液压基础培训讲演示课件
合集下载
液压基础知识培训资料幻灯片PPT

先导操纵阀
先导操纵阀
工作原理:手柄输出位移,使顶杆压缩弹簧并带动阀芯下移,控制油减 压输出。输出压力与弹簧3的压缩量〔弹簧力〕成比例,输出压力与弹簧 3通过阀芯构成平衡状态。当输出压力大于弹簧3的作用力时,阀芯上移, 控制油窗口减小,输出压力减小,直到输出压力与手柄的操作要求相适 应。在最大手柄位移时,控制油等压输出。
泄漏油路——一些元件如泵、马达、控制阀等泄漏的流量需直接回油箱,要求一 般无压力或压力很小<1bar.具有无压,小
流量的特点。
控制油路——为控制主油路元件而提供液压动力源的油路。通常包括控制泵,过 滤器,蓄能器,溢流 阀,换向阀,先导操
纵阀等元件。
操作类型:直动式操作,间接式操作
先导操纵阀
本节所述的先导操纵阀限于先导液控系统的元件。 根据操作部位、油路通道数量的不同,先导液控操纵阀可以有手柄式,脚踏式,单手柄,多联手 柄等不同的构造构造形式。
起重机的工作原理
起重机的平安保护 起重机的平安保护有:超载保护,如力矩限制器。其作用是当起重机处于超载范 围时截断危险方向的运动。这种截断根据液压系统类型的不同而不同。 当系统为先导液压控制时,是截断控制油路〔通过截断相应电磁阀的电路,使 控制油路卸荷〕进而截断主油路; 当系统为直动型控制时,是截断主工作油路;〔通过截断相应电磁溢流阀的电路 〔或遥控式溢流阀的泄荷电磁阀的电路使控制油路卸荷〕进而使主工作油路卸荷 这种保护方式是在任何压力值上均可进展的,因此要求压力释放要彻底。 另一种平安保护方式是限位保护。如高度〔过卷〕限位,三圈〔过放〕保护。 这种保护方式亦是在任何压力值上均可进展的,也要求压力释放要彻底。 综上所述,起重机的平安保护是通过截断液压油路的压力、流量方式进展的。涉 及的机构有主、副起升机构〔起升和下降方向〕、变幅机构〔向下变幅方向〕、 伸缩臂机构〔伸出方向〕。
《液压基础知识培训》课件

液压缸的应用
03
机械手、挖掘机、起重机等。
03
液压系统的工作原理
液压系统的基本回路
方向控制回路
用于控制执行元件的运动方向 ,如换向阀。
压力控制回路
用于控制系统的压力,如溢流 阀。
速度控制回路
用于控制执行元件的运动速度 ,如节流阀。
多执行元件控制回路
用于控制多个执行元件的协调 动作,如顺序阀。
液压系统的控制方式
高效化
随着工业技术的发展,液 压系统将更加注重提高能 量利用率和减少能量损失 ,实现高效化。
智能化
液压系统将与信息技术、 传感器技术等结合,实现 智能化控制和监测,提高 系统的自动化和可靠性。
绿色环保
液压系统将更加注重环保 和节能,采用新型的液压 元件和材料,降低能耗和 减少污染。
液压系统在智能制造领域的应用前景
液压系统的定期检查与调试
总结词
定期检查与调试液压系统是确保其性能 和安全的重要措施。
VS
详细描述
应定期检查系统的压力、流量、温度等参 数是否正常,以及各元件的工作状态和连 接是否良好。同时,应对系统进行调试, 调整各元件的工作参数,以确保系统的性 能和稳定性。在检查和调试过程中,如发 现异常情况,应及时处理并记录。
开环控制
系统的输出不反馈到输 入,控制精度较低。
闭环控制
系统的输出反馈到输入 ,通过反馈信号调整控 制信号,控制精度高。
比例控制
通过比例电磁阀调节液 压系统的参数,调节精
度高。
伺服控制
通过伺服电机和伺服阀 实现高精度的位置和速
度控制。
液压系统的常见故障与排除方法
油温过高
检查液压油的粘度是否合适,检查散热器是 否正常工作。
液压基础培训讲解ppt课件

特点
传动平稳、无级调速、过载保护 、布局灵活、容易实现自动化等 。
液压系统组成要素
动力元件
将原动机的机械能转换成液体 的压力能,如液压泵。
执行元件
将液体的压力能转换成机械能 ,驱动负载作直线往复运动或 回转运动,如液压缸、液压马 达。
控制元件
控制和调节液压系统中液体的 压力、流量和方向,如压力控 制阀、流量控制阀、方向控制 阀等。
包括液压泵、油箱、电机 、控制阀等组成部分,确 保学员了解实验台架的基 本构造。
安全操作规程讲解
强调实验前的安全检查、 操作中的注意事项以及应 急处理措施,提高学员的 安全意识。
实验台架搭建实践
指导学员亲自动手搭建实 验台架,熟悉各部件的连 接方式和安装要求。
基本操作技能训练指导
液压泵启动与调试
教授学员如何正确启动液压泵, 并进行必要的调试,确保液压泵
方向控制阀
压力控制阀
流量控制阀
作用
控制液压油的流动方向 ,如单向阀、换向阀等
控制液压系统的压力, 如溢流阀、减压阀等
控制液压油的流量,如 节流阀、调速阀等
实现液压系统的压力、 流量和方向控制
辅助元件功能介绍
油箱
储存液压油,起到散热、沉淀杂质的 作用
滤油器
过滤液压油中的杂质,保证系统清洁 度
冷却器
冷却高温液压油,保证系统正常工作 温度
设计要点
合理选择液压元件、确定调速范围、考虑系统效 率等。
方向控制回路实现方法
方向控制回路作用
01
控制执行元件的启动、停止和换向。
常见方向控制阀
02
单向阀、换向阀等。
实现方法
03
采用不同组合的方向控制阀,实现多种换向要求。
传动平稳、无级调速、过载保护 、布局灵活、容易实现自动化等 。
液压系统组成要素
动力元件
将原动机的机械能转换成液体 的压力能,如液压泵。
执行元件
将液体的压力能转换成机械能 ,驱动负载作直线往复运动或 回转运动,如液压缸、液压马 达。
控制元件
控制和调节液压系统中液体的 压力、流量和方向,如压力控 制阀、流量控制阀、方向控制 阀等。
包括液压泵、油箱、电机 、控制阀等组成部分,确 保学员了解实验台架的基 本构造。
安全操作规程讲解
强调实验前的安全检查、 操作中的注意事项以及应 急处理措施,提高学员的 安全意识。
实验台架搭建实践
指导学员亲自动手搭建实 验台架,熟悉各部件的连 接方式和安装要求。
基本操作技能训练指导
液压泵启动与调试
教授学员如何正确启动液压泵, 并进行必要的调试,确保液压泵
方向控制阀
压力控制阀
流量控制阀
作用
控制液压油的流动方向 ,如单向阀、换向阀等
控制液压系统的压力, 如溢流阀、减压阀等
控制液压油的流量,如 节流阀、调速阀等
实现液压系统的压力、 流量和方向控制
辅助元件功能介绍
油箱
储存液压油,起到散热、沉淀杂质的 作用
滤油器
过滤液压油中的杂质,保证系统清洁 度
冷却器
冷却高温液压油,保证系统正常工作 温度
设计要点
合理选择液压元件、确定调速范围、考虑系统效 率等。
方向控制回路实现方法
方向控制回路作用
01
控制执行元件的启动、停止和换向。
常见方向控制阀
02
单向阀、换向阀等。
实现方法
03
采用不同组合的方向控制阀,实现多种换向要求。
液压基础培训讲解(ppt)

液压传动之
液压传动的发展之国内篇
❖ 我国液压技术从上世纪60年代开始发展较快, 新产品研制开发和先进国家不差上下,但其 发展速度远远落后于同期发展的日本,主要 由于工艺制造水平跟不上去,制造比较困难, 材料性能不能满足设计需要,影响了我国流 体传动技术的发展。
液压传动之
液压传动的发展趋势
❖ 目前,流体传动技术正在向着高压、 高速、 高效率、大流量、大功率、微型化、低噪声、 低能耗、经久耐用、高度集成化方向发展, 向着用计算机控制的机电一体化方向发展。
液压传动之
液压传动的发展史
❖ 第三阶段:上世纪50、60、70年代,工艺水 平有了很大提高,液压也迅速发展,渗透到 国民经济的各个领域:从蓝天到水下,从军 用到民用,从重工业到轻工业,到处都有流 体传动与控制技术
液压传动之
应用举例
如:火炮跟踪、飞机和导弹的动、炮塔稳定、 海底石油探测平台固定、煤矿矿井支承、矿 山用的风钻、火车的刹车装置、液压装载、 起重、挖掘、轧钢机组、数控机床、多工位 组合机床、全自动液压车床、液压机械手等。
A2
压力相等:p1=p2 F1/A1=F2/A2 ,或:F1/F2=A1/A2
n帕斯卡定律“平衡液体内某一点的液体压强 等值地传递到液体内各处”
液压传动之
液压传动的工作原理
v1 =L1/t
v2 =L2/t
p1
F1
A1
p2
F2
A2
压力相等:p1=p2 F1/A1=F2/A2 ,或:F1/F2=A1/A2 容积相等:W1=W2 A1L1=A2L2 或 L1/L2=A2/A1 同样时间段t内: v1/v2=A2/A1
老牌号——20号液压油,指这种油在50℃ 时的平均运动粘度为20 cst。 新牌号——L—HL32号液压油,指这种油在 40℃时的平均运动粘度为 32cst。
液压培训ppt课件

液压系统对液压缸的位置控制 精度要求较高,采用了死挡铁 停留来保证其定位精度及加工 的重复性。
万能外圆磨床液压系统
磨床工作台的往复运动采用了由 换向阀换向的液压缸回路。
砂轮箱横向进给运动采用了由换 向阀换向的液压马达回路。为减 小换向冲击,采用电液换向阀换
向。
磨床液压系统的特点:执行元件 多、要求同步运动、调速范围大
且平稳、保压性能要求高。
05
液压系统的设计与计 算
明确设计要求进行工况分析
明确设计要求
了解设备的用途、性能、 工作环境等,确定液压系 统的设计要求。
进行工况分析
分析设备的工作循环、负 载特性、速度特性等,为 液压系统设计提供依据。
确定系统类型
根据工况分析结果,选择 合适的液压系统类型,如 开式系统、闭式系统等。
液压系统的使用维护
使用操作规范
01
遵守操作规程,避免违规操作;保持系统清洁,定期更换液压
油和滤芯。
日常维护内容
02
定期检查系统压力、温度、流量等参数是否正常;检查管道、
接头等是否泄漏;检查紧固件是否松动。
定期保养计划
03
根据设备使用情况,制定定期保养计划,包括更换液压油、清
洗油箱、检查电气元件等。
THANKS
感谢观看
压缩性
油液受压力作用时体积 缩小的性质,影响系统 的动态响应和稳定性。
润滑性
油液具有润滑摩擦副的 作用,减少磨损和摩擦
热。
液压系统组成
执行元件
将液体的压力能转换为机械能 ,驱动工作机构运动,如液压 缸和液压马达。
辅助元件
包括油箱、滤油器、冷却器、 加热器、蓄能器等,保证系统 正常工作。
2024年度-《液压基础知识培训》ppt课件

同步动作回路
使多个液压缸在运动中保持相同的位移或速 度。
多缸快慢速互不干扰回路
实现多个液压缸各自独立的速度调节,互不 干扰。
16
04
典型液压系统分析与应用
17
工业机械手液压系统
液压驱动机械手
01
通过液压缸和液压马达实现机械手的运动,具有驱动力大、运
动平稳等优点。
控制系统
02
采用液压伺服系统或比例控制系统,实现机械手的精确控制和
压力控制阀
控制液压系统中的压力,如溢流阀、 减压阀等
10
辅助元件:油箱、滤油器、冷却器等
01
02
03
04
油箱
储存液压油,起到散热、沉淀 杂质和分离空气的作用
滤油器
过滤液压油中的杂质,保证油 液的清洁度
冷却器
降低液压油的温度,保证系统 的正常工作温度
其他辅助元件
油管、管接头、密封件等,保 证液压系统的密封性和正常工
对油箱、管路等部件进行清洗,确保 内部无杂质、铁屑等污染物。
28
调试过程检查项目和方法
01
02
03
04
检查各液压元件的安装紧固情 况,防止松动或泄漏。
按照液压系统原理图,逐步检 查各回路的连通情况,确保油
路畅通。
启动液压泵,观察系统压力是 否正常,检查各液压元件的动
作是否灵活、准确。
对系统进行空载运行,观察系 统的稳定性,检查有无异常振
现代阶段
20世纪80年代至今,随着新材料、新工艺和新技术的不断涌现,液 压技术得到了更加广泛的应用和发展。
6
02
液压元件及工作原理
7
动力元件:液压泵
液压泵的工作原理
液压系统基础知识培训课件

过滤器(3)
液位开关(1.2)
退销控制换向 线圈/手动机 构(22.2)
压力继电 器(20) 溢流阀 (16.4)
进销控制换向 线圈/手动机 构(22.1)
6
顺序阀(13)
溢流阀 (5)
系统压力测量 口(6.1)
节流阀 (14)
锁定销控制电 磁换向阀(21)
退销控制线 圈(22.2)
压力继 电器 (20)
减压阀
25
手动泵
12
减压阀
32
液压表
13
顺序阀
4
顺序阀(13)
进销控制线 圈/手动机 构(22.1)
叶轮刹车电磁换 向球阀(19.1)
截止阀(18) 偏航控制换向电 磁球阀(16.2)
发讯器(3.1)
液压泵电源进 线
5
压力继电器 (10) 节流阀(14) 减压阀(20)
截止阀(8) 减压阀(11)
与
零压阀动作
3、叶轮刹车与锁定
机组不在维护模式下
发电机转速大于3rpm 或
液压系统故障
转子制动器磨损故障
禁止叶轮刹车
叶轮锁定对中位置
叶轮锁定使能
31
32
33
3.2
旁通阀
16.7 截止阀(压力释放)
4
单向阀
19
叶轮刹车模块
5
溢流阀(系统保护)
19.1 叶轮刹车电磁换向球阀
7
蓄能器
20
压力继电器(叶轮刹车 压力)
8
截止阀
21 锁定销控制电磁换向阀
9
单向阀
22.1
10 压力继电器(系统压力) 22.2
进销控制换向线圈/手 动机构
退销控制换向线圈/手 动机构
液位开关(1.2)
退销控制换向 线圈/手动机 构(22.2)
压力继电 器(20) 溢流阀 (16.4)
进销控制换向 线圈/手动机 构(22.1)
6
顺序阀(13)
溢流阀 (5)
系统压力测量 口(6.1)
节流阀 (14)
锁定销控制电 磁换向阀(21)
退销控制线 圈(22.2)
压力继 电器 (20)
减压阀
25
手动泵
12
减压阀
32
液压表
13
顺序阀
4
顺序阀(13)
进销控制线 圈/手动机 构(22.1)
叶轮刹车电磁换 向球阀(19.1)
截止阀(18) 偏航控制换向电 磁球阀(16.2)
发讯器(3.1)
液压泵电源进 线
5
压力继电器 (10) 节流阀(14) 减压阀(20)
截止阀(8) 减压阀(11)
与
零压阀动作
3、叶轮刹车与锁定
机组不在维护模式下
发电机转速大于3rpm 或
液压系统故障
转子制动器磨损故障
禁止叶轮刹车
叶轮锁定对中位置
叶轮锁定使能
31
32
33
3.2
旁通阀
16.7 截止阀(压力释放)
4
单向阀
19
叶轮刹车模块
5
溢流阀(系统保护)
19.1 叶轮刹车电磁换向球阀
7
蓄能器
20
压力继电器(叶轮刹车 压力)
8
截止阀
21 锁定销控制电磁换向阀
9
单向阀
22.1
10 压力继电器(系统压力) 22.2
进销控制换向线圈/手 动机构
退销控制换向线圈/手 动机构
液压基础知识培训ppt课件

4.1.2 换向阀:换向阀是利用阀芯对阀体的 相对位置改变来控制油路接通、关断或改 变油液流动方向。一般以下述方法分类。
1. 按接口数及切换位置数分类 接口是指阀上各种接油管的进、出口,
进油口通常标为P,回油口则标为R或T, 出油口则以A、B来表示。阀内阀芯可移动 的位置数称为切换位置数,通常我们将接 口称为“通”,将阀芯的位置称为“位”, 例如:图4-3所示的手动换向阀有三个切 换位置,4个接口,我们称该阀为三位四 通换向阀。该阀的三个工作位置与阀芯在 阀体中的对应位置如图4-4所示,各种位 和通的换向阀符号见图4-5所示。
• 气穴(空穴): 在流动液体中,由于某点处的压力低于空气分离压
而产生汽泡的现象
• 液压冲击:在液压系统中由于某种原因,液体压力在一瞬间会突
然升高,产生很高的压力峰值,这种现象称为液压冲击
18
流量
• 流量与速度的关系 • 流量的调节 • 单位
19
压力
• 压力 压强 • 压力的调节 • 压力的决定因素 • 压力表
61
4.1 方向控制阀(direction control valves)
4.1.2 换向阀:换向阀是利用阀芯对阀体的相对位置改变来控制油路 接通、关断或改变油液流动方向。一般以下述方法分类。
1. 按接口数及切换位置数分类 接口是指阀上各种接油管的进、出口,进油口通常标为P,回
油口则标为R或T,出油口则以A、B来表示。阀内阀芯可移动的位置 数称为切换位置数,通常我们将接口称为“通”,将阀芯的位置称为 “位”,例如:图4-3所示的手动换向阀有三个切换位置,4个接口, 我们称该阀为三位四通换向阀。该阀的三个工作位置与阀芯在阀体中 的对应位置如图4-4所示,各种位和通的换向阀符号见图4-5所示。
1. 按接口数及切换位置数分类 接口是指阀上各种接油管的进、出口,
进油口通常标为P,回油口则标为R或T, 出油口则以A、B来表示。阀内阀芯可移动 的位置数称为切换位置数,通常我们将接 口称为“通”,将阀芯的位置称为“位”, 例如:图4-3所示的手动换向阀有三个切 换位置,4个接口,我们称该阀为三位四 通换向阀。该阀的三个工作位置与阀芯在 阀体中的对应位置如图4-4所示,各种位 和通的换向阀符号见图4-5所示。
• 气穴(空穴): 在流动液体中,由于某点处的压力低于空气分离压
而产生汽泡的现象
• 液压冲击:在液压系统中由于某种原因,液体压力在一瞬间会突
然升高,产生很高的压力峰值,这种现象称为液压冲击
18
流量
• 流量与速度的关系 • 流量的调节 • 单位
19
压力
• 压力 压强 • 压力的调节 • 压力的决定因素 • 压力表
61
4.1 方向控制阀(direction control valves)
4.1.2 换向阀:换向阀是利用阀芯对阀体的相对位置改变来控制油路 接通、关断或改变油液流动方向。一般以下述方法分类。
1. 按接口数及切换位置数分类 接口是指阀上各种接油管的进、出口,进油口通常标为P,回
油口则标为R或T,出油口则以A、B来表示。阀内阀芯可移动的位置 数称为切换位置数,通常我们将接口称为“通”,将阀芯的位置称为 “位”,例如:图4-3所示的手动换向阀有三个切换位置,4个接口, 我们称该阀为三位四通换向阀。该阀的三个工作位置与阀芯在阀体中 的对应位置如图4-4所示,各种位和通的换向阀符号见图4-5所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7
液压传动之
液压传动的发展史
❖ 第三阶段:上世纪50、60、70年代,工艺水 平有了很大提高,液压也迅速发展,渗透到 国民经济的各个领域:从蓝天到水下,从军 用到民用,从重工业到轻工业,到处都有流 体传动与控制技术
8
液压传动之
应用举例
如:火炮跟踪、飞机和导弹的动、炮塔稳定、 海底石油探测平台固定、煤矿矿井支承、矿 山用的风钻、火车的刹车装置、液压装载、 起重、挖掘、轧钢机组、数控机床、多工位 组合机床、全自动液压车床、液压机械手等。
❖ 操纵控制方便,易于实现无级调速而且调速 范围大,可以达100:1至2000:1;
❖ 可以简便地与电控部分组成电液一体的传动、 控制,实现自动控制。
14
液压传动之
液压传动的缺点
❖ 泄漏—內泄和外泄,不易保持严格的传动比,造成污染 ❖ 对温度变化敏感—温度的变化引起粘度变流体技术+电气控制+计算机控制结合
11
最简单的液压传动装置
12
液压传动之
液压传动的组成
❖ 动力装置—液压泵。将原动机输入的机械能转换为液体或气体的压
力能,作为系统供油能源或气源装置。
❖ 执行装置— 液压缸(或马达)。将流体压力能转换为机械能,而
对负载作功
❖ 控制调节装置—各种液压控制阀。用以控制流体的方向、压力和
9
液压传动之
液压传动的发展之国内篇
❖ 我国液压技术从上世纪60年代开始发展较快, 新产品研制开发和先进国家不差上下,但其 发展速度远远落后于同期发展的日本,主要 由于工艺制造水平跟不上去,制造比较困难, 材料性能不能满足设计需要,影响了我国流 体传动技术的发展。
10
液压传动之
液压传动的发展趋势
❖ 目前,流体传动技术正在向着高压、 高速、 高效率、大流量、大功率、微型化、低噪声、 低能耗、经久耐用、高度集成化方向发展, 向着用计算机控制的机电一体化方向发展。
流量,以保证执行元件完成预期的工作任务。
— ❖ 辅助装置 油箱、油管、滤油器、压力表、冷却器、分水滤水器、
油雾器、消声器、管件、管接头和各种信号转换器等 ,创造必要条件, 保证系统正常工作。
❖ 工作介质— 液压油或压缩空气 ,作为传递运动和动力的载体。
13
液压传动之
液压传动的优点
❖ 力大无穷—单位质量输出功率大,容易获得大的力和力矩。一个小 小的千斤顶可以顶起一俩载重汽车;
帕斯卡定律“平衡液体内某一点的液体压强 等值地传递到液体内各处”
4
液压传动之
液压传动的工作原理
v1 =L1/t
v2 =L2/t
p1
F1
A1
p2
F2
A2
压力相等:p1=p2 F1/A1=F2/A2 ,或:F1/F2=A1/A2 容积相等:W1=W2 A1L1=A2L2 或 L1/L2=A2/A1 同样时间段t内: v1/v2=A2/A1
老牌号——20号液压油,指这种油在50℃ 时的平均运动粘度为20 cst。 新牌号——L—HL32号液压油,指这种油在 40℃时的平均运动粘度为 32cst。
17
液压传动之
工作介质
❖ 其它性质
液压传动工作介质的还有其它一些性质,如稳定性(热 稳定性、氧化稳定性、水解稳定性、剪切稳定性等)、抗 泡沫性、抗乳化行、防锈性、润滑性以及相容性(对所接 触的金属、密封材料、涂料等作用程度)等,都对它的选 择和使用有重要影响。
5
液压传动之
液压传动的发展史
❖ 第一阶段: 液压传动从17世纪帕斯卡提出静 压传递原理、1795年世界上第一台水压机诞 生,已有200多年的历史,但由于没有成熟的 液压传动技术和液压元件,且工艺制造水平 低下,发展缓 慢,几乎停滞。
6
液压传动之
液压传动的发展史
❖ 第二阶段:上世纪30年代,由于工艺制造水 平提高,开始生产液压元件,并首先应用于 机床。
❖ 液压传动对工作介质的要求
不同的工作机械、不同的工况对工作介质的要求有很大的不同。为 了很好地传递运动和动力,液压传动工作介质应具备如下性能:
18
液压传动之
工作介质选择
工作介质应具备如下性能:
❖ (1)合适的粘度和良好的粘温特性; ❖ (2)良好的润滑性; ❖ (3)纯净度好,杂质少; ❖ (4)对系统所用金属及密封件材 料有良好的相容性。 ❖ (5)对热、氧化水解都有良好稳定性,使用寿命长; ❖ (6)抗泡沫性、抗乳化性和防锈性好,腐蚀性小; ❖ (7)比热和传热系数大,体积膨胀系数小,闪点和 燃点高,流动点
工作介质
❖ 液体是液压传动的工作介质。最常用的是石油型工作介质,石油 型工作介质:普通液压油、抗磨液压油、低温液压油、高粘度指数液压 油、机械油和其它专用液压油。此外,还有乳化型工作介质和合成型工 作介质。 液压油除了作为能量传递的工作介质外,还兼有润滑和冷却的作用。
❖ 工作介质的性质:
❖ 密度—单位体积液体的质量,ρ=m/v kg/m3 ρ=880kg/m 3左右 ❖ 压缩性—体积随压强的变化而变化,但变化不大,通常忽略,矿物油型
液压基础培训讲解
1
主要课程
❖ 液压传动基础知识 ❖ 液压元件介绍 ❖ 液压基本回路 ❖ 节流调速与容积调速
2
本教程供有一定基础知识的专业人士使用
液压传动
液压传动—以液体为工作介质,利用液
体压力传递和控制能量的传动
3
液压传动之
液压传动的工作原理
v1
v2
p1
F1
A1
p2
F2
A2
压力相等:p1=p2 F1/A1=F2/A2 ,或:F1/F2=A1/A2
液压油体积变化规律为:随压力的增大而体积减小。 ❖ 粘性—液体在外力作用下流动时,由于液体分子间的内聚力和液体分子与
壁面间的附着力,导致液体分子间相对运动而产生的内摩擦力,这种特性称 为粘性。或: 液体流动流层之间产生内摩擦力的性质.
16
液压传动之
工作介质
❖ 牛顿液体内摩擦定律
液层间的内摩擦力与液层接触面积及液层之间的速度成正比。
❖ 粘性
衡量粘性大小的物理量 动力粘度:在单位速度梯度下流动时单位面积上产生的内摩擦力。用μ表
示,单位帕.秒(Pa.s) 运动粘度υ:液体的动力粘度与其密度的比值, ν= μ/ρ (m2/S) 在
液压传动中习惯用运动粘度表示液体的粘度。液压传动工作介质的粘度等级是 以40℃时运动粘度的中心值来划分的。 单位1m2/S = 104St(斯) =106 CSt(厘斯)
液压传动之
液压传动的发展史
❖ 第三阶段:上世纪50、60、70年代,工艺水 平有了很大提高,液压也迅速发展,渗透到 国民经济的各个领域:从蓝天到水下,从军 用到民用,从重工业到轻工业,到处都有流 体传动与控制技术
8
液压传动之
应用举例
如:火炮跟踪、飞机和导弹的动、炮塔稳定、 海底石油探测平台固定、煤矿矿井支承、矿 山用的风钻、火车的刹车装置、液压装载、 起重、挖掘、轧钢机组、数控机床、多工位 组合机床、全自动液压车床、液压机械手等。
❖ 操纵控制方便,易于实现无级调速而且调速 范围大,可以达100:1至2000:1;
❖ 可以简便地与电控部分组成电液一体的传动、 控制,实现自动控制。
14
液压传动之
液压传动的缺点
❖ 泄漏—內泄和外泄,不易保持严格的传动比,造成污染 ❖ 对温度变化敏感—温度的变化引起粘度变流体技术+电气控制+计算机控制结合
11
最简单的液压传动装置
12
液压传动之
液压传动的组成
❖ 动力装置—液压泵。将原动机输入的机械能转换为液体或气体的压
力能,作为系统供油能源或气源装置。
❖ 执行装置— 液压缸(或马达)。将流体压力能转换为机械能,而
对负载作功
❖ 控制调节装置—各种液压控制阀。用以控制流体的方向、压力和
9
液压传动之
液压传动的发展之国内篇
❖ 我国液压技术从上世纪60年代开始发展较快, 新产品研制开发和先进国家不差上下,但其 发展速度远远落后于同期发展的日本,主要 由于工艺制造水平跟不上去,制造比较困难, 材料性能不能满足设计需要,影响了我国流 体传动技术的发展。
10
液压传动之
液压传动的发展趋势
❖ 目前,流体传动技术正在向着高压、 高速、 高效率、大流量、大功率、微型化、低噪声、 低能耗、经久耐用、高度集成化方向发展, 向着用计算机控制的机电一体化方向发展。
流量,以保证执行元件完成预期的工作任务。
— ❖ 辅助装置 油箱、油管、滤油器、压力表、冷却器、分水滤水器、
油雾器、消声器、管件、管接头和各种信号转换器等 ,创造必要条件, 保证系统正常工作。
❖ 工作介质— 液压油或压缩空气 ,作为传递运动和动力的载体。
13
液压传动之
液压传动的优点
❖ 力大无穷—单位质量输出功率大,容易获得大的力和力矩。一个小 小的千斤顶可以顶起一俩载重汽车;
帕斯卡定律“平衡液体内某一点的液体压强 等值地传递到液体内各处”
4
液压传动之
液压传动的工作原理
v1 =L1/t
v2 =L2/t
p1
F1
A1
p2
F2
A2
压力相等:p1=p2 F1/A1=F2/A2 ,或:F1/F2=A1/A2 容积相等:W1=W2 A1L1=A2L2 或 L1/L2=A2/A1 同样时间段t内: v1/v2=A2/A1
老牌号——20号液压油,指这种油在50℃ 时的平均运动粘度为20 cst。 新牌号——L—HL32号液压油,指这种油在 40℃时的平均运动粘度为 32cst。
17
液压传动之
工作介质
❖ 其它性质
液压传动工作介质的还有其它一些性质,如稳定性(热 稳定性、氧化稳定性、水解稳定性、剪切稳定性等)、抗 泡沫性、抗乳化行、防锈性、润滑性以及相容性(对所接 触的金属、密封材料、涂料等作用程度)等,都对它的选 择和使用有重要影响。
5
液压传动之
液压传动的发展史
❖ 第一阶段: 液压传动从17世纪帕斯卡提出静 压传递原理、1795年世界上第一台水压机诞 生,已有200多年的历史,但由于没有成熟的 液压传动技术和液压元件,且工艺制造水平 低下,发展缓 慢,几乎停滞。
6
液压传动之
液压传动的发展史
❖ 第二阶段:上世纪30年代,由于工艺制造水 平提高,开始生产液压元件,并首先应用于 机床。
❖ 液压传动对工作介质的要求
不同的工作机械、不同的工况对工作介质的要求有很大的不同。为 了很好地传递运动和动力,液压传动工作介质应具备如下性能:
18
液压传动之
工作介质选择
工作介质应具备如下性能:
❖ (1)合适的粘度和良好的粘温特性; ❖ (2)良好的润滑性; ❖ (3)纯净度好,杂质少; ❖ (4)对系统所用金属及密封件材 料有良好的相容性。 ❖ (5)对热、氧化水解都有良好稳定性,使用寿命长; ❖ (6)抗泡沫性、抗乳化性和防锈性好,腐蚀性小; ❖ (7)比热和传热系数大,体积膨胀系数小,闪点和 燃点高,流动点
工作介质
❖ 液体是液压传动的工作介质。最常用的是石油型工作介质,石油 型工作介质:普通液压油、抗磨液压油、低温液压油、高粘度指数液压 油、机械油和其它专用液压油。此外,还有乳化型工作介质和合成型工 作介质。 液压油除了作为能量传递的工作介质外,还兼有润滑和冷却的作用。
❖ 工作介质的性质:
❖ 密度—单位体积液体的质量,ρ=m/v kg/m3 ρ=880kg/m 3左右 ❖ 压缩性—体积随压强的变化而变化,但变化不大,通常忽略,矿物油型
液压基础培训讲解
1
主要课程
❖ 液压传动基础知识 ❖ 液压元件介绍 ❖ 液压基本回路 ❖ 节流调速与容积调速
2
本教程供有一定基础知识的专业人士使用
液压传动
液压传动—以液体为工作介质,利用液
体压力传递和控制能量的传动
3
液压传动之
液压传动的工作原理
v1
v2
p1
F1
A1
p2
F2
A2
压力相等:p1=p2 F1/A1=F2/A2 ,或:F1/F2=A1/A2
液压油体积变化规律为:随压力的增大而体积减小。 ❖ 粘性—液体在外力作用下流动时,由于液体分子间的内聚力和液体分子与
壁面间的附着力,导致液体分子间相对运动而产生的内摩擦力,这种特性称 为粘性。或: 液体流动流层之间产生内摩擦力的性质.
16
液压传动之
工作介质
❖ 牛顿液体内摩擦定律
液层间的内摩擦力与液层接触面积及液层之间的速度成正比。
❖ 粘性
衡量粘性大小的物理量 动力粘度:在单位速度梯度下流动时单位面积上产生的内摩擦力。用μ表
示,单位帕.秒(Pa.s) 运动粘度υ:液体的动力粘度与其密度的比值, ν= μ/ρ (m2/S) 在
液压传动中习惯用运动粘度表示液体的粘度。液压传动工作介质的粘度等级是 以40℃时运动粘度的中心值来划分的。 单位1m2/S = 104St(斯) =106 CSt(厘斯)