青岛版七年级数学上册知识点总汇

合集下载

2022年青岛版七年级数学上册知识点总汇2

2022年青岛版七年级数学上册知识点总汇2

2022年青岛版七年级数学上册知识点总汇21、大于0的数叫做正数(positive number)。

2、在正数前面加上负号“-”的数叫做负数(negative number)。

3、整数和分数泛称为有理数(rational number)。

4、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。

5、在直线就任挑一个点则表示数0,这个点叫作原点(origin)。

6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。

7、由绝对值的定义所述:一个正数的绝对值就是它本身;一个负数的绝对值就是它的相反数;0的绝对值就是0。

8、正数大于0,0大于负数,正数大于负数。

9、两个负数,绝对值小的反而大。

10、有理数加法法则(1)同号两数相乘,挑相同的符号,并把绝对值相乘。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

(3)一个数同0相乘,仍得这个数。

11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。

12、有理数的乘法中,三个数相乘,先把前两个数相乘,或者先把后两个数相乘,和维持不变。

13、有理数减法法则乘以一个数,等同于加之这个数的相反数。

14、有理数乘法法则两数相加,同号得正,异号得负,并把绝对值向乘。

任何数同0相乘,都得0。

15、有理数中仍然存有:乘积就是1的两个数互为倒数。

16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。

17、三个数相加,先把前两个数相加,或者先把后两个数相加,内积成正比。

18、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

19、有理数乘法法则除以一个不等于0的数,等于乘这个数的倒数。

20、两数相乘,同号得正,异号得负,并把绝对值相乘。

0除以任何一个不等同于0的数,都得0。

21、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。

青岛版七年级数学上册全册完整课件

青岛版七年级数学上册全册完整课件
七年级数学上册全册完整课 件
第2章 有理数
青岛版七年级数学上册全册完整课 件
青岛版七年级数学上册全册完整 课件目录
0002页 0071页 0150页 0185页 0199页 0234页 0280页 0293页 0333页 0376页 0395页 0437页 0452页 0479页 0493页 0518页 0545页
第1章 基本的几何图形 1.2 几何图形 第2章 有理数 2.2 数轴 第3章 有理数的运算 3.2 有理数的乘法与除法 3.4 有理数的混合运算 第4章 数据的收集整理与描述 4.2 简单随机抽样 4.4 扇形统计图 5.1 用字母表示数 5.3 代数式的值 5.5 函数的初步认识 6.1 单项式与多项式 6.3 去括号 第7章 一元一次方程 7.2 一元一次方程
第1章 基本的几何图形
青岛版七年级数学上册全册完整课 件
1.1 我们身边的图形世界
青岛版七年级数学上册全册完整课 件
1.2 几何图形
青岛版七年级数学上册全册完整课 件

七年级数学上册第2章知识点解读:数轴(青岛版)

七年级数学上册第2章知识点解读:数轴(青岛版)

知识点解读:数轴知识点一:数轴(基础)知识详析:1.数轴的定义:数轴是规定了原点、正方向和单位长度的特殊的直线.理解数轴应把握以下三点:(1)数轴是一条特殊的直线,但直线不是数轴;(2)数轴有三个要素:①有原点(表示数0的点);②正方向(向右的方向);③单位长度,缺少三个要素中的任何一个都不是数轴;(3)数轴上的原点的位置、单位长度都是根据实际问题需要规定的,在同一条数轴上的单位长度必须一致.2.数轴的画法:第一步:画直线、定原点:通常原点选在直线中间,若问题中负数的个数较多时,原点选的靠右些;正数的个数较多时,原点选的靠左些.第二步:定方向:通常取原点向右的方向为正方向,用箭头表示出来.第三步:定单位长度:数轴上单位长度的选取要根据实际情况,灵活处理,如要在数轴上表示-0.1,-0.2等小数,则单位长度可选长一些,可用1cm代表一个单位长度;要在数轴上表示-100,-300等数时,则单位长度可取短一些,如用1cm长度表示100.第四步:标数:在数轴上从原点向右依次标出1,2,3,…等各点;从原点向左依次标出-1,-2,-3,…等各点.例1判断下列图形是不是数轴,并指出你判断的理由.解析:图①没有方向;图②没有原点;图③单位长度不统一;图④标数不按顺序,所以以上图形都不是数轴.3.数轴与有理数间的关系:(1)会准确地由数轴上的有理数点把所表示的有理数写出来.①②③④(2)会准确地把所有的有理数在数轴上表示出来,表示时要用实心圆点. 要特别注意的是,所有的有理数都可以用数轴上点来表示;反过来,却不成立,这一点在学习了实数后就会明白.知识点二:利用数轴解决问题(重点) 知识详析: 在数轴上表示的两个有理数,右边的数总比左边的数大;正数都大于零,负数都小于零,正数大于一切负数.例1 写出数轴上符合下列条件的点所表示的数.(1)与原点的距离为3个单位长度的点所表示的数,(2)若点A 所表示的数是1,与点A 的距离是是3个单位长度的点所表示的数.解析:根据题意建立如图1的数轴.(1)从数轴上很容易观察到与原点3个单位长度的点所表示的数有两个,分别为3;-3.(2)与点A 距离为3个单位的点有两个,这两个点所表示的数分别是-2和4. 例2 有理数a 、b 、c 、d 、e 在数轴上的对应点的位置如图2所示:试用“<”把它们连接起来.解析:比较数轴上两个数的大小,依据是右边的数总比左边的数大,所以观察数轴得到:a <c <b <d <e.例3 有一座三层楼房不幸起火,一位消防队员搭梯子爬往三楼去抢救物品,当他爬到梯子正中一级时,二楼窗户喷出火来,他就往下退了三级,等到火过去了,他又爬上7级,这时屋顶有两块砖掉下来,他又后退两级,幸好没打着他,他又爬上8级,这时他距离梯子最高层还有一级,问这个梯子共有几级?解析:根据题意画出数轴如图3,设梯子中间一级为原点,爬上为正,后退为负,易知梯子共有23级.图1图2 图3 0 2 10 4 最高中间 -3。

青岛版七年级数学上册

青岛版七年级数学上册
比较大小
利用一元一次方程比较两个数的大小。
05
图形和几何初步知识
几何图形
几何图形定义
几何图形是现实世界中物体在平面上的抽象表示,包括点、线、 面、体等基本元素。
几何图形的分类
根据图形的特点,几何图形可以分为多边形、圆、椭圆、抛物线等 类型。
几何图形的性质
几何图形具有平移不变性、旋转不变性等基本性质,这些性质在解 决几何问题时具有重要的作用。
在解决实际问题时,可以 通过计算代数式的值来得 到实际问题的答案。
02
有理数
正数与负数
总结词
正数和负数是具有相反意义的量 ,它们在数轴上分别位于原点的 两侧。
详细描述
正数是大于0的数,通常表示为 "+"号,而负数是小于0的数,表 示为"-"号。例如,温度的升高可 以用正数表示,而温度的降低则 用负数表示。
线段长短的比较方法
比较线段长短可以通过度量法、叠合法和三角不等式等方法进行 比较。
线段中点的定义
线段的中点是线段上的一点,它到线段两端的距离相等。中点具有 平移和旋转不变性。
线段垂直平分线的定义
线段的垂直平分线是垂直平分线段的所有点的集合。垂直平分线具 有平移和旋转不变性。
角与角的度量
1 2
角的定义
角是由两条射线组成的几何图形,这两条射线称 为角的边,它们的公共端点称为角的顶点。
角的度量单位
角的度法
角的度量可以通过量角器进行,量角器是一个半 圆形的刻度尺,刻度尺上标有度数。
角的大小比较
角的大小比较方法
比较角的大小可以通过度量法、叠合法和包含法等方法进行比较。
角的补角和余角
两个角的和等于90度时,这两个角互为余角;两个角的和等于180度时,这两个 角互为补角。补角和余角具有平移和旋转不变性。

初一上册数学青岛版有理数的运算知识点归纳

初一上册数学青岛版有理数的运算知识点归纳

初一上册数学青岛版第三章有理数的运算知识点归纳(史上最全面的总结)一、有理数的加法1.加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大绝对值减较小绝对值。

(3)互为相反数的两个数相加得零。

(4)一个数与0相加仍得这个数。

2 . 加法运算律(1)加法交换律两个数相加,交换加数的位置,和不变。

a+b=b+a注意事项:对于三个或三个以上的数相加,加法交换律仍使用。

(2)加法结合律三个数相加,先把前两个数相加,或先把后两个数相加,和不变。

(a+b)+c=a+(b+c)注意事项:对于三个以上的数相加,加法结合律仍使用。

(3)常见结合方法a 把正数和负数分别结合。

b 把同分母分数或易通分的分数相结合。

C 把相加得零的几个数相结合。

d 把相加得整数的几个小数相结合。

e几个整数和分数相加,通常整数与分数分别结合。

3.重要结论(1)在有理数范围内,和不一定大于每一个加数。

(2)ba+≠a+b二、有理数的减法1.减法法则减去一个数等于加上它的相反数。

2.数轴上两点间的距离公式设点A表示有理数a,点B表示有理数b,则AB=ba-3.重要结论(1)在有理数范围内,差不一定小于被减数。

(2)任何数减去0仍得这个数。

(3)0减去一个数得这个数的相反数。

(4)ba-≠a-b(5)设a,b为任意有理数a>b ⟺ a-b>0a=b⟺ a-b=0a<b⟺a-b<0三、有理数的乘法1.乘法法则两数相乘,同号得正,异号得负。

并把绝对值相乘。

2.多个数相乘的乘法法则(1)几个不为0的数相乘,积的符号是由负因数的个数决定的,当负因数为偶数个时,积为正。

当负因数的个数为奇数时,积为负,并把绝对值相乘。

(2)几个数相乘,有一个因数为0,积为0.3.乘法运算律(1)乘法交换律两数相乘,交换因数的位置,积不变。

(2)乘法结合律三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。

2024年秋新青岛版七年级上册数学课件 4.1 整 式

2024年秋新青岛版七年级上册数学课件 4.1 整 式

它们是两个不同的概念.
2. 单项式的次数是所有字母指数的和,而多项式的次数是
多项式中次数最高的项的次数,二者不能混淆.
3. 多项式中的每一项都是单项式,且每一项都包括它前面
的符号,特别注意项的符号为负号时,一定不要遗漏该
项的符号.
例4
知2-练
解题秘方:利用多项式的项及次数的概念进行解答.
知2-练
方法:根据单项式的系数和次数的定义建立与要求字 母有关的简易方程,即可得出要求字母的值,体现了 转化思想和方程思想.
知1-练
3-1.已知(a-1)x2ya+1是关于x,y的五次单项式,则这个
单项式的系数是( A )
A. 1
B. 2
C. 3
D. 0
知识点 2 多项式
1. 多项式:几个单项式的和叫作多项式. 一个式子是多项式需具备两个条件: (1)式子中含有运算符号“+”或“-”; (2)分母中不含有字母.
式的运算关系计算得出的结果,叫作整式的值.
知3-讲
3. 求整式的值的一般步骤 (1)代入:用指定的字母的数值代替多项式里的字母,其 他的运算符号和原来的数都不能改变. (2)计算:按照多项式指明的运算,并根据有理数的运算 方法进行计算.
知3-讲
特别解读 1. 单项式是整式; 2. 多项式是整式; 3. 如果一个式子既不是单项式又不是多项式,那么它一定
知1-练
C
例2
知1-练
解题秘方:利用单项式的定义及单项式中系数和 次数的定义解决问题.
知1-练
知1-练
D
知1-练
例 3 已知2kx2yn是关于x, y的一个单项式, 且系数是7, 次数是5, 那么k=______, n=___3___. 解题秘方:根据单项式的次数和系数的确定方法求值.

青岛版七年级数学知识点总结梳理

青岛版七年级数学知识点总结梳理

青岛版七年级数学知识点总结梳理七年级数学知识点变量之间的关系一理论理解1、若Y随X的变化而变化,则X是自变量Y是因变量。

自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量,数值保持不变的量叫做常量。

3、若等腰三角形顶角是y,底角是x,那么y与x的关系式为y=180-2x.2、能确定变量之间的关系式:相关公式①路程=速度×时间②长方形周长=2×(长+宽)③梯形面积=(上底+下底)×高÷2④本息和=本金+利率×本金×时间。

⑤总价=单价×总量。

⑥平均速度=总路程÷总时间二、列表法:采用数表相结合的形式,运用表格可以表示两个变量之间的关系。

列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。

列表法的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。

三.关系式法:关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值。

四、图像注意:a.认真理解图象的含义,注意选择一个能反映题意的图象;b.从横轴和纵轴的实际意义理解图象上特殊点的含义(坐标),特别是图像的起点、拐点、交点八、事物变化趋势的描述:对事物变化趋势的描述一般有两种:1.随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大));2.随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小).注意:如果在整个过程中事物的变化趋势不一样,可以采用分段描述.例如在什么范围内随着自变量x的逐渐增加(大),因变量y逐渐增加(大)等等.九、估计(或者估算)对事物的估计(或者估算)有三种:1.利用事物的变化规律进行估计(或者估算).例如:自变量x每增加一定量,因变量y的变化情况;平均每次(年)的变化情况(平均每次的变化量=(尾数-首数)/次数或相差年数)等等;2.利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;3.利用关系式:首先求出关系式,然后直接代入求值即可.数学知识点初一一元一次方程的应用1.一元一次方程解应用题的类型(1)探索规律型问题;(2)数字问题;(3)销售问题(利润=售价﹣进价,利润率=利润进价×100%);(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).2.利用方程解决实际问题的基本思路:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。

2024年秋新青岛版七年级上册数学课件 6.6 余角和补角

2024年秋新青岛版七年级上册数学课件 6.6 余角和补角
一定是等角,但等角不一定是同角. 3. 余角、补角的性质是说明两个角相等的重要依据.
知2-练
例 3 如图6.6-4, 直线AB 与∠ COD的两边OC, OD 分 别相交于点E, F,∠ 1+ ∠ 2=180°. 找出图中与 ∠ 2 相等的角, 并说明理由.
解题秘方:先找出与∠ 1 和∠ 2 互补 的角,然后利用互补的关系找出与∠2 相等的角.
又因为∠AOC+∠BOC=180°, ∠AOC+∠DOE= 180°,∠DOE+∠BOC=180° , 所以图中互补的角有7对,分别是∠1和∠BOD,∠4和 ∠AOE,∠3和∠BOD,∠2和∠AOE,∠AOC和∠BOC, ∠AOC和∠DOE,∠DOE和∠BOC.
知1-练
D
知识点 2 余角、补角的性质
D. 160°
1-2. 若∠ α 与∠ β 互为补角,∠ β 是∠ α 的2 倍,则∠ α
的度数为( D )
A. 20°
B. 30°
C. 40°
D. 60°
知1-练
例 2 如图6.6-3,点O为直线AB上一点, ∠AOC= ∠DOE=90°. 解题秘方:由已知条件,结 合余角、补角的定义解答.
(1)图中互余的角有几对?各是哪些?
知2-讲
1. 余角的性质
同角或等角的余角相等.
(1)如果∠1+∠2=90°,∠1+∠3=90°,那么∠2=
∠3; ∠2是∠1的余角 ∠3是∠1的余角 (2) 如果∠1+∠2=90°,∠3+∠4=90°,且∠1=
∠3,那么∠2=∠4. ∠2是∠1的余角 ∠4是∠3的余角
2. 补角的性质
知2-讲
同角或等角的补角相等.
知2-练
解:OE平分∠BOC. 理由如下: 因为∠DOE=90°,∠AOB=180°, 所以∠DOC+∠COE=90°,∠AOD+∠BOE=90°. 因为OD平分∠AOC,所以∠AOD=∠DOC. 所以∠COE=∠BOE. 所以OE平分∠BOC .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

州钦丽美 爱我第一章 基本的几何图形1.2 几何图形一、几何图形现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形。

1. 基本元素:点、线、面、体。

⑪点动成线,线动成面,面动成体。

(体是由面围成的,许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。

面有平面和曲面) (举例)笔写字、汽车在雨中行驶,雨刷器来回摆动成面、硬币旋转会产生一个圆球。

⑫线与线相交(点) 面与面相交(线) 棱 顶点(长方体,正方体)2. 分类长方体、正方体、球、圆柱、圆锥等都是立体图形。

此外棱柱、棱锥也是常见的立体图形。

长方形、正方形、三角形、圆等都是平面图形。

几何图形有平面图形和立体图形(两者之间的转化)几何体:①柱体(圆柱和棱柱)②锥体(圆锥和棱锥)③球 ④台体3. 正方体的平面展开图有“11种”(至少剪7条棱正方体展成平面图形)考点:1.识别常见的几何体1.在六角螺母、乒乓球、圆形烟囱、书本、热水瓶胆等物体中,形状类似于棱柱的有___1__个,球体有____1_个。

2.圆锥由__2__个面围成,其中__1____个平面,__1___个曲面.3.写出你所熟悉的、由三个面围成的几何体的名称是 圆柱4.六棱柱由几个面围成( C )A.6个B.7个C.8个D.9个5.下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能折成无盖小方盒的是(B )6.一个正方体的每个面都有一个汉字,其平面展开图如图所示,则该正方体中与“美”字相对的面上的字是A B C D7.如图,各图中的阴影图形绕着直线旋转360度,各能形成怎样的立体图形。

8.图甲能围成 圆锥 ;图乙能围成 三棱锥 ;图丙能围成 长方体 。

1.3 线段、射线、直线线段有两个端点。

将线段向一个方向无限延伸就得到射线,射线有一个端点。

将线段向两个方向无限延伸就得到线段,线段有两个端点。

注意:线段、射线、直线的表示方法,要会画图形。

点与直线的位置关系有两种:1.点A 在直线AB 上(直线AB 经过点A )2.点P 在直线AB 外(直线AB 不经过点P )直线公理:经过两点有一条直线,并且只有一条直线。

两点确定一条直线。

线段公理:两点的所有连线中,线段最短。

简单说成:两点之间,线段最短。

两点之间线段的长度,叫做这两点间的距离。

丙甲乙线段AB 分成相等的两条线段AM 与MB ,点M 叫做线段AB 的中点。

类似的还有线段的三等分点、四等分点等。

1.4线段的比较和画法用直尺作射线AC 。

用圆规在射线AC 上截取AB=a线段AB 就是与线段a 相等的线段(1)测量 (2)重叠 (3)圆规考点:1.线段、射线、直线的概念及表示1.如图,点A 、B 、C 是直线l 上的三个点,图中共有线段____条数,它们是____________________;射线有____条;直线有_____条2.下列说法中,错误的是( C ).A .经过一点的直线可以有无数条B .经过两点的直线只有一条C .一条直线只能用一个字母表示D .线段CD 和线段DC 是同一条线段3.下列说法错误的是( )A .点P 为直线AB 外一点 B .直线AB 不经过点PC .直线AB 与直线BA 是同一条直线D .点P 在直线AB 上4.过一点能确定几条直线?两点呢?三点呢?无数、一条、三条或一条5.任意画三条直线,则交点可能是(C )A.1个B.1个或3个C.1个或2个或3个D.0个或1个或2个或3个6.如图,直线AB 、CD 相交于点O ,在这两条直线上,与点O 的距离为3cm 的点有( C )A. 2个B.3个C.4个D.5个7.已知AB=21cm ,BC=9cm ,A 、B 、C 三点在同一条直线上,那么AC 等于(D )A.30cmB. 15cmC. 30cm 或15cmD. 30cm 或12cm8.如果线段AB=13cm,MA+MB=17 cm,那么下面说法中正确的是( D ).A .M 点在线段AB 上B .M 点在直线AB 上C .M 点在直线AB 外D .M 点可能在直线AB 上,也可能在直线AB 外D C B A第二章有理数正负数概念:0既不是正数也不是负数,0是正数与负数的分界,大于0的为正数,小于0的为负数。

就相当于100分的试卷,60分是判断是否及格的标准,大于60分为及格,小于60为不及格,区别在于60分也是及格分数,但0既不是正数也不是负数。

在同一个问题中,分别用正数和负数表示的量具有相反的意义。

例:向东走2米记为2米,向西走2米则记为-2米,在这里还需要注意的一点是数学题切忌丢掉单位!在这个实例中的单位就是“米”。

有理数概念:正整数、0、负整数统称整数,正分数和负分数统称分数,整数和分数统称有理数。

数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴。

数轴的作用是所有的有理数都可以用数轴上的点来表达。

但数轴上的点并不都表示有理数。

注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。

⑵同一个数轴,单位长度不能改变。

一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

相反数概念:只有符号不同的两个数叫做互为相反数。

数轴上表示相反数的两个点关于原点对称,在任意一个数前面添上“-”号,新的数就表示原数的相反数。

绝对值:在数轴上表示一个数a的点与原点的距离叫做数a的绝对值。

(一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。

也就是说绝对值为非负数!)在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。

⑵两个负数,绝对值大的反而小。

第三章有理数的运算有理数的加法法则:1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不相等的异号两数相加,去绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0。

3.一个数与0相加,仍得这个数。

有理数加法运算律:1、加法交换律:a+b=b+a根据加法交换律的法则可知,-a-b=-(a+b),-a+b=b-a。

2、加法结合律:(a+b)+c=a+(b+c)有理数减法法则:有理数的减法可以转化为加法,减去一个数,等于加这个数的相反数,a-b=a+(-b)有理数乘法法则:1、两数相乘,同号得正,异号得负。

任何数同0相乘,都得0。

2、乘积是1的两个数互为倒数。

3、几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。

4、两个数相乘,交换因数的位置,积相等。

ab =ba 三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

(ab )c =a (bc )5、一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

a (b +c )=ab +ac有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

a ÷b =a ·b 1(b ≠0)两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0。

因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。

乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

乘方:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

在a n 中,a 叫做底数,n 叫做指数,当a n 看作a 的n 次方的结果时,也可以读作a 的n 次幂。

负数的奇次幂是负数,负数的偶次幂是正数。

正数的任何次幂都是正数,0的任何正整数次幂都是0。

有理数混合运算的运算顺序:(1)先算乘方,再算乘除,最后算加减;(2)同级运算,从左到右的顺序进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行科学记数法:把一个绝对值大于10的数表示成a ×10n 的形式(其中a 是整数位数只有一位的数,n 是正整数),这种记数方法科学记数法。

用科学记数法表示一个n 位整数时,其中10的指数是n -1。

近似数:接近实际数目,但与实际数目还有差别的数叫做近似数。

精确度:一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位。

(注意复习) 如1.08亿精确到百万位(8是四舍五入得到的,它在百万位上)8.023精确到千分位。

第五章代数式与函数的初步认识用运算符号加、减、乘、除、乘方、开方把数或者表示数的字母连接起来,所得到的式子叫做代数式。

单独的一个数或字母也是代数式。

数字与字母相乘的书写规范:⑴ 字母与字母相乘,乘号要省略,或用“.”⑵数字与字母相乘,当系数是1或-1时,1要省略不写。

⑶带分数与字母相乘,带分数应当化成假分数。

用字母x 表示任意一个有理数,2与x 的乘积记为2x ,3与x 的乘积记为3x ,则式子2x +3x 是2x 与3x 的和,2x 与3x 叫做这个式子的项,2和3分别是这两项的系数。

一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即ax+bx=(a+b)x,上式中x是字母因数,a与b分别是ax与bx这两项的系数。

含有字母的除法通常写成分数的形式。

在某一问题中,保持不变的量叫做常量。

可以取不同数值的量叫做变量。

在同一变化过程中,有两个变量x和y,如果对于变量x的每一个确定的值,都能随之确定一个y值,我们就把y叫做x的函数,其中x叫做自变量。

如果自变量x取a时,y的值是b,就把b叫做x=a时的函数值。

第六章整式的加减整式的概念:只含有加、减、乘、乘方运算的代数式叫做整式。

单项式的概念:不含加、减运算的整式叫做单项式。

单项式中的数字因数叫做单项式的系数。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

多项式的概念:几个单项式的和叫做多项式。

多项式中的每个单项式都叫做这个多项式的项,其中不含字母的项叫做常数项。

多项式中次数最高项的次数叫做这个多项式的次数。

同类项的概念:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

常数项都是同类项。

把一个多项式中的同类项合并成一项叫做合并同类项。

合并同类项的法则:合并同类项时,把同类项的系数相加,所得的和作为系数,字母和字母的指数不变。

去括号法则:1、括号前面是“+”号,把括号和括号前面的“+”号去掉,括号里各项的符号都不改变。

2、括号前面是“-”号,把括号和括号前面的“-”号去掉,括号里的各项都改变符号。

3、括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反。

要乘哪个数,括号内的各项都乘以哪个数。

整式加减的步骤是先去括号,然后合并同类项。

相关文档
最新文档