中选择3个人,即()3665432120C =⨯⨯÷⨯⨯=种选法,此时已经将两个队伍排序,所以一共有20种分队的方法;(2)从6个人中选择3个人,此时两个队伍是有区别的,可是此题两队没有区别,所以是36210C ÷=种分队的方法.7. 练习1答案:28场;56场简答:(1)单循环是8名选手中选取2名选手即可,2名选手不需要排序,是组合问题,即()28872128C =⨯÷⨯=场比赛.(2)双循环制是8名选手中选取2名选手后要排序,分主客选手,是排列问题,即288756A =⨯=场比赛.也可以根据第一问28256⨯=场比赛得到,因为单循环制的时候两名选手中比赛一场,而双循环是比赛两场,所以是2倍的关系.8. 练习2答案:21种;42种简答:(1)()27762121C =⨯÷⨯=种选法.(2)277642A =⨯=种选法.9. 练习3答案:720种简答:两种方法,第一种:先从10个人选出3个人不排序,即310C ,接下来给这三个人排序,即33A ,这是一个分步的过程,所以共有33103720C A ⨯=种不同的可能;第二种:从10个人中选出3个人,需要排序,即排列问题,310720A =种不同的可能.10. 练习4答案:1820种;588种简答:(1)随意选择,即从所有人中随便选出来4人即可,()4161615141343211820C =⨯⨯⨯÷⨯⨯⨯=种选择方法;(2)首先从9男生中选取3男生,再从7女生中选取1女生,这是一个分步的过程,所以一共有3197588C C ⨯=种选择方法.11. 作业1答案:45简答:从10人中任选2人就会有一次握手,共有()210109245=⨯÷=C 次握手.12. 作业2答案:210 简答:从15人中选出2人,分别担任正、副班长,共有2151514210=⨯=A 种方法.13. 作业3答案:720 简答:333103101098720⨯==⨯⨯=C A A 种方法.14. 作业4答案:60简答:从5件上衣中选3件,有()()3554332110=⨯⨯÷⨯⨯=C 种方法;从4条裤子中选2条,有()()2443216=⨯÷⨯=C 种方法;所以共有10660⨯=种选法.15. 作业5答案:120简答:先有1人坐定,剩下的5个人随便排:5554321120=⨯⨯⨯⨯=A 种坐法.。

小学数学四年级下册《奥数竞赛》试题(共25道,附答案解析)

小学数学四年级下册《奥数竞赛》试题(共25道,附答案解析)

四年级数学下册奥数竞赛试题班级考号姓名总分1、一条路长100米,从头到尾每隔10米栽1棵梧桐树,共栽多少棵树?2、12棵柳树排成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树?3、一根200厘米长的木条,要锯成10厘米长的小段,需要锯几次?4、蚂蚁爬树枝,每上一节需要10秒钟,从第一节爬到第13节需要多少分钟?5、在花圃的周围方式菊花,每隔1米放1盆花。

花圃周围共20米长。

需放多少盆菊花?6、从发电厂到闹市区一共有250根电线杆,每相邻两根电线杆之间是30米。

从发电厂到闹市区有多远?7、王老师把月收入的一半又20元留做生活费,又把剩余钱的一半又50元储蓄起来,这时还剩40元给孩子交学费书本费。

他这个月收入多少元?8、一个人沿着大提走了全长的一半后,又走了剩下的一半,还剩下1千米,问:大提全长多少千米?9、甲在加工一批零件,第一天加工了这堆零件的一半又10个,第二天又加工了剩下的一半又10个,还剩下25个没有加工。

问:这批零件有多少个?10、一条毛毛虫由幼虫长到成虫,每天长一倍,16天能长到16厘米。

问它几天可以长到4厘米?11、一桶水,第一次倒出一半,然后倒回桶里30千克,第二次倒出桶中剩下水的一半,第三次倒出180千克,桶中还剩下80千克。

桶里原来有水多少千克?12、甲、乙两书架共有图书200本,甲书架的图书数比乙书架的3倍少16本。

甲、乙两书架上各有图书多少本?13、小燕买一套衣服用去185元,问上衣和裤子各多少元?14、甲、乙、丙三人年龄之和是94岁,且甲的2倍比丙多5岁,乙2倍比丙多19岁,问:甲、乙、丙三人各多大?15、小明、小华捉完鱼。

小明说:“如果你把你捉的鱼给我1条,我的鱼就是你的2倍。

如果我给你1条,咱们就一样多了。

“请算出两个各捉了多少条鱼。

16、小芳去文具店买了13本语文书,8本算术书,共用去10元。

已知6本语文本的价钱与4本算术本的价钱相等。

问:1本语文本、1本算术本各多少钱?17、找规律,在括号内填入适当的数.75,3,74,3,73,3,( ),( )。

小学四年级上册奥数题(10篇)

小学四年级上册奥数题(10篇)

小学四年级上册奥数题(10篇)1.小学四年级上册奥数题篇一1、小明上山用了4小时,每小时行3千米,下山的速度加快,是6千米/时,下山用了多长的时间?2、车间原计划每天生产15台机器,24天就可以完成,实际每天生产18台,实际只要几天就可以完成任务?3、实验小学要为三、四年级的学生每人买一本价格为12元的作文辅导书。

已知三年级有145人,四年级有155人,两个年级一共需要多少元?4、有370人去旅游,每辆汽车坐30人,要几辆汽车才能拉完?5、有450千克大米,每天吃60千克,最多能吃几天?参考答案:1、4×3÷6=2(小时)2、15×24÷18=20(天)3、12×(145+155)=3600(元)4、370÷30=12(辆)……10(人)需要13辆5、450÷60=7.5(天)7天半2.小学四年级上册奥数题篇二1、小明的家在学校南边,小芳的家在学校北边,两家之间相距1410米,每天上学时,如果小明比小芳提前出发3分钟,两人就可以同时到校。

已知小明每分钟走70米,小芳每分钟走80米,小明的家离学校多少米?2、粮库里有860吨粮食,19辆同样的汽车5次拉走380吨,照这样计算,剩下的粮食要6次拉完,需要增加几辆同样的汽车?参考答案:1、所谓同时到校,也就是两人在校门口相遇。

已知两家之间的路程是1410米,二小明每天总是提前3分钟,这3分钟小明可以走3×70=210米,剩下的路程1 410-210=1200(米)是两人同时出发,相向而行,这样可以求出相遇时间。

有了相遇时间,问题也就得到了解决。

列式为:小明3分钟可以走:3×70=210(米)剩下的路程:1410-210=1200(米)小芳与小明相遇时间:1200÷(70+80)=8(分钟)小明所走的时间:8+3=11(分钟)小明家离学校的距离是:11×70=770(米)答:小明的家离学校770米。

四年级奥数题集

四年级奥数题集

四年级数学思维能力训练(1)1,一个植树小组植树。

如果每人栽5棵,还剩14棵;如果每人栽7棵,就缺4棵。

这个植树小组有多少人?一共有多少棵树?2,幼儿园把一些积木分给小朋友,如果每人分2个,则剩下20个;如果每人分3个,则差40个。

幼儿园有多少个小朋友?一共有多少个积木?3,某校安排宿舍,如果每间6人,则16人没有床位;如果每间8人,则多出10个床位。

问宿舍多少间?学生多少人?4,有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐9人。

问:这个班共有多少学生?5,学校将一批铅笔奖给三好学生。

如果每人奖9支,则缺45支;如果每人奖7支,则缺7支。

三好学生有多少人?铅笔有多少支?6,将月季花插入一些花瓶中。

如果每瓶插8朵,则缺少15朵;如果每瓶改为插6朵,则缺少1朵。

求花瓶的只数和月季花的朵数。

7,王老师给美术兴趣小组的同学分发图画纸。

如果每人发5张,则少32张;如果每人发3张,则少2张。

美术兴趣小组有多少名同学?王老师一共有多少张图画纸?8,老师将一些练习本发给班上的学生。

如果每人发10本,则有两个学生没分到;如果每人发8本,则正好发完。

有多少个学生?多少本练习本?9,有一些少先队员到山上去种一批树。

如果每人种16棵,还有24棵没种;如果每人种19棵,还有6棵没有种。

问有多少名少先队员?有多少棵树?10,小虎在敌人窗外听里边在分子弹:一人说每人背45发还多260发;另一人说每人背50发还多200发。

有多少敌人?多少发子弹?11,杨老师将一叠练习本分给第一小组的同学。

如果每人分7本,还多7本;如果每人分8本则正好分完。

请算一算,第一小组有几个学生?这叠练习本一共有多少本?12,崔老师给美术兴趣小组的同学分若干支彩色笔。

如果每人分5支则多12支;如果每人分8支还多3支。

请问每人分多少支刚好把彩色笔分完?13,学校给一批新入学的学生分配宿舍。

如果每个房间住12人,则34人没有位置;如果每个房间住14人,则空出4个房间。

四年级上册奥数试题-竞赛试卷 全国通用(含答案)

四年级上册奥数试题-竞赛试卷  全国通用(含答案)

小学四年级奥数竞赛试卷一、计数问题1.甲乙丙3个小朋友站成一排照相,共有种不同的排列方法.2.用1元,2元和5元的纸币,有种不同的方法凑出6元钱.3.数一数,图中有个三角形.4.如图所示,在2×2方格中,画一条直线最多穿过3个方格;在3×3方格中,画一条直线最多穿过5个方可知;那么在5×5方格中,画一条直线,最多穿过个方格.5.六一儿童节,四位小朋友各做了一个小礼物准备相互赠送,但要求自己不得留下自己做的礼物,他们收到礼物的不同方式有种.二、几何图形问题6.将一张长方形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形一定是.(填“三角形”、“长方形”、“梯形”或“菱形”)7.图是3×3的正方形方格,∠1与∠2相比,较大的是.8.各图中,阴影部分的面积与整个图形面积的比值最大的是图.9.将图中所示的三角形ABC分成面积相等的四个部分,请给出三种不同的分法.要求:在下面所给的三个图中作答.10.将一个三角形的三条边同时扩大相同的倍数,如图,得到的新三角形的面积变为原三角形面积的9倍,则新三角形的周长是原三角形的周长的倍.11.下列图形经过折叠不能围成正方体的是.12.把2、4、6、8、10、12这六个数字依次写在一个立方体的正面、背面、两个侧面以及两个底面上,然后把立方体展开,如图,最左边的正方形上的数字是12,则最右边的正方形上的数字是.13.将若干个边长为1的正六边形(即单位六边形)拼接起来,得到一个拼接图形,如图:那么,要拼接成周长等于18的拼接图形,需要多少个单位六边形?画出对应的一种图形.三、找规律14.3+12、6+10、12+8、24+6、48+4、…是按一定规律排列的一串算式,其中第六个算式的计算结果是.15.按规律填数:①2,4,7,11,16,②12,19,33,61,117,16.找一找规律,再在横线里填上适当的数.3、4、5、8、7、16、9、32、、四、其他问题17.请你任意写出5个真分数.18.光明小学参加课外活动小组的人数统计如图所示,则该校参加课外活动小组的共有人.19.2005年4月lO日是星期日,则2005年6月1日是星期.20.一个活动性较强的细菌每经过10秒就分裂为一个活动性较强的与一个活动性较弱的细菌,而一个活动性较弱的细菌每经过20秒就分裂为两个活动性较弱的细菌.问:一个活动性较强的细菌,经过60秒可繁殖多少个细菌?21.赛马比赛前,五位观众给A、B、C、D、E五匹赛马预测名次.甲说:“B第三名,C第五名.”乙说:“E第四名,D第五名.”丙说:“A第一名,E第四名.”丁说:“A第二名,B第一.”戊说:“A第三名,D第四名.”结果每人都只预测对了一半.“请问:这五匹马的名次是怎样排列的?”22.作家A、B、C、D、E依次坐成一排为同学们签名售书,已知每位同学恰好找座位相邻的三位作家签名,已知一共有22个同学同时找到B和D签名,并且C一共签名38次,A比E多签名6次,那么B一共签名次.23.如图,ABCD是一个梯形,已知三角形ABD的面积是12平方厘米,三角形AOD的面积比三角形BOC的面积少12平方厘米,那么,梯形ABCD的面积是平方厘米.24.2006年学校1月20日开始放寒假,3月1日上学,学校放了天寒假.25.假设某餐厅备有肉4种,鱼3种,蔬菜5种,有位客人预计肉、鱼和蔬菜各点一种,他有种点菜的方法.26.将自然数按下面的形式排列,试问:第20行最左边的数是,第20行所有数的和是.27.芳芳说:“我13岁,比惠惠小3岁,比萍萍大一岁”;惠惠说:“我不是年龄最小的,萍萍和我差4岁,萍萍是11岁”;萍萍说:“我比芳芳年龄小,芳芳10岁,惠惠比芳芳大2岁,”以上每人所说的三句话中,都有一句是错误的,则芳芳多少岁?惠惠多少岁,萍萍多少岁?2018年小学四年级奥数竞赛试卷参考答案与试题解析一、计数问题1.【分析】最左边的位置有3个小朋友可以选,中间位置还有2个小朋友可以选,最后一个位置只有1个小朋友可以选;各个位置上可以选的方法的积就是总的次数.【解答】解:3×2×1=6(种);答:有6种不同的排列方法.故答案为:6.【点评】本题也可以采取给三人编号,然后写出全部排列的方法求解.2.【分析】分类计数,分只有一种,只有两种逐个列举即可.【解答】解答:5+1=62+2+2=62+2+1+1=62+1+1+1+1=61+1+1+1+1+1=6共有5种方法.故答案为:5.【点评】本题考查了筛选与枚举问题,关键是确定分类的办法和凑数的范围,要注意按顺序列举.3.【分析】单个的小三角形有12个,由三个小三角形组成的三角形有6个,由九个小三角形组成的三角形有2个,则可以求出三角形的总个数.【解答】解:图中有三角形:12+6+2=20(个).故答案为:20.【点评】此题关键是将三角形进行分类再计数.4.【分析】如下图所示,那么在5×5方格中,画一条直线,最多穿过9个方格.【解答】解:在2×2方格中,画一条直线最多穿过3个方格,2+1;在3×3方格中,画一条直线最多穿过5个方可知,3+2;以此类推,那么在5×5方格中,画一条直线,最多穿过5+4=9个方格.答:那么在5×5方格中,画一条直线,最多穿过9个方格.故答案为:9.【点评】此题考查了数与形结合的规律,以上两种方法都可得解.5.【分析】结合题目的要求,我们不妨先设出四个小朋友,然后具体分析(过程见解答)即可得出答案.【解答】解答:设这四个小朋友分别是a,b,c,d,则收到a送的礼物有b、c、d三种可能,下面不妨以其中的一种可能为例分析:①以给b为例:b收到a送的礼物那么b送的礼物如果给a,那么必然是c和d交换礼物,这是一种b送的礼物如果给了c,那么c不能给a只能给d,所以d要给a,这也是一种同理b的礼物给了d又是一种则总共有1+1+1=3种即a送给b有3种;②同样,若给c和d也是各有3种;因此共计3+3+3=9种.故:此空为9.【点评】解答此题关键是理解题意,按要求进行分析即可得出答案.二、几何图形问题6.【分析】根据题意知,对折实际上就是对称,对折两次的话,剪下应有4条边,并且这4条边还相等,从而可以进行从题后的答案中选择.【解答】解:由题意知,对折实际上就是对称,对折2次的话,剪下应有4条边,并且这4条边还相等,只有菱形满足这一条件,故答案为:菱形.【点评】此题考查了利用对称设计图案.7.【分析】借助正方形和线段构成的角来比较角的大小.:∠1=180°﹣(∠3+∠4),∠2=180°﹣(∠4+∠5)=180°﹣2∠4.很明显∠3<∠4,所以180°﹣(∠3+∠4)>180°﹣2∠4.即∠1>∠2.【解答】解:∠1=180°﹣(∠3+∠4),∠2=180°﹣(∠4+∠5)=180°﹣2∠4.很明显∠3<∠4,所以180°﹣(∠3+∠4)>180°﹣2∠4.即∠1>∠2.【点评】利用正方形来确定角的度数.8.【分析】先写出分个图形阴影部分的面积与整个图形面积的比,然后比较这几个比值的大小,从而得出答案.【解答】解:由题意知:A、把圆平均分在了6份,阴影部分的面积与整个图形面积的比值是:,B、把正方形平均分成了8份,阴影部分的面积与整个图形面积的比值是:,C、把正方形平均分成了8份,阴影部分的面积与整个图形面积的比值是:,D、通过割补法可知,阴影部分的面积与整个图形面积的比值是:,通过比较可知最大的为,故答案为:B.【点评】此题考查了分数的意义和大小比较.9.【分析】根据等底等高的三角形面积相等划分即可.【解答】解:(答案不唯一)【点评】本题考查了等底等高的三角形面积相等的灵活应用.10.【分析】根据题干分析可得,原三角形与新三角形相似三角形,相似比是1:3.根据相似三角形的性质可得:相似三角形的面积的比等于相似比的平方,相似三角形的周长的比等于相似比.由此即可得出答案.【解答】解:根据题干可得原三角形与新三角形相似,相似比是1:3,由相似三角形的性质可得:周长的比等于相似比,即:原三角形周长:新三角形周长=1:3答:新三角形的周长是原三角形的周长的3倍.故答案为:3.【点评】此题考查了相似三角形的相似比与它们周长的比以及面积的比的性质.11.【分析】根据正方体展开图的常见形式作答即可.【解答】解:由展开图可知:A、B能围成正方体;C围成几何体时,有两个面重合,故不能围成正方体.故选C.【点评】展开图能折叠成正方体的基本类型有:“一,四,一”“三,三”“二,二,二”“一,三,二”.12.【分析】根据正方体的特征和展开图的形状可知,2在正面,4在背面;6和8在侧面;10和12在上下面;由此解答.【解答】解:通过上面的分析得:最右边的正方形上的数字是4.故答案为:4.【点评】此题主要考查正方体的特征及展开图的形状.13.【分析】先从变化中观察,寻找规律.细心观察四个图形,可以发现:在拼接图形时,每增加一个单位六边形,拼接图形的周长要么不增加,要么增加2或4,据此分析解答即可.【解答】解:因为两个单位六边形拼接的图形的周长只能是10,18﹣10=8,8=4+4=4+2+2=2+2+2+2,所以当拼接图形的周长等于18时,所拼接的单位六边形有4个、5个、6个或7个,如下图:【点评】本题考查图形的规律.三、找规律14.【分析】观察算式可以发现,式子中有两个加数,第一个加数3、6、12、24、48、…依次扩大2倍,第二个加数12、10、8、6、4…依次减少2,据此规律,第六个算式是96+2=98.【解答】解:第一个加数3、6、12、24、48、…依次扩大2倍,第二个加数12、10、8、6、4…依次减少2,第六个算式为:48×2+(4﹣2)=96+2=98.故答案为:98.【点评】观察式子,找出式子的变化规律,然后运用总结的规律解决问题.15.【分析】①后一个数是前一个数依次增加2,3,4,…所得.②19﹣12=7,33﹣19=14,61﹣33=28,117﹣61=56,依次增加7的1、2、4、8、16倍即可.【解答】解:①16+6=22②117+7×16=229故答案为:22,229.【点评】通过观察数字的特点,找出相邻两个数之间的倍数关系或者差之间的关系,再由此求解即可.16.【分析】奇数项是它前面的奇数项加2所得,偶数项是它前面的偶数项乘2所得,由此得出答案.【解答】解:9+2=11,32×2=64;故答案为:11,64.【点评】数列中的规律:关键是根据已知的式子或数得出前后算式或前后数之间的变化关系和规律,然后再利用这个变化规律再回到问题中去解决问题.四、其他问题17.【分析】根据真分数的定义解答即可.【解答】解:由题意知,分子小于分母的分数叫真分数,所以任意写出的5个真分数可为:、、、、;故答案为:、、、、;【点评】此题考查了真分数的定义.18.【分析】由于条形统计图的高度代表了数量的多少,所以要求参加课外活动小组的共有多少人,只要把所有小组的人数加起来即可.【解答】解:6+9+15+20+25+30,=105(人);故答案为:105.【点评】此题考查了学生根据条形统计图回答问题的能力.19.【分析】先求出从4月10日到6月1日经过了多少天,再求这些天里有几个星期,还余几天,根据余数判断6月1日是星期几.【解答】解:4月10日到4月30日经过了20天,5月有31天,再到6月1日又经过1天;共经过:20+31+1=52(天),52÷7=7(周)…3(天);即6月1日是星期三.故答案为:三.【点评】本题先求出经过的天数,再求这些天里有几周,还余几天,然后根据余数推算.20.【分析】每一个活动性较强的细菌都会分解,经过60秒仍然是1个一个活动性较强的细菌;根据一个活动性较弱的细菌每经过20秒就分裂为两个活动性较弱的细菌,而每10秒又会分裂出1个活动性较弱的细菌,列举出60秒内它们的数量.【解答】解:一个活动性较强的细菌最后只剩下1个;活动性较弱的细菌分裂过程如下:第10秒:1个,第20秒:1+1=2(个),第30秒:2+1+1=4(个),第40秒:2+2+1+1=6(个),第50秒:4+2+2+1+1=10(个),第60秒:4+4+2+2+1+1=14(个),14+1=15(个);答:一个活动性较强的细菌经过60秒可繁殖15个细菌.【点评】根据两种不同的细菌分裂方式分别求出60秒时它们各有的数量,再相加即可.21.【分析】根据丙说:“A第一名,E第四名.”假设E不是第四名,则A是第一名就正确,那么丁说:“A第二名,B第一.”都错误,这与每人都只预测对了一半相矛盾;所以E是第四名是正确,据此进一步解答即可.【解答】解:根据丙说:“A第一名,E第四名.”假设A是第一名,则E不是第四名,那么丁说:“A第二名,B第一.”都错误,这与每人都只预测对了一半相矛盾;所以E是第四名是正确,则,根据戊的表述可得A是第三名,再根据甲的表述可得C是第五名,因为A是第三名,再根据丁的表述可得B是第一名,则剩下的D 就是第二名,综合上述可得,B 是第一名,D 是第二名,A 是第三名,E 是第四名,C 是第五名.【点评】条件分析﹣﹣﹣假设法:假设可能情况中的一种成立,然后按照这个假设去判断,如果有与题设条件矛盾的情况,说明该假设情况是不成立的,那么与他的相反情况是成立的.22.【分析】同时找到B 和D 签名的肯定找了C 签名,因为C 一共签了38次,这样就可以确定找A 和E 签名的次数之和是38﹣22=16次,再由A 比E 多签名6次可以求出A 签的次数,因为找A 签名的人肯定找B 签名,所以可以推算出B 签名的次数.【解答】解:38﹣22=16(次)(16+6)÷2=11(次)11+22=33(次)故填33.【点评】此题的关键是分析38﹣22=16次所代表的含义是什么.23.【分析】根据等量加等量差不变,可知三角形ABD 和三角形ABC 的面积的差也是12平方厘米,由此可以求出三角形ABC 的面积,据此分析解答即可.【解答】解:S △AOD +S △AOB =S △ABD ,S △BOC +S △AOB =S △ABC ,则三角形ABD 的面积比三角形ABC 的面积少12平方厘米.S △ABC =12+12=24(平方厘米)S 梯形ABCD =24+12=36(平方厘米)故填:36.【点评】本题考查的是三角形和梯形的面积计算.24.【分析】2006年的1月份有31天,2月份有28天,据此解答即可.【解答】解:31﹣20+1+28=40(天)故填:40【点评】本题考查的是周期问题.25.【分析】根据题意可得,肉有4种选择,鱼有3种选择,蔬菜有5种选择,根据乘法原理可得,共有4×3×5=60种选择;据此解答即可.【解答】解:4×3×5=60(种)故答案为:60.【点评】本题考查了乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×m3×…×m n种不同的方法.26.【分析】观察数阵可得规律,每行数据的个数是奇数列,先求出第19行有多少个数,即1+2×(19﹣1)=37个,再求出19行的总个数1+3+5+…+37=361,再进一步解答即可.【解答】解:1+2×(19﹣1)=37(个)1+3+5+…+37=19×19=361(个)1+2×(20﹣1)=39(个)所以,第20行最左边的数是361+1=362;第20行最后一个数是:361+39=400第20行所有数的和是:(362+400)×39÷2=762×39÷2=14859故答案为:562;14859.【点评】一般地说,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.27.【分析】根据题意可知:芳芳说的“我13岁”和萍萍说的“芳芳10岁”这两句话中肯定有一句是对的,有一句是错的,据此分析解答即可.【解答】解:假设芳芳13岁是对的,则芳芳10岁就是错的,此时惠惠比芳芳大2岁,则惠惠是15岁,芳芳比萍萍大1岁,则萍萍是12岁,这样惠惠和萍萍就相差3岁,和惠惠说的“萍萍和我相差4岁”相矛盾,不符合题意.所以芳芳是10岁,此时惠惠13岁,萍萍9岁.答:芳芳10岁,惠惠13岁,萍萍9岁.【点评】本题考查的是逻辑推理.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一届“小机灵杯”数学竞赛决赛试卷(四年级组)
时间:60 分钟
1. 19=1×9+(1+9)
29=2×9+(2+9)
39=3×9+(3+9)
49=4×9+(4+9)
……..
189=18×9+(18+
9) 则________.
2. 110 除以一个两位数的余数是5,符合条件的所有两位数是________.
【答案】15,21,35
3. 把2012 写成N 个互不相同的正整数的和,N 最大等于________.
4. 1×1+2×2+3×3+….2011×2011+2012×2012 的和最后一位数是________.
5.用A、B、C、D 代表四个数字分别是12,14,16,18,将四个数字代入等式
A×B+B×C+B×D+C×D和最大是________.
6.把一个三位数的百位与个位上的两个数字交换,十位数不变,所得的新数与原数相等,这样
的数共有________个,其中能被4 整除的有________个.
7.
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
……………………
第一百行第三个=________.
8 将编号是1,2,3,….15的十五名学生按编号顺序面向里站成一圈,第一次,编号是1 的同学向后转,第二次,编号是2,3 的同学向后转,第三次编号是4,5,6 的同学向后转,….第15 次,全体同学向后转,当转完第12 次时,这时面向外的同学还有________名.
9.长方形ABCD 的面积是________.
1 2
3 6
9
10.一只猎狗,在它前面十步有一只兔子,兔子跑九步的距离等于狗跑五步的距离,兔子跑三步 的时间等于狗跑两步的时间,问狗跑________步能追上兔子.
11. 把 1 到 200 这两百个自然数中,既不是 3 的倍数,又不是 5 的倍数的数从小排到大排成一 排,其中第 100 个数是________
12.黑板上一共写了 65 个数,包括 11 个 11,12 个 12,13 个 13,14 个 14,15 个 15,每次 操作者都擦去其中 4 个不同的数并写上一个第 5 种数(如擦去 11,12,13,14,写上一个 15,或 者是擦去 12,13,14,15,写上一个 11….),如果经过若干次操作后,黑板上恰好剩下两个数, 这两数是________.
13.五个人比赛,每两个比一场,胜一场得 2 分,平一场得 1 分,负一场得 0 分;第一名没有平局, 第二名没有输过,五个人得分各不相同,问每个人得分是________.
14.1000 多根棍子可以摆成图 1(一行的长方形),也可以摆成图 2(二行的长方形),还可以 摆成图 3(正方形)的形状,都没有剩余,…问棍子…
最少________根.
图一
…… ……
· · · · · · 图二
…… …… …… …… …… …… ……
· · · · · ·
图三
15.所有三位回文数之和为________.。

相关文档
最新文档