简述某地铁辅助供电系统
地铁车辆辅助供电系统浅析

地铁车辆辅助供电系统浅析摘要:辅助供电系统是地铁车辆的重要组成部分,为列车的牵引、制动、照明、空调通风、空压机、信号等设备提供电源。
本文以苏州五号线为例介绍了辅助供电系统及其供电分配,并对不同的供电方式进行对比,得出了相应的结论。
关键词:辅助供电;供电分配;母线;负载1.绪论辅助供电系统,简称辅助系统,主要功能是将电网提供的直流电源转换为三相交流电压和蓄电池充电电压。
三相交流电压向列车的辅助系统供电,例如空调、电热,空压机和照明系统。
蓄电池充电机向蓄电池充电、并向直流输出回路供电。
直流输出回路的负载在辅助系统故障而无法运行时,由蓄电池进行供电。
辅助电源箱内部将AC380V 转换成DC110V,主要给照明、控制电路、列车网络系统、车载信号设备、及视频监控系统等提供直流电源。
近年来,我国北京、上海和苏州等城市的城市轨道交通车辆上,辅助电源均采用了静止式辅助逆变电源,这种辅助逆变电源的优点是输出电压的品质因数好、电源使用效率高,工作性能安全可靠。
2.辅助供电系统介绍2.1.主电路介绍地铁车辆一般为六编组车辆,编组方式TC1-Mp1-M1-M2-Mp2-TC2,TC车是带司机室的拖车,Mp车无司机室带受电弓的动车,M车不带司机室且不带受电弓的动车,Tc车是带司机室的拖车。
Mp车从接触网经受电弓获取1500V直流高压电向设备高压供电。
高压电源主要用于列车的牵引动力设备和静止逆变器。
受电弓从接触网吸收电能用于向列车供电,在列车每个单元的Mp车各配有一个受电弓装置,两个受电弓可同时向辅助系统高压母线供电。
整列车在两个Mp 车牵引箱中各设了一个1500V的车间电源插头以代替受电弓向整列车的辅助系统供电。
当任何一个车间电源接通时,均能够向整列车辅助系统供电。
车间电源供电与受电弓供电之间设有联锁,采用二极图一管与牵引高压母线隔离。
以保证在任何时候列车仅有一种方式电源供电。
静止辅助逆变器通过高压列车线供电,将其转换为380V中压交流电,然后再通过交直流逆变转换成110V低压直流电对控制设备供电,主电路图如图一所示。
西安地铁一号线和二号线车辆辅助供电系统分析

表 1 逆 变 器 各 保 护 项 目一 览 表
2 . 1 . 2 保 护 机 理
电流 故 障 、 转流 失败 以及微 机处 理异 常故 障外 , 其他 故 障发生后 系 统都 能 自动 进 行 复 位 ; ② 对 于 系统 能
自动 复 位 的 故 障 中 , 部 分 故 障 复 位 后 仍 旧 未 能 恢 复 正常 或在 规定 的时 间 内再 次发 生 , 此 时 系 统 继 续 进
的故 障 发 生 后 , 须按 压 S I V复 位 按 钮 方 可 复 位 系 统 。
况下 , 系统会 采取 相应 的复 位方式 。
( 1 ) 自动 复 位
此 类故 障包括 输 入过 电流 故 障 、 转 流失 败 以及 微 机
处 理异 常故 障 ; ② 规定 时 间 ( 6 0 s ) 内再 次发 生 的 故
恢 复时 间 。
2 . 2 复 位 方 式
自动复位 。除上述 提 及 的 5种 故 障 外 , 其 余 均 为此 类故 障 。
( 2 ) 按压 S I V 复 位 按 钮 进 行 复 位
对 于一些 严重 故障 或在规 定 的时 间内频 繁发生 的故 障 , 系统不 能进 行 自动复 位 的 , 此时需 要操 作人
等) 是 通 过逆变 器 输入 端 和输 出端 安装 的 电压传 感
器、 电 流 传 感 器 以及 热 敏 电 阻 等 检 测 元 件 来 获 取 , 数
字信 号 ( 如各 I G B T、 I V H B、 I V L B、 3 p h MK、 HK等 元件
信号 , 从而 全方 位实 时诊 断 自身 的运作 状态 。
行 自动复 位 , 直 至 正 常 工作 为止 。此 类 故 障包 括 滤 波 电容器 欠压 和架 线 欠 压 等 ; ③ 若 系统 自动 复位 后
地铁辅助供电系统

地铁辅助供电系统地铁辅助供电系统摘要:本文重点阐述了地铁辅助供电系统电路结构,介绍了地铁车辆静止辅助系统的根本结构、供电模式、根本方案及原理,对辅助控制系统的原理及功能,主要逆变模块绝缘栅双极型晶体管IGBT模块构成,进行了简单介绍,同时也指出辅助系统的开展趋势。
关键词:地铁车辆;辅助供电;蓄电池目前,静止辅助系统中采用的电力电子器件普遍采用绝缘栅双极型晶体管,IGBT器件属于电压驱动的全控型开关器件,脉冲开关频率高,性能好,损耗小,且自保护能力也强,使用效果好,如将驱动与保护功能电封装在模块内,便构成智能功率模块IPM。
随着电子器件的飞速开展,IGBT或IPM器件的电压等级的提升,应用技术的成熟,完全可以满足城轨交通供电网压提升的需求。
故辅助系统全控型开关器件控制已经进入了成熟的阶段。
1.辅助设备布局分散供电指的是每节车辆均配备一台辅助供电装置。
如广州地铁一号线西门子设计车辆即采用分散供电,每节车均配备一台DC/AC,共六台,提供AC380V电源;在两端带有司机室的拖车各配备一台DC/DC,共两台,提供DC110V电源。
集中供电是整列车只采用两套辅助供电装置集中供电,互为冗余。
西安地铁二号线车辆采用这种方式,整列车配备两套SIV静止逆变单元,布置在两端Tc车的车底,为整车提供辅助电源,设计时充分考虑了两套互为冗余,当一台发生故障时,余下的1套能承当6辆车的根本负载并保证列车的正常运行。
这两种供电方式各有优缺点:分散供电冗余度大,均衡轴重好配置,但造价高,总重量也高,且由于分布点多,集成化程度差,易出现故障点较多,故障率高。
集中供电冗余度小,每轴配重难以一致,但总重量轻,组成部件集中,模块化程度高,故障率低,且本钱低很多。
2.车辆辅助供电模式当前供电模式主要有两种,一种是交叉供电,两路AC380V供电线路贯穿整列车,分别与2个辅助逆变器相连接。
将每节车厢的交流负载根据功率平均分为两组,分别由两个辅助逆变器供电。
浅谈北京地铁14号线辅助供电系统

浅谈北京地铁14号线辅助供电系统作者:刘恩朋来源:《科技视界》 2015年第5期刘恩朋(南车青岛四方机车车辆股份有限公司,山东青岛 266000)0 引言辅助供电系统是列车上至关重要的功能系统。
它用作车辆空调、电热采暖、照明、空气压缩机、各系统控制电路及列车监视系统、车载信号和通信设备等的电源,是列车系统不可缺少的一部分,下面介绍一下北京打铁14号线辅助供电系统。
辅助供电系统组成:北京地铁14号线辅助供电系统包括:隔离开关和熔断器(位于PH箱高压部分)、不采用高速断路器(使用ACM熔断器和线路接触器实现保护)、 LC输入滤波器、辅助逆变器模块(ACM)、控制单元 DCU/A、三相交流滤波器、输出变压器、DC110V整流装置(位于辅助充电机AB箱内)、DC110V/DC24V电源变换器、蓄电池组、紧急通风用逆变器。
辅助逆变器的功率元件采用大功率电力电子器件IGBT,其控制采用微机控制并有自诊断功能。
辅助逆变器工作电压:额定电压:DC1500V ,电压波动范围:DC1000V~DC1800V,当列车处于再生制动时其输入电压可达DC1980V。
6辆编组列车的静止逆变器总容量为4*117kVA=468kVA。
1 容量及输出能力为保证辅助电源系统最大可用性,每列车安装4组独立的辅助电源装置即静止逆变器(SIV)和2组蓄电池组,这保证即使一台辅助逆变器故障列车也无任何降级,辅助电源装置采用分散布置,其输出能力将满足6辆编组列车各种负载工况的用电要求。
交流输出:三相AC380V,50Hz,三相四线制(含单相220V)容量:每台117kVA;四台逆变器总容量4×117kVA=468kVA负载:空调或电热采暖装置、幅流风机、空气压缩机组、客室及司机室照明、DC110V整流装置和DC110V/DC24V电源变换器等。
负载功率因数:>0.85 (感性负载)电压精度:380V±5%频率精度:50Hz±1Hz波形畸变因数:<5%(适用于无源负载和转动负载,不适用于逆变器负载,因为逆变器负载将畸变电源的电流和电压)瞬间电压变化范围:±20%以内(负载突变从100%到70%额定值或从70%到100%额定值,输入电压突变DC±300V/20ms)瞬间电压变化调整时间:<0.1秒。
城市轨道交通车辆--辅助供电系统

27
五、中压负载的保护
为避免由于中压用电单元故障造成配电线路 故障,可通过硬件(如:自动开关, 可手动恢复
的热继电器)和软件(车辆逻辑会防止造成故障
的接触器闭合)实现保护功能。
28
六、辅助变流器(辅助供电系统的主要设备之一)
编组中的1、2、4、7和8车中配有一台辅助 变流器及相应的控制器,与相应的牵引变流器 (CONVTRAZAUX)位于同一机箱中,可直接从 牵引中间级滤波器获得电源。
17
CRH1辅助供电电系统图
辅助变流器
列车三相交流 380V电网
18
辅助电源交流400V系统图
Line power converter
~
Connection, external 3-phase AC voltage 3x400V 50Hz
HVAC, pumps, fans, compressors etc.
Consumers
20
直流110V电源负载
21
充电器的输入和输出
动车组有五个充电器对应五组蓄电池,分 别设置在MC1, MC2, M1, M2 and M3上 。
充电器参数:
充电器输入3相交流400V, 50 Hz
充电器输出电压 直流 100V
输出功率 22 kW。
22
蓄电池和蓄电池箱
• 蓄电件 持续功率 (平均) 最大功率 (5分钟) 峰值功率 (3秒钟)
冬季 (环境温度 15°C以下)
夏季 (环境温度 45°C以下)
290 kVA cos = 0.9 260 Kw
300 kVA cos = 0.8 240 kW
400 kVA cos = 0.93 372 Kw
14
轨道车辆辅助供电系统分析

轨道车辆辅助供电系统分析摘要:辅助供电系统是保证列车高速安全、可靠运行的主要组成部分,辅助供电系统的优劣直接关系到轨道列车能否正常行驶。
文中介绍了目前铁路系统车辆中动车和城轨客车的车辆编组形式及辅助供电系统结构,为后续新车型的辅助供电系统设计和选择提供参考。
关键词:辅助供电系统;辅助逆变器;充电机;蓄电池1概述辅助供电系统是是动车、地铁、轻轨车辆上一个必不可少的关键电气部分。
为了保证列车安全可靠地高速运行,列车需要稳定、高效的辅助供电系统为空气压缩机、冷却通风机、泵类电机、空调系统、取暖、照明、旅客信息系统等众多辅助设备提供电源。
随着经济的发展,人口流动的加快,动车、城际列车、地铁、轻轨车辆的需求量在增加,高速列车技术在发展,列车的编组形式、辅助供电系统结构呈现出多样化,本文以现代车辆中动车组、城铁客车为例,对车型的编组形式、辅助供电系统结构进行分析和比较。
2动车组、城铁客车的辅助供电系统结构分析2.1A型地铁车辆上海轨道交通11号线[1]北段所运行的工程车辆即为A型地铁车辆,采用4动2拖6节编组形式:-Tc+Mp+M=M+Mp+Tc-,其中Tc为带司机室的拖车,Mp为带受电弓的动车,M为动车,-为自动车钩,=为半自动车钩,+为半永久牵引杆,辅助供电设备在列车的分布情况见表1。
表1 辅助供电设备在列车的分布情况设备Tc车Mp车M车M车Mp车Tc车辅助逆变器111111牵引逆变器-1111-充电器1----1蓄电池组1----1单相小变压器111111列车DC 1500 V高压输入:DC 1500 V电源从接触网经Mp车车顶的受电弓接至高压箱中隔离开关。
隔离开关为单刀三掷型式,包括正常位、接地位及车间电源位,隔离开关在不同档位,所接入的电路也不同,电路接通情况如表2所示。
表2 隔离开关档位接通电路情况档位受电弓牵引逆辅助电车间电变系统源源正常位通通通断车间电源位通断通断接地位断断断断每台辅助逆变器输出功率为73 kVA,每台逆变器输出为三相不带中线的AC 380 V电压,正常情况下提供并网供电[1],即6台辅助逆变器同步贯穿整列车的三相母线向每辆车的交流负载供电。
浅谈北京地铁14号线辅助供电系统

0引言辅助供电系统是列车上至关重要的功能系统。
它用作车辆空调、电热采暖、照明、空气压缩机、各系统控制电路及列车监视系统、车载信号和通信设备等的电源,是列车系统不可缺少的一部分,下面介绍一下北京打铁14号线辅助供电系统。
辅助供电系统组成:北京地铁14号线辅助供电系统包括:隔离开关和熔断器(位于PH 箱高压部分)、不采用高速断路器(使用ACM 熔断器和线路接触器实现保护)、LC 输入滤波器、辅助逆变器模块(ACM )、控制单元DCU/A 、三相交流滤波器、输出变压器、DC110V 整流装置(位于辅助充电机AB 箱内)、DC110V/DC24V 电源变换器、蓄电池组、紧急通风用逆变器。
辅助逆变器的功率元件采用大功率电力电子器件IGBT ,其控制采用微机控制并有自诊断功能。
辅助逆变器工作电压:额定电压:DC1500V ,电压波动范围:DC1000V ~DC1800V ,当列车处于再生制动时其输入电压可达DC1980V 。
6辆编组列车的静止逆变器总容量为4*117kVA=468kVA 。
1容量及输出能力为保证辅助电源系统最大可用性,每列车安装4组独立的辅助电源装置即静止逆变器(SIV)和2组蓄电池组,这保证即使一台辅助逆变器故障列车也无任何降级,辅助电源装置采用分散布置,其输出能力将满足6辆编组列车各种负载工况的用电要求。
交流输出:三相AC380V ,50Hz ,三相四线制(含单相220V )容量:每台117kVA ;四台逆变器总容量4×117kVA=468kVA负载:空调或电热采暖装置、幅流风机、空气压缩机组、客室及司机室照明、DC110V 整流装置和DC110V/DC24V 电源变换器等。
负载功率因数:>0.85(感性负载)电压精度:380V ±5%频率精度:50Hz ±1Hz 波形畸变因数:<5%(适用于无源负载和转动负载,不适用于逆变器负载,因为逆变器负载将畸变电源的电流和电压)瞬间电压变化范围:±20%以内(负载突变从100%到70%额定值或从70%到100%额定值,输入电压突变DC ±300V/20ms)瞬间电压变化调整时间:<0.1秒。
简述某地铁辅助供电系统

简述某地铁辅助供电系统随着城市化进程不断加速,城市轨道交通越来越得到人们的青睐。
为了保证地铁运行中的正常供电,地铁辅助供电系统得到了广泛的应用。
本文将简要介绍某地铁辅助供电系统的构成、原理及优点。
系统构成某地铁辅助供电系统主要由发电机组、极耳箱、隔离主变压器、直流配电柜、交流配电柜、接触网等组成。
其中,发电机组是辅助供电系统的核心组件,它由柴油机和交流发电机组成,通过牵引电缆将电能输送到地铁列车上。
极耳箱位于接触网的钢筋桥或者隧道内,其作用是使接触网与地面直接地接触,减少接触电阻和瞬间反弹,提高供电效率。
隔离主变压器负责将接触网供电过来的高压交流电转换为较低的交流电后输送到直流配电柜,以保证地铁运行的安全性和稳定性。
直流配电柜在地铁车站内设有多个位置,它通过牵引电缆为每个车站提供直流电源。
交流配电柜是位于轨道系统的隧道内,是为地铁列车提供辅助电源的装置。
接触网则是在地铁轨道上方悬挂的网状构造物,它通过高压交流电为地铁提供供电。
工作原理在某地铁辅助供电系统中,接触网时刻保持一定的电压和电流,当列车行驶过来时,接触网与地铁列车上的集电装置突然接触,在集电装置的作用下,电能通过集电器、牵引电缆传到地铁列车上,需用的电量由列车本身去控制。
当列车离开接触网时,集电装置立即松开,地铁列车再次切换成蓄电池供电,同时牵引电缆也将停止传输电能。
在辅助供电系统中,如果接触网上的电流和电压波动过大,就会引发较大的电力损失。
而经过改变接触网结构、优化供电系统等方面的研究,某地铁辅助供电系统已经大大提高了供电效率,提高了系统的使用寿命。
优点某地铁辅助供电系统广泛应用,其主要优点有:1.便于维护:辅助供电系统是一种自动化系统,可以通过管理软件远程监测和控制,较为便于维护和管理。
2.高效节能:通过优化系统结构,提高供电效率,从而实现节能降耗,减少对环境的影响。
3.提高服务水平:地铁辅助供电系统的应用,能够保证地铁运行的正常供电,从而保证了地铁乘客的出行质量和服务水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编号:SY-AQ-06883( 安全管理)单位:_____________________审批:_____________________日期:_____________________WORD文档/ A4打印/ 可编辑简述某地铁辅助供电系统Brief introduction of auxiliary power supply system of a subway简述某地铁辅助供电系统导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。
在安全管理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关系更直接,显得更为突出。
本文分析了某地铁列车辅助供电系统电路结构。
列车辅助系统的供电网络分为:辅助逆变器(DC/AC逆变器)、蓄电池充电器、蓄电池、高压母线、中压母线、低压母线、照明设备与其它必需的辅助设备(继电器、接触器、空气开关、控制器等)。
并基于ALSTOM 的设计,对该辅助控制系统的原理及功能,主要逆变模块绝缘栅双极型晶体管IGBT模块构成,进行了简单介绍。
随着中国社会经济的发展、城市化进程的加快,随着城市轨道交通不断的发展壮大,城市轨道车辆的研制与开发也逐渐各方面所关注。
某地铁列车是由南车集团南京浦镇车辆公司与法国阿尔斯通公司合作生产的地铁车辆,是地铁车辆家族中载客量最大的一种。
也是目前世界先进的A型(M系列)宽体列车,目前正被南京、上海、新加坡等地多家地铁所采用。
以下就某地铁辅助供电系统进行简单分析介绍。
系统总体信息某地铁列车整车分为两个车辆单元共有6辆车编组,其中每个单元由一辆带驾驶室的拖车与两辆动车组成。
通常6节车编组排列为A–B–C–C–B–A。
某地铁列车辅助系统的供电网络分为:辅助逆变器(DC/AC逆变器)、蓄电池充电器、蓄电池、高压母线、中压母线、低压母线、照明设备与其它必需的辅助设备(继电器、接触器、空气开关、控制器等)。
高压母线2.1.高压配电高压电源由架空接触网通过受电弓向整个列车高压设备供电。
高压电源主要用于列车的牵引动力设备与静态逆变器。
受流系统从接触网吸收电能用于向列车供电,在列车每个单元的B车各配有一个受电弓装置。
两个受电弓可同时向辅助系统高压母线供电。
整列车在两个B车牵引箱中各设了一个1500VDC的车间电源插头以代替受电弓向整列车的辅助系统供电。
当任何一个车间电源接通时,均能够向整列车辅助系统供电。
车间电源供电与受电弓供电之间设有联锁,采用二极管与牵引高压母线隔离。
以保证在任何时候列车仅有一种方式电源供电。
静态辅助逆变器通过高压列车线供电,将其转换为中压然后再转换成低压。
中压母线3.1.中压配电辅助供电系统中的中压母线主要由列车上的辅助逆变器通过中压母线给列车上所有的交流负载供电。
其中每一台静态逆变器提供一个独立的3相电网,分别供本单元的设备。
在一个辅助逆变器发生故障的状况下,可通过TCMS输出信号控制设在C车的中压连接接触器(MVAPK)对整列6辆车辅助系统的负载设备提供一半负荷用电。
这时正常的辅助逆变器对整列6辆车辅助系统设备供电,此时空调减载运行,每个车的空调一个保持通风,一个正常工作。
低压母线4.1.低压配电DC110V低压电源主要用于车门、紧急照明、乘客紧急通风、通信、控制和数据处理,所有的负载根据需要分别由永久性低压电路和预备低压电路这两条母线供电。
每一个静态逆变器箱体都有防止电流由预置低压线向持久电压线流动的二极管,并防止电流从蓄电池回流。
预备低压电路通过断路器或保险丝为线路提供过电流保护。
静态辅助逆变器5.1.辅助逆变器结构辅助变流器的主要功能块包括:输入电路三相逆变器,输出隔离变压器,逆变器输出交流滤波器,冷却系统与电池充电器。
辅助逆变器箱安装于A车底架,它由防护等级为IP20(通风区域)和IP55(密闭区域)的不同隔间组成。
5.2.辅助逆变器运行原理当DC1500V高压通过牵引箱进线进入辅助逆变器,电子控制单元使预充电接触器闭合。
在输入电压达到900V后,主接触器闭合,而预充电接触器断开。
直流线路电压通过输入L-C滤波器,然后由逆变器控制器采用三相逆变器由6只静止开关构成,它用于将DC 电压转换成AC电压。
逆变器系统采用“PWM”(“脉冲宽度调制”)方法进行整形。
采取PWM(脉冲宽度调节)策略控制逆变器,使变流器十分简单逆变成近似正弦波的三相对称交流电源。
AC输出滤波器用三相输出滤波器将PWM电压方波平滑成正弦波,经两组独立的三相隔离变压器输出。
变压器的第一个次级绕组通往400伏/50赫兹网络。
由于在该绕组中整合了一个电感器,因此三相L-C滤波器仅由一个三相电容器构成。
三相隔离变压器线圈输出的是三相四线制AC400V电源,容量230kVA,可满足本单元三辆车辅助系统用电。
在实际检修作业中,逆变器将通过本单元B 车牵引箱的IES来完成开箱前的保护隔离和接地放电。
5.3.辅助系统基本功能逆变器的高压输入端有独立的熔断器。
该输入熔断器被安装在牵引逆变器中,用于保护逆变器前端的线路。
DC/AC逆变器有一个输入接触器。
AC/DC整流器(蓄电池充电器)的输入由输入电流监控保护。
逆变器有自关闭和自恢复功能。
一旦输入/输出发生突发事件,它将启动自关闭功能。
在输入/输出正常后,它可以自动的进入到它的工作状态。
辅助逆变器有重复启动的功能。
辅助逆变器的保护由控制电子系统控制。
在辅助逆变器控制电路中含有各种传感器,其传出的反馈信号能够使控制电子系统一开始就作用,以便从得到任何损坏信息的同时保护逆变器,尽可能的维持逆变器的输出。
这就是,遇到许多故障,逆变器能自动地重起动而不需要驾驶员干预和处理。
蓄电池6.1蓄电池基本要求列车配有2个蓄电池箱组位于A车底架下。
每个子部件装有42块镍镉蓄电池,蓄电池采用容量160Ah帅得福碱性蓄电池。
电压范围符合IEC60077,额定电压为DC110V,直流负载在77至137.5V 可以正常工作。
每组蓄电池有两个中央加水系统,蓄电池安装在不锈钢下部箱体中。
二极管设置在静止逆变器的输出端,是为了防止125Vdc电流逆流向蓄电池。
蓄电池能够被位于底架上的低压和中压箱中的一个手动开关(正负端同时断开)与低压网络隔离。
蓄电池组的电池都以镍镉技术为基础,在两极采用两只200A保险丝BAMF1和BAMF2保护+和-端子防止过电流。
安装在蓄电池架的温度传感器向辅助逆变器提供温度信息。
6.2.蓄电池工作运行位于每节A车蓄电池通过蓄电池充电器充电。
如果蓄电池充电器停止使用,其相应蓄电池就不充电。
人工操纵的蓄电池隔离开关BIS可以使蓄电池与低压电网隔离。
如果列车被唤醒并且辅助逆变器在工作,就按照如下方式管理失去的1500V:T=T0失去1500V=>失去400V/230V=>正常灯熄灭,应急灯继续亮着,紧急通风启动;T0+45m=>紧急通风切断:A/C单元软件;T0+50m=>列车自动被置于休眠方式:应急灯熄灭。
供电50分钟时,蓄电池的端电压还必须大于84V。
对于该情况,如果蓄电池电压低于84V,10分钟的时间后列车自动休眠。
如果列车部分被唤醒(只有蓄电池被唤醒,但受电弓没有提起),10分钟后将列车自动休眠。
列车照明系统7.1.司机室照明司机室照明与客室照明相互独立,照明灯的设置应避免司机台上出现阴影和产生影响司机视线的反射光。
所有设备在驾驶操纵台上提供的可读信息(比如监视器、速度显示器、量表等)应该能够容易、清楚地看见。
司机室由两盏横向布置的灯提供照明。
这两盏灯由司机台上的一个开关控制。
7.2.客室照明车内乘客照明位于列车顶部天花板,并混合了正常照明和应急照明的两根纵向光带。
每节车厢内的正常照明灯都采用相同的布置。
客室照明配备了230Vac荧光灯管,在230V(正常照明)电压和110VDC(应急照明)电压正常的情况下,车厢内的任意一点不得小于300勒克斯。
司机可通过使用NLCS(客室灯控制)开关选择灯的模式。
他可通过“手动”位置来打开或关掉客室灯。
另外,他可选择“自动”位置使客室灯根据光敏元件(位于司机室前侧外部)接受到的外部光线的强度自动控制客室灯的开关。
7.3.列车头部照明列车头部照明安装A车司机室的前方,由两个头灯和两个尾灯构成。
每侧一个头灯配对一个尾灯。
头部照明采用DC110V\DC24V 变换器提供的DC24V电源。
头灯的设计能够照亮前方的轨道,司机能够以便司机对线路的了望,目测轨道有无障碍物并指示列车运行的方向。
尾灯的设计能够确保运行的列车为后继列车发出在线上的信号,使列车在轨道上能够被后续列车的司机看见。
某地铁正处于列车运营的初期,列车辅助系统的运行相对比较平稳。
虽然国内大多数地铁列车的辅助系统依然采用国外先进技术,在国内进行生产组装。
但希望不久的将来,通过对辅助系统技术的吸收研究与开发,使整个系统完全实现国产化。
这里填写您的公司名字Fill In Your Business Name Here。