282解直角三角形二同步测控优化训练含答案

合集下载

人教版九年级数学下册28.2《解直角三角形及其应用》同步练习 含答案

人教版九年级数学下册28.2《解直角三角形及其应用》同步练习    含答案

2021年人教版九年级下册28.2《解直角三角形及其应用》同步练习一.选择题1.在Rt△ABC中,∠C=90°,∠B=36°,若BC=m,则AB的长为()A.B.m•cos36°C.m•sin36°D.m•tan36°2.如图,△ABC的顶点都在方格纸的格点上,则sin A的值为()A.B.C.3 D.3.如图,已知在4×4的网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则cos∠CAB的值为()A.B.C.D.4.如图,在平面直角坐标系中,P是第一象限内的点,其坐标是(a,3)且OP与x轴的夹角α的正切值是,则sinα的值为()A.B.C.D.5.如图,某游乐场山顶滑梯的高BC为50米,滑梯的坡比为5:12,则滑梯的长AB为()A.100米B.110米C.120米D.130米6.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AD与AB的长度之比为()A.B.C.D.7.如图,要测量一条河两岸相对的两点A,B之间的距离,我们可以在岸边取点C和D,使点B,C,D共线且直线BD与AB垂直,测得∠ACB=56.3°,∠ADB=45°,CD=10m,则AB的长约为()(参考数据sin56.3°≈0.8,cos56.3°≈0.6,tan56.3°≈1.5,sin45°≈0.7,cos45°≈0.7,tan45°=1)A.15m B.30m C.35m D.40m8.如图,河坝横断面迎水坡AB的坡比为1:,坝高BC=3m,则AB的长度为()A.6m B.3m C.9m D.6m9.如图,一艘潜水艇在海面下300米的点A处发现其正前方的海底C处有黑匣子,同时测得黑匣子C的俯角为30°,潜水艇继续在同一深度直线航行960米到点B处,测得黑匣子C的俯角为60°,则黑匣子所在的C处距离海面的深度是()A.(480+300)米B.(960+300)米C.780米D.1260米10.如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东60°方向,且与他相距300m,则图书馆A到公路的距离AB为()A.150m B.150m C.150m D.100m 11.如图,从渔船A处测得灯塔M在北偏东55°方向上,这艘渔船以28km/h的速度向正东方向航行,半小时后到达B处,在B处测得灯塔M在北偏东20°方向上,此时灯塔M与渔船的距离是()A.28km B.14km C.7km D.14km12.如图,两栋大楼相距100米,从甲楼顶部看乙楼的仰角为26°,若甲楼高为36米,则乙楼的高度为()A.(36+100sin26°)米B.(36+100tan26°)米C.(36+100cos26°)米D.(36+)米二.填空题13.在△ABC中,sin B=,tan C=,AB=3,则AC的长为.14.如图,△ABC的顶点都是正方形网格中的格点,则cos A的值为.15.如图,在平面直角坐标系中有一点P(6,8),那么OP与x轴的正半轴的夹角α的余弦值为.16.如图,某商场大厅自动扶梯AB的长为12m,它与水平面AC的夹角∠BAC=30°,则大厅两层之间的高度BC为m.17.如图,大坝横截面的迎水坡AB的坡比为1:2(即BC:AC=1:2),若坡面AB的水平宽度AC为12米,则斜坡AB的长为米.18.再如图,一艘船由A港沿北偏东65°方向航行30km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A,C两港之间的距离为多少km.19.平放在地面上的三角形铁板ABC的一部分被沙堆掩埋,其示意图如图所示,量得∠A 为54°,∠B为36°,边AB的长为2.1m,BC边上露出部分BD的长为0.9m,则铁板BC 边被掩埋部分CD的长是m.(结果精确到0.1m.参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38).20.如图,海面上有一艘船由西向东航行,在A处测得正东方向上一座灯塔的最高点C的仰角为31°,在B处测得该灯塔的最高点C的仰角为45°,则∠ACB的度数为.三.解答题21.如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=∠BAC,求sin∠BPC.22.如图,小明为了测量学校旗杆CD的高度,在地面离旗杆底部C处22米的A处放置高度为1.5米的测角仪AB,测得旗杆顶端D的仰角为32°.求旗杆的高度CD.(结果精确到0.1米)【参考数据:sin32°=0.53,cos32°=0.85,tan32°=0.62】23.如图,航拍无人机从A处测得一幢建筑物顶部B处的仰角为45°、底部C处的俯角为63°,此时航拍无人机A处与该建筑物的水平距离AD为80米.求该建筑物的高度BC(精确到1米).[参考数据:sin63°=0.89,cos63°=0.45,tan63°=1.96]24.汝阳某公司举办热气球表演来庆祝开业,如图,小敏、小亮从A,B两地观测空中C处一个气球,分别测得仰角为37°和45°,A、B两地相距100m.当气球沿与BA平行地飘移100秒后到达D处时,在A处测得气球的仰角为60°.(1)求气球的高度;(2)求气球飘移的平均速度.(参考数据:sin37°=0.6,cos37°=0.8,tan37°=0.75,≈1.7.)25.如图,某地修建高速公路,要从A地向B地修一座隧道(A、B在同一水平面上),为了测量A、B两地之间的距离,某工程师乘坐热气球从B地出发,垂直上升120米到达C处,在C处观察A地的俯角为42°,求A、B两地之间的距离.(结果精确到1米)[参考数据:sin42°=0.67,cos42°=0.74,tan42°=0.90]26.如图,海面上产生了一股强台风.台风中心A在某沿海城市B的正西方向,小岛C位于城市B北偏东29°方向上,台风中心沿北偏东60°方向向小岛C移动,此时台合风中心距离小岛200海里.(1)过点B作BP⊥AC于点P,求∠PBC的度数;(2)据监测,在距离台风中心50海里范围内均会受到台风影响(假设台风在移动过程中风力保持不变).问:在台风移动过程中,沿海城市B是否会受到台风影响?请说明理由.(参考数:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,≈1.73)参考答案一.选择题1.解:∵∠C=90°,∠B=36°,BC=m,∴cos B=,∴AB==,故选:A.2.解:延长AB到D,连接CD,如右图所示,由题意可得,AC==,CD=1,∴sin∠A==,故选:A.3.解:由题意可得,AC===2,BC==,AB==5,∵(2)2+()2=52,∴AC2+BC2=AB2,∴△ACB是直角三角形,∠ACB=90°,∴cos∠CAB==,故选:B.4.解:过点P作PE⊥x轴于E,如图所示:∵P(a,3),∴OE=a,PE=3,∵tan∠α==,∴a=OE=4,∴OP===5,∴sinα==,故选:A.5.解:∵某游乐场山顶滑梯的高BC为50米,滑梯的坡比为5:12,∴=,则=,解得:AC=120米,故AB===130(米).故选:D.6.解:在Rt△ABC中,∵sin∠ABC=,即sinα=,∴AB=,在Rt△ADC中,∵sin∠ADC=,即sinβ=,∴AD=,∴==,故选:C.7.解:设AB=xm,在Rt△ABD中,∵∠ADB=45°,∴AB=BD=xm,在Rt△ABC中,∵∠ACB=56.3°,且tan∠ACB=,∴BC==≈x,由BC+CD=BD得x+10=x,解得x=30,∴AB的长约为30m,故选:B.8.解:∵迎水坡AB的坡比为1:,∴=,即=,解得,AC=3,由勾股定理得,AB==6(m),故选:A.9.解:由C点向AB作垂线,交AB的延长线于E点,并交海面于F点.已知AB=960米,∠BAC=30°,∠EBC=60°,∵∠BCA=∠EBC﹣∠BAC=30°,∴∠BAC=∠BCA.∴BC=BA=960(米).在Rt△BEC中,sin∠EBC=,∴CE=BC•sin60°=960×=480(米).∴CF=CE+EF=(480+300)米,故选:A.10.解:由题意得,∠AOB=90°﹣60°=30°,OA=300m,∴AB=OA=150(m),故选:C.11.解:根据题意可知:∠MAB=90°﹣55°=35°,∠ABM=90°+20°=110°,∴∠AMB=180°﹣∠ABM﹣∠MAB=35°,∴∠MAB=∠AMB,∴BM=AB=28×=14(km).所以此时灯塔M与渔船的距离是14km.故选:B.12.解:由题意知:AE=CD=36米,AC=DE=100米,在Rt△ABC中,tan∠BAC=,∴BC=AC tan∠BAC=100tan26°(米),则BD=CD+BC=(36+100tan26°)米,即乙楼的高度为(36+100tan26°)米,故选:B.二.填空题13.解:过A作AD⊥BC,在Rt△ABD中,sin B=,AB=3,∴AD=AB•sin B=1,在Rt△ACD中,tan C=,∴=,即CD=,根据勾股定理得:AC===,故答案为:.14.解:如图,作CH⊥AB于H,设小正方形的边长为1.则AC==,在Rt△ACH中,cos A===,故答案为:.15.解:如图作PH⊥x轴于H.∵P(6,8),∴OH=6,PH=8,∴OP==10,∴cosα===.故答案为:.16.解;在Rt△ABC中,∠BAC=30°,AB=12m,∴BC=m,故答案为:6.17.解:∵大坝横截面的迎水坡AB的坡比为1:2,AC=12米,∴==,∴BC=6(米),∴AB===6(米).故答案为:6.18.解:如图,过B作BE⊥AC于E,过C作CF∥AD,则CF∥AD∥BG,∠AEB=∠CEB=90°,∴∠ACF=∠CAD=20°,∠BCF=∠CBG=40°,∴∠ACB=20°+40°=60°,由题意得,∠CAB=65°﹣20°=45°,AB=30km,在Rt△ABE中,∵∠ABE=45°,∴△ABE是等腰直角三角形,∵AB=30km,∴AE=BE=AB=30(km),在Rt△CBE中,∵∠ACB=60°,tan∠ACB=,∴CE===10(km),∴AC=AE+CE=30+10(km),∴A,C两港之间的距离为(30+10)km,故答案为:(30+10).19.解:在直角三角形中,sin A=,则BC=AB•sin A=2.1sin54°≈2.1×0.81=1.701,则CD=BC﹣BD=1.701﹣0.9,=0.801≈0.8(m),故答案为:0.8.20.解:由题意得:∠BAC=31°,∠CBD=45°,∵∠CBD=∠BAC+∠ACB,∴∠ACB=∠CBD﹣∠BAC=45°﹣31°=14°,故答案为:14°.三.解答题21.解:作AD⊥BC于点D,如右图所示,∵AB=AC=5,BC=8,∴BD=CD=4,∠BAD=∠BAC,∵∠ADB=90°,∴sin∠BAD=,又∵∠BPC=∠BAC,∴∠BPC=∠BAD,∴sin∠BPC=.22.解:由题意得,BE⊥CD于E,BE=AC=22米,∠DBE=32°,在Rt△DBE中,DE=BE•tan∠DBE=22×0.62≈13.64(米),CD=CE+DE=1.5+13.64≈15.1(米),答:旗杆的高CD约为15.1米.23.解:在△ADB中,∠ADB=90°,∠BAD=45°,∴BD=AD=80(米),在△ACD中,∠ADC=90°,∴CD=AD•tan63°=80×1.96≈156.8(米),∴BC=BD+CD=80+156.8=236.8≈237(米),答:该建筑物的高度BC约为237米.24.解:(1)如图,过点C作CE⊥AB于点E,在Rt△ACE中,∵∠CAE=37°,∴CE=AE×tan37°=0.75AE,∴AE=CE,在Rt△BCE中,∵∠CBE=45°,∴BE=CE,∴AB=AE﹣BE=CE﹣CE=CE=100,∴CE=300(米),答:气球的高度为300米;(2)如图,过点D作DF⊥AB于点F,则四边形DFEC是矩形,在Rt△ADF中,∵∠DAF=60°,∴AF=DF=CE=100≈170(米),∴AE=CE=400(米),∴CD=EF=400﹣170=230(米),∴速度为:230÷100=2.3.答:气球飘移的平均速度每分钟为2.3米.25.解:在Rt△ABC中,∵∠ABC=90°,∠A=42°,∴tan42°=,∴AB=≈133(米)答:A、B两地之间的距离约为133米.26.解:(1)∵∠MAC=60°,数学∴∠BAC=30°,又∵BP⊥AC,∴∠APB=90°,∴∠ABP=60°,又∵∠CBN=29°,∠ABN=90°,∴∠ABC=119°,∴∠PBC=∠ABC﹣∠ABP=59°;(2)不会受到影响.理由如下:由(1)可知,∠PBC=59°,∴∠C=90°﹣∠PBC=31°,又∵tan31°=0.60,∴,设BP为x海里,则AP=海里,CP=海里,∴,解得:x≈57,∵57>50,∴沿海城市B不会受到台风影响.。

人教版九年级数学下册28.2 解直角三角形及其应用同步练习附答案【新材料】

人教版九年级数学下册28.2 解直角三角形及其应用同步练习附答案【新材料】

28.2 解直角三角形及其应用(一)一、双基整合:1.在下面条件中不能解直角三角形的是()A.已知两条边 B.已知两锐角 C.已知一边一锐角 D.已知三边2.在△ABC中,∠C=90°,a=5,c=13,用科学计算器求∠A约等于()A.24°38′ B.65°22′ C.67°23′ D.22°37′3.在△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边,有下列关系式:•①b=ccosB,②b=atanB,③a=csinA,④a=bcotB,其中正确的有()A.1个 B.2个 C.3个 D.4个4.为测一河两岸相对两电线杆A、B间距离,在距A点15m的C处,(AC⊥AB),测得∠ACB=50°,则A、B间的距离应为( )mA.15sin50° B.15cos50° C.15tan50° D.15cot50°5.在△ABC中,∠C=90°,,三角形面积为52,则斜边c=_____,∠A的度数是____.6.在直角三角形中,三个内角度数的比为1:2:3,若斜边为a,•则两条直角边的和为________.7.四边形ABCD中,∠C=90°,AB=12,BC=4,CD=3,AD=13,•则四边形ABCD•的面积为________.8.如图,小明想测量电线杆AB•的高度,•发展电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4米,BC=10米,CD与地面成30°角,且此时测得1米杆的影长为2米,则电线杆的高度约为_______米.1.41≈1.73)9.如图所示,在Rt△ABC中,a,b分别是∠A,∠B的对边,c为斜边,如果已知两个元素a,∠B,就可以求出其余三个未知元素b,c,∠A.(1)求解的方法有多种,请你按照下列步骤,完成一种求解过程.第一步:已知:a,∠B,用关系式:_______________,求出:_________________;第二步:已知:_____,用关系式:_______________,求出:_________________;第三步:已知:_____,用关系式:_______________,求出:_________________.(2)请你分别给出a,∠B的一个具体数据,然后按照(1)中的思路,求出b,c,∠A的值.bcaA10.在等腰梯形ABCD中,AB∥CD,CD=3cm,AB=7cm,高为,求底角B的度数.11.如图所示,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,AC=22,AB=23,设∠BCD=α,•求cos α的值.BAC D二、探究创新12.国家电力总公司为了改善农村用电量过高的现状,目前正在全面改造各地农村的运行电网,莲花村六组有四个村庄A ,B ,C ,D 正好位于一个正方形的四个顶点,•现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图所示的实线部分,请你帮助计算一下,哪种架设方案最省电线(以下数据可供参考2=1.414,3=1.732,5=2.236).13.在Rt △ABC 中,∠C=90°,斜边c=5,两直角边的长a ,b 是关于x 的一元二次方程x 2-mx+2m-2=0的两个根,求Rt △ABC 中较小锐角的余弦值。

2020年春人教版九年级数学下册28.2解直角三角形同步练习附答案

2020年春人教版九年级数学下册28.2解直角三角形同步练习附答案

1

ED 2
∴ ED= 2CE=2×4= 8.
∴ AD= AF+ FE+ ED= 3+ 4+ 8= 15(m) .
4.解:过点 O作水平地面的垂线,垂足为 E.
在 Rt△ AOB中, cos∠ OAB= AB , OA
即 cos28 °= 12 ,∴ OA= 12
OA
cos 28
∵∠ BAE= 16°,
28.2 解直角三角形
专题一 利用解直角三角形测河宽与山高 1.如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选
取点 A,在点 A 的对岸选取一个参照点 C,测得∠ CAD= 30°;小丽沿河岸向前走 30 m 选取点 B, 并测得∠ CBD= 60°. 请根据以上数据 , 用你所学的数学知识 , 帮助小丽计算小河的宽度 .
2.在一次暑假旅游中,小亮在仙岛湖的游船上(
A 处),测得湖西岸的山峰太婆尖( C 处)和湖东
岸的山峰老君岭( D处)的仰角都是 45°,游船向东航行 100 米后( B处),测得太婆尖、老君
岭的仰角分别为 30°、 60°.试问太婆尖、老君岭的高度为多少米?(
3 ≈ 1.732 ,结果精确
到 1 米)
∴∠ OAE= 28°+ 16°= 44° .
12 13.333 .
0.9
OE 在 Rt△ AOE中, sin ∠ OAE= ,
OA
即 sin44 °
OE

13.333
∴ OE 13.333 0.7 9.333,
9.333 +1.5 ≈10.83(m) .
∴雕塑最顶端到水平地面的垂直距离约为
10.83 m .
的思路一定是正确的 .

九年级数学下册同步测控优化训练(28.2解直角三角形)(1)

九年级数学下册同步测控优化训练(28.2解直角三角形)(1)
数学九年级下同步测控优化训练
21.在△ABC中,已知∠C=90°,BC=3,tanB=2,那么AC为( )
A.3
B.4 C.5 D.6
解析:AC=BC·tanB=6.
答案:D
3 2.如图28-2-2-1,在△ABC中,∠C=90°,点D在BC上,CD=3,AD=BC,且cos∠ADC= 5 ,则BD的长
∴BD= 2 2 .
在Rt△ADC中,AC=6,
由勾股定理得DC= AC 2 AD 2 62 (2 2)2 2 7 , ∴BC=BD+DC= 2 2 2 7 ,
AD 2 2 14
tanC= DC 2 7 7 .
4.如图28-2-2-4,初三年级某同学要测量校园内的旗杆AB的高度.在地面上C点用测角仪测得旗杆 顶A点的仰角为∠AFE=60°,再沿着直线BC后退8米到D,在D点又测得旗杆顶A的仰角
解:延长AD,交BC的延长线于点E,
在Rt△ABE中,∠A=60°,AB=200 m,
∴BE=AB·tanA= 200 3 (m).
AB 200
cos 60
1
AE=
2 =400(m).
在Rt△CDE中,∠CED=30°,CD=100 m,
∴DE=CD·cot∠CED=100 3 (m),
CD 100
sin CED
1
CE=
2 =200m.
∴AD=AE-DE=400-100 3 ≈227(m),[来源:学,科,网]
BC=BE-CE= 200 3 -200≈146(m).
图28-2-2-7 解析:AB=BC·tanC=12(米). 答案:12[来源:] 3.某片绿地的形状如图28-2-2-8所示,其中∠A=60°,AB⊥BC,AD⊥CD,AB=200

九年级数学下册 28.2.1 解直角三角形同步测试 (新版)新人教版 (含答案)

九年级数学下册 28.2.1 解直角三角形同步测试 (新版)新人教版  (含答案)

解直角三角形1.△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,如果a 2+b 2=c 2,那么下列结论正确的是( A )A .c sin A =aB .b cos B =cC .a ta n A =bD .c tan B =b2.在Rt △ABC 中,∠C =90°,若tan A =12,c =2,则b 的值等于( D )A.55 B.255 C.355 D.455【解析】 ∵tan A =a b =12,∴a =b 2,又∵a 2+b 2=c 2,∴⎝ ⎛⎭⎪⎫b 22+b 2=4,∴5b 24=4,∴b =45 5.3.如图28-2-1,小明为了测量其所在位置A 点到河对岸B 点之间的距离,沿着与AB 垂直的方向走了m 米,到达点C ,测得∠ACB =α,那么AB 等于( B ) A .m ·sin α米 B .m ·tan α米 C .m ·cos α米 D.mtan α米图28-2-1图28-2-24.如图28-2-2,△ABC 中,cos B =22,sin C =35,AC =5,则△ABC 的面积是( A ) A.212B .12C .14D .21 5.已知:在△ABC 中,AB =AC ,∠BAC =120°,AD 为BC 边上的高.则下列结论中,正确的是( B ) A .AD =32AB B .AD =12AB C .AD =BD D .AD =22BD 6.在Rt △ABC 中,∠C =90°,a =6,b =23,则∠B =__30°__.【解析】 本题是已知两直角边解直角三角形,由tan B =b a =236=33,得∠B =30°.7.已知Rt △ABC 中,∠C =90°,c =83,∠A =60°,则a =__12__,b =.【解析】 本题是已知一锐角和斜边解直角三角形,由sin A =a c ,得a =sin A ·c =32×83=12.由∠A =60°,得∠B =30°,所以b =12c =4 3.8.等腰三角形底边长为26,底边上的高为32,则底角为__60°__. 【解析】 底边上的高将等腰三角形分割成两个直角三角形,通过解直角三角形即可求底角. 9.在△ABC 中,∠C =90°,由下列条件解直角三角形. (1)已知∠A =60°,b =4,求a ; (2)已知a =13,c =23,求b ;(3)已知c =282,∠B =30°,求a ;(4)已知a =2,cos B =13,求b .解:(1)∵tan A =a b,∴a =b ·tan A =4·tan60°=4×3=43;(2)∵a 2+b 2=c 2, ∴b =c 2-a 2=⎝ ⎛⎭⎪⎫232-⎝ ⎛⎭⎪⎫132=13; (3)∵cos B =a c, ∴a =c ·cos B =282×32=146; (4)∵cos B =a c ,∴c =a cos B =213=6.又∵b 2=c 2-a 2,∴b =c 2-a 2=62-22=4 2. 10.在Rt △ABC 中,∠C =90°. (1)已知a =4,b =8,求c .(2)已知b =10,∠B =60°,求a ,c . (3)已知c =20,∠A =60°,求a ,b .解:(1)c =a 2+b 2=42+82=45;(2)a =b tan B =10tan60°=103=1033,c =b sin B =10sin60°=1032=2033;(3)a =c ×sin A =20×32=103,b =c ×cos A =20×12=10. 11.根据下列条件,解直角三角形:(1)在Rt △ABC 中,∠C =90°,a =8,∠B =60°; (2)在Rt △ABC 中,∠C =90°,∠A =45°,b = 6.解:(1)∠A =90°-∠B =30°,c =acos B=16,b =a ·tan B =83;(2)∠B =90°-∠A =45°,a =b ·tan A =6,c =bcos A=2 3.图28-2-312.如图28-2-3,在Rt △ABC 中,∠C =90°,AC =2,AB = 22,解这个直角三角形.解:∵∠C =90°,AC =2,AB =22,∴sin B =AC AB =12,∴∠B =30°, ∴∠A =60°.BC =AB 2-AC 2=8-2= 6.13.如图28-2-4,已知△ABC 中,∠C =90°,tan A =12,D 是AC 上一点,∠CBD =∠A ,则sin ∠ABD =( A )图28-2-4A.35B.105C.310D.4914.如图28-2-5,已知在Rt △ABC 中,∠BAC =90°,点D 在BC 边上,且△ABD 是等边三角形.若AB =2,求△ABC 的周长(结果保留根号). 解:∵△ABD 是等边三角形,∴∠B = 60°. 在Rt △ABC 中,∵cos B =AB BC ,sin B =AC BC,∴BC = AB cos B =2cos60°=4,∴AC =BC ·sin B =4×sin60°=23, ∴△ABC 的周长=AB +AC +BC =6+2 3.图28-2-5图28-2-615.如图28-2-6,△ABC 中,∠C =90°,点D 在AC 上,已知∠BDC =45°,BD =102,AB =20.求∠A 的度数.解:在Rt △BDC 中,因为sin ∠BDC =BC BD, 所以BC =BD ×sin ∠BDC =102×sin45°=102×22=10. 在Rt △ABC 中,因为sin A =BC AB =1020=12,所以∠A =30°. 16.如图28-2-7,在△ABC 中,∠A =30°,∠B =45°,AC =23,求AB 的长.图28-2-7第16题答图解:如图,过点C 作CD ⊥AB 于点D , ∴∠ADC =∠BDC =90°.∵∠B =45°,∴∠BCD =∠B =45°,∴CD =BD . ∵∠A =30°,AC =23,∴CD =12AC =3,∴BD =CD = 3.由勾股定理得:AD =AC 2-CD 2=3, ∴AB =AD +BD =3+ 3.17.某学校的校门是伸缩门(如图①),伸缩门中的每一行菱形有20个,每个菱形边长为30厘米.校门关闭时,每个菱形的锐角度数为60°(如图②);校门打开时,每个菱形的锐角度数从60°缩小为10°(如图③).问:校门打开了多少米?(结果精确到1米,参考数据:sin5°≈0.087 2,cos5°≈0.996 2,sin10°≈0.173 6,cos10°≈0.984 8).图28-2-8 解:如图,校门关闭时,取其中一个菱形ABC D.根据题意,得∠BAD=60°,AB=0.3米.∵在菱形ABCD中,AB=AD,∴△BAD是等边三角形,∴BD=AB=0.3米,∴大门的宽是:0.3×20≈6(米);校门打开时,取其中一个菱形A1B1C1D1.根据题意,得∠B1A1D1=10°,A1B1=0.3米.∵在菱形A1B1C1D1中,A1C1⊥B1D1,∠B1A1O1=5°,∴在Rt△A1B1O1中,B1O1=sin∠B1A1O1·A1B1=sin5°×0.3=0.02616(米),∴B1D1=2B1O1=0.05232米,∴伸缩门的宽是:0.05232×20=1.0464米;∴校门打开的宽度为:6-1.0464=4.9536≈5(米).故校门打开了5米.。

2021-2022学年人教版九年级数学下册《28-2解直角三角形及其应用》同步练习题(附答案)

2021-2022学年人教版九年级数学下册《28-2解直角三角形及其应用》同步练习题(附答案)

2021-2022学年人教版九年级数学下册《28-2解直角三角形及其应用》同步练习(附答案)1.如图,在点F处,看建筑物顶端D的仰角为32°,向前走了15米到达点E即EF=15米,在点E处看点D的仰角为64°,则CD的长用三角函数表示为()A.15sin32°B.15tan64°C.15sin64°D.15tan32°2.如图,从一热气球的探测器A点,看一栋高楼顶部的仰角为55°,看这栋高楼底部的俯角为35°,若热气球与高楼的水平距离为35m,则这栋高楼度大约是()(考数据:sin55°≈,cos55°≈,tan55°≈)A.74米B.80米C.84米D.98米3.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则cos∠AOD=()A.B.C.D.4.某校积极开展综合实践活动,一次九年级数学小组发现校园里有一棵被强台风摧折的大树,其残留的树桩DC的影子的一端E刚好与倒地的树梢重合,于是他们马上利用其测量旁边钟楼AB的高度.如图是根据测量活动场景抽象出的平面图形.活动中测得的数据如下:①大树被摧折倒下的部分DE=10m;②tan∠CDE=;③点E到钟楼底部的距离EB=7m;④钟楼AB的影长BF=(20+8)m;⑤从D点看钟楼顶端A点的仰角为60°.(点C,E,B,F在一条直线上).请你选择几个需要的数据,用你喜欢的方法求钟楼AB的高度,则AB=()A.15m B.(15+6)m C.(12+6)m D.15m5.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AD与AB的长度之比为()A.B.C.D.6.如图,小王在山坡上E处,用高1.5米的测角仪EF测得对面铁塔顶端A的仰角为25°,DE平行于地面BC,若DE=2米,BC=10米,山坡CD的坡度i=1:0.75,坡长CD=5米,则铁塔AB的高度约米.(精确到个位,参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47)7.如图,小明在某天15:00时测量某树的影长时,日照的光线与地面的夹角∠ACB=60°,当他在17:00时测量该树的影长时,日照的光线与地面的夹角∠ADB=30°,若两次测得的影长之差CD长为6m,则树的高度为m.8.如图,河旁有一座小山,从山顶A处测得河对岸点C的俯角为30°,测得岸边点D的俯角为45°,通过测量可知河的宽度CD为50m.现需从山顶A到河对岸点C拉一条笔直的缆绳AC,则AC=m(计算结果用含根号的式子表示).9.为做好疫情宣传巡查工作,各地积极借助科技手段加大防控力度.如图,亮亮在外出期间被无人机隔空喊话“戴上口罩,赶紧回家”.据测量,无人机与亮亮的水平距离是15米,当他抬头仰视无人机时,仰角恰好为30°,若亮亮身高1.70米,则无人机距离地面的高度约为米.(结果精确到0.1米,参考数据:≈1.732,≈1.414)10.如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知乙楼的高CD是45m,则甲楼的高AB是m (结果保留根号);11.某兴趣小组借助无人飞机航拍校园,如图,无人机在水平直线AB的正上方从E沿水平方向飞行至F处,用时10秒,在地面A处测得E处的仰角分别为30°,在水平线上的C处测得E处和F处的仰角分别为75°和45°,已知AC=100米,求无人机飞行的速度.12.2020年11月24日4时30分,我国在海南航天发射场,使用长征五号运载火箭成功发射了嫦娥五号探月探测器,引起了全世界的瞩目.运载火箭从地面O处发射,当火箭到达点A时,地面D处的雷达站测得AD=4000米.仰角为30°.3秒后,火箭直线上升到达点B处,此时地面C处的雷达站测得B处的仰角为45°.已知C,D两处相距460米.求火箭从A到B处的平均速度.(结果精确到1米/秒,参考数据:≈1.732,≈1.414)13.如图,某大楼的顶部竖有一块广告牌CD,小明与同学们在山坡的坡脚A处测得广告牌底部D的仰角为53°,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=21米.(测角器的高度忽略不计,结果精确到0.1米,参考数据:≈1.41,≈1.73,sin53°≈,cos53°≈,tan53°≈)(1)求点B距水平地面AE的高度;(2)求广告牌CD的高度.(结果精确到0.1米)14.文物探测队探测出某建筑物下面有地下文物,为了准确测出文物所在的具体位置,他们在文物上方建筑物的一侧地面上相距20米的A、B两处,用仪器测文物C,探测线与地面的夹角分别为30°和75°.(1)求∠C的度数;(2)求BC的长.15.如图,海岛A为物资供应处,海上事务处理中心B在海岛A的南偏西63.4°方向.一艘渔船在行驶到B岛正东方向30海里的点C处时发生故障,同时向A、B发出求助信号,此时渔船在A岛南偏东53.1°位置.(参考数据:tan53.1≈,sin53.1°≈,cos53.1°≈,tan63.4°≈2,sin63.4°≈,cos63.4°≈)(1)求C点到岛的距离;(2)在收到求助信号后,A、B两岛同时派人员出发增援,由于A岛所派快艇装运物资较多,速度比B岛所派快艇慢25海里/小时,若两岛派出的快艇同时到达C处,求A处所派快艇的速度.16.深圳是沿海城市,每年都会受到几次台风侵袭,台风是一种自然灾害,它以台风中心为圆心在数十千米范围内形成气旋风景,有极强的破坏力.某次,据气象观察,距深圳正南200千米的A处有一台风中心,中心最大风力为12级,每远离台风中心30千米,风力就会减弱一级,该台风中心正以20千米/时的速度沿北偏东43°方向向B移动,且台风中心风力不变,若城市受到风力达到或超过六级,则称受台风影响.(1)此次台风会不会影响深圳?为什么?(2)若受到影响,那么受到台风影响的最大风力为几级?(3)若受到影响,那么此次台风影响深圳共持续多长时间?(结果可带根号表示)(sin43°≈,cos42°≈,tan42°≈)17.疫情期间,为了保障大家的健康,各地采取了多种方式进行预防,某地利用无人机规劝居民回家.如图,一条笔直的街道DC,在街道C处的正上方A处有一架无人机,该无人机在A处测得俯角为45°的街道B处有人聚集,然后沿平行于街道DC的方向再向前飞行60米到达E处,在E处测得俯角为37°的街道D处也有人聚集.已知两处聚集点B、D之间的距离为120米,求无人机飞行的高度AC.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,≈1.414.)18.如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿某一方向直航140海里的海岛B,其速度为14海里/小时;乙船速度为20海里/小时,先沿正东方向航行3小时后,到达C港口接旅客,停留1小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求海岛B到航线AC的距离;(2)甲船在航行至P处,发现乙船在其正东方向的Q处,问此时两船相距多少?19.如图,某校20周年校庆时,需要在草场上利用气球悬挂宣传条幅,EF为旗杆,气球从A处起飞,几分钟后便飞达C处,此时,在AF延长线上的点B处测得气球和旗杆EF的顶点E在同一直线上.(1)已知旗杆高为12米,若在点B处测得旗杆顶点E的仰角为30°,A处测得点E的仰角为45°,试求AB的长(结果保留根号);(2)在(1)的条件下,若∠BCA=45°,绳子在空中视为一条线段,试求绳子AC的长(结果保留根号)?20.在“停课不停学”期间,小明用电脑在线上课,图1是他的电脑液晶显示器的侧面图,显示屏AB可以绕O点旋转一定角度.研究表明:当眼睛E与显示屏顶端A在同一水平线上,且望向显示器屏幕形成一个18°俯角,即望向屏幕中心P(AP=BP)的视线EP 与水平线EA的夹角∠AEP=18°时,对保护眼睛比较好,而且显示屏顶端A与底座C 的连线AC与水平线CD垂直时(如图2)时,观看屏幕最舒适,此时测得∠BCD=30°,∠APE=90°,液晶显示屏的宽AB为30cm.(1)求眼睛E与显示屏顶端A的水平距离AE;(结果精确到1cm)(2)求显示屏顶端A与底座C的距离AC.(结果精确到1cm)(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32,≈1.41,≈1.73)参考答案1.解:∵∠CED=64°,∠F=32°,∠CED=∠F+∠EDF,∴∠EDF=∠CED﹣∠F=64°﹣32°=32°,∴∠EDF=∠F,∴DE=EF,∵EF=15米,∴DE=15米,在Rt△CDE中,∵sin∠CED=,∴CD=DE sin∠CED=15sin64°,故选:C.2.解:过点A作AD⊥BC于D,在Rt△ABD中,∠BAD=55°,AD=35m,tan∠BAD=,∴BD=AD•tan∠BAD≈35×=49(m),在Rt△ACD中,∠ACD=90°﹣∠CAD=55°,AD=35m,tan∠ACD=,∴CD=≈=25(m),∴BC=BD+CD=49+25=74(m),故选:A.3.解:如图,连接BE、AE.则:EB=,AB=.∵CD、BE、AE都是正方形的对角线,∴∠CDE=∠BEF=∠AEO=∠BEO=45°.∴CD∥BE,∠AEB=∠AEO+∠BEO=90°.∴∠AOD=∠ABE,△ABE是直角三角形.∴cos∠ABE===.故选:D.4.解:选择:①大树被摧折倒下的部分DE=10m;②tan∠CDE=;③点E到钟楼底部的距离EB=7m;⑤从D点看钟楼顶端A点的仰角为60°.理由如下:过D作DG⊥AB于G,如图所示:则DG=BC,BG=CD,∵DE=10m,tan∠CDE==,∴CE=8(m),BG=CD=6(m),∴DG=BC=CE+BE=8+7=15(m),在Rt△ADG中,∠ADG=60°,tan∠ADG==,∴AG=DG=15,∴AB=AG+BG=(15+6)m,故选:B.5.解:在Rt△ABC中,∵sin∠ABC=,即sinα=,∴AB=,在Rt△ADC中,∵sin∠ADC=,即sinβ=,∴AD=,∴==,故选:C.6.解:如图,过点E、F分别作AB的垂线,垂足分别为G、H,得矩形EFHG,∴GH=EF=1.5米,HF=GE=GD+DE=(GD+2)米,过点D作BC延长线的垂线,垂足为M,得矩形DMBG,∵CD的坡度i=1:0.75=4:3,CD=5米,∴DM=4米,CM=3米,∴DG=BM=BC+CM=10+3=13 (米),BG=DM=4米,∴HF=DG+2=15(米),在Rt△AFH中,∠AFH=25°,∴AH=FH•tan25°≈15×0.47≈7.05,∴AB=AH+HG+GB≈7.05+1.5+4≈12.6(米).答:铁塔AB的高度约是12.6米.故答案为12.6.7.解:∵tan∠ADB=,∴BD==AB(m),∵tan∠ACB=,∴BC==AB(m),∵CD=BD﹣BC,∴6=AB﹣AB(m),∴AB=9(m),故答案为9.8.解:作AB⊥CD交CD的延长线于点B,在Rt△ABC中,∵∠ACB=∠CAE=30°,∠ADB=∠EAD=45°,∴AC=2AB,DB=AB.设AB=x,则BD=x,AC=2x,CB=50+x,∵tan∠ACB=tan30°,∴AB=CB•tan∠ACB=CB•tan30°.∴x=(50+x)•.解得:x=25(1+),∴AC=50(1+)(米).答:缆绳AC的长为50(1+)米.故答案为:50(1+)9.解:如图,根据题意可知:DE⊥BE,AB⊥BE,过点D作DC⊥AB于点C,所以四边形DEBC是矩形,∴BC=ED=1.70,DC=EB=15,在Rt△ACD中,∠ADC=30°,∴tan30°=,即=,解得AC=5,∴AB=AC+CB=5+1.70≈10.4(米).答:无人机距离地面的高度约为10.4米.故答案为:10.4.10.解:由题意可得:∠BDA=45°,则AB=AD,又∵∠CAD=30°,∴在Rt△ADC中,CD=45m.tan∠CDA=tan30°==,即=,解得:AD=45(m),∴AB=45m.故答案为:45.11.解:过点C作CD⊥AE于点D,过点E作EG⊥CF于点G,∵∠A=30°,∠BCE=75°,∠BCF=45°,∴∠ECF=∠BCE﹣∠BCF=30°,∠ACE=180°﹣∠BCE=105°,又∠CDA=90°,∴∠ACD=90°﹣∠A=60°,∴∠DCE=45°,在Rt△ACD中,∠A=30°,∴CD=AC=50(m),在Rt△CDE中,CE===(m),在Rt△CGE中,∠ECF=30°,∴EG=CE=(m),又EF∥BC,∴∠EFG=∠BCF=45°,在RT△EFG中,EF==50(m),50÷10=5米/秒∴无人机的速度为5米/秒.12.解:由题意得,AD=4000米,∠ADO=30°,CD=460米,∠BCO=45°,在Rt△AOD中,∵AD=4000米,∠ADO=30°,∴OA=AD=2000(米),OD=AD=2000(米),在Rt△BOC中,∠BCO=45°,∴OB=OC=OD﹣CD=(2000﹣460)米,∴AB=OB﹣OA=2000﹣460﹣2000≈1004(米),∴火箭的速度为1004÷3≈335(米/秒),答:火箭的速度约为335米/秒.13.解:(1)如图,过点B作BM⊥AE,BN⊥CE,垂足分别为M、N,由题意可知,∠CBN=45°,∠DAE=53°,i=1:,AB=10米,AE=21米.∵i=1:==tan∠BAM,∴∠BAM=30°,∴BM=AB=5(米),即点B距水平地面AE的高度为5米;(2)在Rt△ABM中,∠BAM=30°,∴BM=AB=5(米)=NE,AM=AB=5(米),∴ME=AM+AE=(5+21)米=BN,∵∠CBN=45°,∴CN=BN=ME=(5+21)米,∴CE=CN+NE=(5+26)米,在Rt△ADE中,∠DAE=53°,AE=21米,∴DE=AE•tan53°≈21×=28(米),∴CD=CE﹣DE=5+26﹣28=5﹣2≈6.7(米),即广告牌CD的高度约为6.7米.14.解:(1)由题意可得:∠C=75°﹣30°=45°;(2)过点B作BD⊥AC于点D,可得:∠BAC=30°,∵AB=20m,∴BD=AB=10m,∵∠C=45°,∠BDC=90°,∴sin45°===,解得:BC=10,答:BC的长为10m.15.解:(1)过点A作AD⊥BC于D,设AD为x海里,在Rt△ADC中,tan∠DAC=,cos∠DAC=,∠DAC=53.1°,则CD=AD•tan∠DAC≈x(海里),AC=≈x(海里),在Rt△ADB中,tan∠DAB=,∠DAB=63.4°,则BD=AD•tan∠DAB≈2x,由题意得,x+2x=30,解得,x=9,∴x=×9=15(海里),则C点到岛的距离AC约为15海里;(2)设A处所派快艇的速度为y海里/小时,则B处所派快艇的速度为(y+25)海里/小时,由题意得,=,解得,y=25,经检验,y=25是原方程的根,答:A处所派快艇的速度为25海里/小时.16.解:(1)该城市会受到这次台风的影响.理由如下:如图,过C作CD⊥BA于D.在Rt△ACD中,∵∠CAD=43°,AC=200千米,∴CD=AC•sin43°≈200×=150(千米),∵城市受到的风力达到或超过六级,则称受台风影响,∴受台风影响范围的半径为30×(12﹣6)=180(千米),∵150(千米)<180(千米),∴该城市会受到这次台风的影响.(2)∵AD距台风中心最近,∴该城市受到这次台风最大风力为:12﹣(150÷30)=7(级).答:受到台风影响的最大风力为7级;(3)如图以C为圆心,180为半径作⊙A交BC于E、F.则CE=CF=180.∴台风影响该市持续的路程为:EF=2DE=2×=60(千米).∴台风影响该市的持续时间:t=60÷20=3(时);答:台风影响该城市的持续时间为3小时.17.解:如图,过点E作EM⊥DC于M.∵AE∥CD.∴∠ABC=∠BAE=45°.∵BC⊥AC,EM⊥DC,∴AC∥EM,∴四边形AEMC为矩形.∴CM=AE=60 米.设BM=x米.则AC=BC=EM(60+x)米.DM=(120+x)米.在Rt△EDM中,∵∠D=37°.∴tan∠D==,解得:x=120,∴AC=60+x=60+120=180 (米).∴飞机高度为180米.答:无人机飞行的高度AC为180米.18.解:(1)过点B作BD⊥AE于D,在Rt△BCD中,∠BCD=60°,设CD=x,则BD=x,∵在Rt△BDA中,∠BDA=90°∴AD2+BD2=AB2,得1402=(60+x)2+(x)2x2+30x﹣4000=0,∴x=50或﹣80(舍弃),∴BD=50.(2)设运动时间为t,则AP=14t,CQ=20(t﹣4).BC=100若点Q在点P的正东方向,则PQ∥AC,∴=,即:=,得t=8,由∵△BPQ∽△BAC,∴=,即:=,得PQ=12.19.解:(1)∵在直角△BEF中,tan∠EBF=,∴BF===12.同理AF=EF=12(米),则AB=BF+AF=12+12(米);(2)作AG⊥BE于点G,在直角△ABG中,AG=AB•sin30°=(12+12)=6+6.又∵直角△AGC中,∠ACG=45°,∴AC=AG=6+6(米).20.解:(1)由已知得AP=BP=AB=15(cm),在Rt△APE中,∵sin∠AEP=,∴AE=≈48(cm),答:眼睛E与显示屏顶端A的水平距离AE约为48cm;(2)如图,过点B作BF⊥AC于点F,∵∠EAB+∠BAF=90°,∠EAB+∠AEP=90°,∴∠BAF=∠AEP=18°,在Rt△ABF中,AF=AB•cos∠BAF=30×cos18°≈30×0.95≈28.5(cm),BF=AB•sin∠BAF=30×sin18°≈30×0.31≈9.3(cm),∵BF∥CD,∴∠CBF=∠BCD=30°,∴CF=BF•tan∠CBF=9.3×tan30°=9.3×≈5.36(cm),∴AC=AF+CF=28.5+5.36≈34(cm).答:显示屏顶端A与底座C的距离AC约为34cm.。

28.2 解直角三角形(2)精讲精练(含答案).doc

28.2 解直角三角形(2)精讲精练(含答案).doc

一、基础知识1、解直角三角形在实际问题中的应用:(1)弄清题中名词、术语的意义,把握题意画出几何图形;(2)将实际问题的数量关系归结为直角三角形中元素之间的关系,当有些图形不是直角三角形时,可添加适当的辅助线,把它们分割成直角三角形或者矩形;(3)寻找基础三角形,并解这个三角形.2、仰角、俯角概念:如图所示,在测量中,我们把在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.二、重难点分析重点:把实际问题转化为数学问题. 并能选用适当的锐角三角函数关系式去解答直角三角形问题 .难点:把实际问题转化为数学问题.例1、在山脚C处测得山顶A的仰角为45º,沿着坡角为30 °的斜坡前进400米到达D点,在D点测得山顶A的仰角为60 º ,求山高AB。

【点评】将实际问题转化为数学问题,并正确画出示意图,构造直角三角形,根据AB=BC 建立方程求解.例2、两座建筑AB及CD,其地面距离AC为50米,从AB的顶点B测得CD的顶部D的仰角β=30°,测得其底部C的俯角a=60°, 求两座建筑物AB及CD的高.(精确到0.1米)∴CE=BE•tanα【点评】本题考查俯角、仰角的知识,难度适中,要求学生能借助其关系构造直角三角形并解直角三角形.三、中考感悟1、(2014•百色)从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知两栋楼之间的水平距离为6米,则教学楼的高CD是()A. (6+6)米B. (6+3米C. (6+2米D. 12米2、(2014•随州)如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为()A. 100米B. 50C.D. 50米【解析】过B作BM⊥AD,根据三角形内角与外角的关系可得∠ABC=30°,再根据等角对等边可得BC=AC,然后再计算出∠CBM的度数,进而得到CM长,最后利用勾股定理可得答案.四、专项训练(一)基础练习1、如图,AC是电杆AB的一根拉线,测得BC=6米,∠ACB=52°,则拉线AC的长为()A.6sin52︒米B.6tan52︒米C. 6·cos52º米D.6cos52︒米【答案】D2、如图,某侦察机在空中A处发现敌方地面目标B,此时从飞机上看目标B的俯角为α,已知飞行高度AC=4500米,tanα,则飞机到目标B的水平距离BC为()A BC D故选A.【答案】A3、初三(1)班研究性学习小组为了测量学校旗杆的高度(如图),他们在离旗杆底部E 点30米的D处,用测角仪测得旗杆顶端的仰角为30°,已知测角仪器高AD=1.4米,则旗杆BE的高为米(结果保留根号)4、如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为()(结果精确到0.1m).A. 3.5mB. 3.6mC. 4.3mD. 5.1m5、如图,从热气球C处测得地面A、B两点的俯角分别是30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()A. 200米B米C米D. 100+1)米【答案】D6、如图,某学校新建了一座吴玉章雕塑,小林站在距离雕塑2.7米的A处自B点看雕塑头顶D的仰角为45°,看雕塑底部C的仰角为30°,求塑像CD的高度.(最后结果精确到0.1≈1.7)【解析】首先分析图形:根据题意构造两个直角三角(二)提升练习7、在中俄“海上联合-2014”反潜演习中,我军舰A测得潜艇C的俯角为30°,位于军舰A正上方1000米的反潜直升机B测得潜艇C的俯角为68°,试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数,参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5)8、如图,某翼装飞行员从离水平地面高AC=500m的A处出发,沿着俯角为15°的方向,直线滑行1600米到达D点,然后打开降落伞以75°的俯角降落到地面上的B点.求他飞行的水平距离BC(结果精确到1m).。

28.2 解直角三角形 同步作业(含答案)

28.2 解直角三角形 同步作业(含答案)

图28-3练习9 解直角三角形一、自主学习1.如图28-3所示,Rt △ABC 中(1)它三边之间的关系是_________. (2)它两锐角之间的关系是________. (3)它的边角之间的关系是:__________________________,_____________________________; ____________________________,__________________________; ___________________________,_________________________; 二、基础巩固2.等腰三角形的周长为2+3,腰长为1,则它的底角等于________.3.在离地面5 m 处引拉线固定电线杆,拉线和地面成60°角,则拉线的长为_______________.4.一个梯形的两个下底角分别为30°和45°,较大的腰长为10 cm ,则它另一腰长为________.5.△ABC 中,BC=2,AC=3+3,∠C=30°,则sinA=_________.6.在高度为93 m 的建筑物上,观察一楼房的顶端和底部的俯角分别为30°,60°,则这栋楼房的高度为___________m.7.Rt △ABC 中,∠C=90°,sinA=54,AB=10,则BC=________,cosB=________ 8.△ABC 中,若∠ABC=45°,∠ACB=30°,AB=22,则S △ABC =_________. 9.如图28-4所示,△ABC 中,CD ⊥AB 于D 点,且BD=2AD ,若CD=34,tan ∠BCD=33,则高AE=____. 10.Rt △ABC 中,CD 是斜边AB 上的高,AB=8 cm ,AC=34cm ,则AD=_____________cm.11.Rt △ABC 中,∠C=90°,∠A 、∠B 、∠c 所对的边分别为a 、b 、c ,若a=25,b=215,则c=________,∠A_______,∠B________.图28-4三、能力提高12.Rt △ABC 斜边上的中线CD 长为1,周长是2+6,则它的面积是( )A.2B.21 C.1 D.)32(21+ 13.正方形ABCD 的边长为5,E 、F 分别在边BC 、CD 上,若△AEF 为等边三角形,则BE 的长是( ) A.3255-B.3310C.3510-D.235 14.如图28-5所示,一束平行的光线从教室窗射入教室,测得光线与地面所成的∠AMC=30°,窗户的高在教室地面的影长MN=32m ,窗户的下檐到教室地面的距离BC=1 m ,(点M 、N 、C 在同一直线上),则窗户高AB 为( )图28-5 图28-6 图28-7A.3 mB.3 mC.2 mD.1.5 m15.在平面直角坐标系内,坐标原点为O ,点M 在第四象限,且OM=1,∠MOx=30°,则点M 的坐标是( ) A.(21,23-) B.(21,23--) C.(21,23-) D.(23,21-) 16.如图28-6所示,在山坡上种树,已知相邻两株树的坡面距离AB 为4 m ,∠B=60°,则这两株树的水平距离和高度差分别为( )A.32 m ,2 mB.2 m ,32 mC.3 m ,1 mD.1 m,3 m 17.大风刮断一根废弃的木电线杆,如图28-7所示,杆的顶端B 落到地面离其底部A 的距离为3m 处,若两截电线杆的夹角为30°,则电线杆刮断前的高度为( ) A.6 m B.33 m C.3+32 m D.32 m18.Rt △ABC 中,∠C=90°,若AC 的长等于斜边上的中线长的34,则较大锐角的余弦值是( ) A.35 B.552 C.553 D.3219.如图28-8所示,将-矩形纸片ABCD 折起一个角,使点C 恰好落在AB 边,若AD=m ,∠CDE=α,则折痕DE=( ) A.αα2sin cos ∙m B.ααcos sin 2∙m C.ααcos sin ∙m D.ααsin cos 2∙m图28-8 图28-920.已知平行四边形两邻边长分别是64cm 和34cm ,一角为45°,则这个平行四边形的较长对角线长是( )A.66 cmB.68 cmC.38 cmD.154 cm21.如图28-9所示,△ABC 中,D 为AB 的中点,∠ACB=135°,AC ⊥CD ,则sinA=( )A.53 B.55 C.51 D.52四、模拟链接22.小明家在花园小区某栋楼AD 内,他家附近又新建了一座大厦BC ,已知两栋楼房间的水平距离为90 m ,AD 楼高60 m ,小明爬上自家所在楼房顶测得大厦顶部C 的仰角为30°,求大厦BC 的高.(精确到1 m ,如图28-10所示)图28-1023.小华所在的学校A位于某工地O的正西方向,如图28-11所示,且OA=200 m.一拖拉机从工地O出发,以5m/s的速度沿北偏西53°方向行驶,设拖拉机的噪音影响半径为130 m,问小华所在的学校A是否受拖拉机噪音影响?若受影响,请求出学校受拖拉机噪音影响的时间.(已知sin53°≈0.80、sin37°≈0.60)图28-1124.阅读下列材料,并解决后面的问题:在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,作AD ⊥BC 于D(如图28-12),则sinB=c AD ,sinC=bAD,即AD=c·sinB ,AD=b·sinC ,于是c·sinB=b·sinC ,即C c B b sin sin =,同理有A a C c sin sin =,即CcB b A a sin sin sin == 即:在一个锐角三角形中,各边和它所对角的正弦的比相等.[来源:学+科+网Z+X+X+K] (1)在锐角三角形中,若已知三个元素a 、b 、∠A ,运用上述结论和有关定理就可求出其余三个元素c 、∠B 、∠C ,请按照下列步骤填空,完成求解过程. 第一步:由条件a 、b 、∠A −−−→−有关系式_________−−→−求出∠B ; 第二步:由条件∠A 、∠B −−−→−有关系式________−−→−求出∠C ; 第三步:由条件_______−−−→−有关系式__________−−→−求出∠c(2)一货轮在C 处测得灯塔A 在其北偏西30°的方向上,随后货轮以284海里/时的速度沿北偏东45°的方向航行,半小时后到达B 处,此时又测得灯塔在货轮的北偏西70°的方向上(如图28-13),求此时货轮距灯塔A 的距离AB(结果精确到0.1,参考数据:sin40°=0.643,sin65°=0.906,sin70°=0.940,sin75°=0.966).图28-12 图28-13参考答案一、自主学习1.如图28-3所示,Rt △ABC 中(1)它三边之间的关系是_________. (2)它两锐角之间的关系是________. (3)它的边角之间的关系是:__________________________,_____________________________; ____________________________,__________________________; ___________________________,_________________________;图28-3答案:(1)a 2+b 2=c 2 (2)∠A+∠B=90°(3)sinA=c a ,cosA=c b ,tanA=b acotA=a b ,sinB=c b ,cosB=c a ,tanB=a b ,cotB=ba二、基础巩固2.等腰三角形的周长为2+3,腰长为1,则它的底角等于________.答案:30°3.在离地面5 m 处引拉线固定电线杆,拉线和地面成60°角,则拉线的长为_______________.答案:3310 m 4.一个梯形的两个下底角分别为30°和45°,较大的腰长为10 cm ,则它另一腰长为________.答案:255.△ABC 中,BC=2,AC=3+3,∠C=30°,则sinA=_________.答案:1010 6.在高度为93 m 的建筑物上,观察一楼房的顶端和底部的俯角分别为30°,60°,则这栋楼房的高度为___________m. 答案:627.Rt △ABC 中,∠C=90°,sinA=54,AB=10,则BC=________,cosB=________ 答案:854 8.△ABC 中,若∠ABC=45°,∠ACB=30°,AB=22,则S △ABC =_________.答案:232+9.如图28-4所示,△ABC 中,CD ⊥AB 于D 点,且BD=2AD ,若CD=34,tan ∠BCD=33,则高AE=__________.图28-4答案:3310.Rt △ABC 中,CD 是斜边AB 上的高,AB=8 cm ,AC=34cm ,则AD=_____________cm.答案:611.Rt △ABC 中,∠C=90°,∠A 、∠B 、∠c 所对的边分别为a 、b 、c ,若a=25,b=215,则c=________,∠A_______,∠B________.答案:5 30° 60° 三、能力提高12.Rt △ABC 斜边上的中线CD 长为1,周长是2+6,则它的面积是( )A.2B.21 C.1 D.)32(21+13.正方形ABCD 的边长为5,E 、F 分别在边BC 、CD 上,若△AEF 为等边三角形,则BE 的长是( ) A.3255-B.3310C.3510-D.235 答案:C14.如图28-5所示,一束平行的光线从教室窗射入教室,测得光线与地面所成的∠AMC=30°,窗户的高在教室地面的影长MN=32m ,窗户的下檐到教室地面的距离BC=1 m ,(点M 、N 、C 在同一直线上),则窗户高AB 为( )图28-5A.3 mB.3 mC.2 mD.1.5 m 答案:C15.在平面直角坐标系内,坐标原点为O ,点M 在第四象限,且OM=1,∠MOx=30°,则点M 的坐标是( ) A.(21,23-) B.(21,23--) C.(21,23-) D.(23,21-) 答案:A16.如图28-6所示,在山坡上种树,已知相邻两株树的坡面距离AB 为4 m ,∠B=60°,则这两株树的水平距离和高度差分别为( )A.32 m ,2 mB.2 m ,32 mC.3 m ,1 mD.1 m,3 m图28-617.大风刮断一根废弃的木电线杆,如图28-7所示,杆的顶端B 落到地面离其底部A 的距离为3m 处,若两截电线杆的夹角为30°,则电线杆刮断前的高度为( ) A.6 m B.33 m C.3+32 m D.32 m图28-7答案:C18.Rt △ABC 中,∠C=90°,若AC 的长等于斜边上的中线长的34,则较大锐角的余弦值是( ) A.35 B.552 C.553 D.32答案:D19.如图28-8所示,将-矩形纸片ABCD 折起一个角,使点C 恰好落在AB 边,若AD=m ,∠CDE=α,则折痕DE=( )图28-8A.αα2sin cos ∙m B.ααcos sin 2∙m C.ααcos sin ∙m D.ααsin cos 2∙m答案:A20.已知平行四边形两邻边长分别是64cm 和34cm ,一角为45°,则这个平行四边形的较长对角线长是( )A.66 cmB.68 cmC.38 cmD.154 cm 答案:D21.如图28-9所示,△ABC 中,D 为AB 的中点,∠ACB=135°,AC ⊥CD ,则sinA=( )A.53 B.55 C.51 D.52图28-9答案:B 四、模拟链接22.小明家在花园小区某栋楼AD 内,他家附近又新建了一座大厦BC ,已知两栋楼房间的水平距离为90 m ,AD 楼高60 m ,小明爬上自家所在楼房顶测得大厦顶部C 的仰角为30°,求大厦BC 的高.(精确到1 m ,如图28-10所示)图28-10答案:112 m23.小华所在的学校A 位于某工地O 的正西方向,如图28-11所示,且OA=200 m.一拖拉机从工地O 出发,以5m/s 的速度沿北偏西53°方向行驶,设拖拉机的噪音影响半径为130 m ,问小华所在的学校A 是否受拖拉机噪音影响?若受影响,请求出学校受拖拉机噪音影响的时间.(已知sin53°≈0.80、sin37°≈0.60)图28-11答案:受影响的时间为20 s 24.阅读下列材料,并解决后面的问题:- 11 - 在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,作AD ⊥BC 于D(如图28-12),则sinB=c AD ,sinC=bAD ,即AD=c·sinB ,AD=b·sinC ,于是c·sinB=b·sinC ,即C c B b sin sin =,同理有A a C c sin sin =,即Cc B b A a sin sin sin == 即:在一个锐角三角形中,各边和它所对角的正弦的比相等.[来源:学+科+网Z+X+X+K](1)在锐角三角形中,若已知三个元素a 、b 、∠A ,运用上述结论和有关定理就可求出其余三个元素c 、∠B 、∠C ,请按照下列步骤填空,完成求解过程.第一步:由条件a 、b 、∠A −−−→−有关系式_________−−→−求出∠B ;第二步:由条件∠A 、∠B −−−→−有关系式________−−→−求出∠C ;第三步:由条件_______−−−→−有关系式__________−−→−求出∠c(2)一货轮在C 处测得灯塔A 在其北偏西30°的方向上,随后货轮以284海里/时的速度沿北偏东45°的方向航行,半小时后到达B 处,此时又测得灯塔在货轮的北偏西70°的方向上(如图28-13),求此时货轮距灯塔A 的距离AB(结果精确到0.1,参考数据:sin40°=0.643,sin65°=0.906,sin70°=0.940,sin75°=0.966).图28-12 图28-13答案:(1)略(2)约为21.3海里(提示:用题目中的结论)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

28.2 解直角三角形(二)一、课前预习 (5分钟训练)1.在△ABC 中,已知∠C=90°,BC=3,tanB=2,那么AC 为( )A.3B.4C.5D.62.如图28-2-2-1,在△ABC 中,∠C=90°,点D 在BC 上,CD=3,AD=BC,且cos ∠ADC=53,则BD 的长是( ) A.4 B.3 C.2 D.1图28-2-2-1 图28-2-2-23.如图28-2-2-2,在离地面高度5 m 处引拉线固定电线杆,拉线与地面成60°角,则AC=______,AD=__________.(用根号表示)二、课中强化(10分钟训练)1.等腰三角形的两条边长分别是4 cm 、9 cm ,则等腰三角形的底角的余弦值是( )A.94 B.45.4 C.92 D.932.如果由点A 测得点B 在北偏东15°方向,那么点B 测得点A 的方向为___________.3.如图28-2-2-3,已知在△ABC 中,AB =4,AC =6,∠ABC =45°,求BC 长及tanC.图28-2-2-34.如图28-2-2-4,初三年级某同学要测量校园内的旗杆AB的高度.在地面上C点用测角仪测得旗杆顶A点的仰角为∠AFE=60°,再沿着直线BC后退8米到D,在D点又测得旗杆顶A的仰角∠AGE=45°.已知测角仪的高度为1.6米,求旗杆AB的高度.(3的近似值取1.7,结果保留1位小数)图28-2-2-45.如图28-2-2-5,在比水面高2 m的A地,观测河对岸有一直立树BC的顶部B的仰角为30°,它在水中的倒影B′C顶部B′的俯角是45°,求树高BC.(结果保留根号)图28-2-2-5三、课后巩固(30分钟训练)1.如图28-2-2-6,两建筑物的水平距离为a米,从A点测得D点的俯角为α,测得C 点的俯角为β,则较低建筑物CD的高度为( )A.aB.atanαC.a(sinα-cosα)D.a(tanβ-tanα)图28-2-2-6 图28-2-2-72.有人说,数学家就是不用爬树或把树砍倒就能够知道树高的人.小敏想知道校园内一棵大树的高度(如图28-2-2-7),他测得CB=10米,∠ACB=50°,请你帮他算出树高AB,约为________________米.(注:①树垂直于地面;②供选用数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)3.某片绿地的形状如图28-2-2-8所示,其中∠A=60°,AB⊥BC,AD⊥CD,AB=200 m,CD=100 m,求AD、BC的长.(精确到1 m,3≈1.732)图28-2-2-84.如图28-2-2-9,在△ABC中,∠B=30°,∠C=45°,AC=2,求AB和BC.图28-2-2-95.如图28-2-2-10,塔AB和楼CD的水平距离为80米,从楼顶C处及楼底D处测得塔顶A的仰角分别是45°和60°.求塔高与楼高.(精确到0.01米)(参考数据2=1.414 21,3=1.732 05)图28-2-2-106.如图28-2-2-11,某船向正东方向航行,在A处望见某岛C在北偏东60°方向,前进6海里到B点,测得该岛在北偏东30°方向.已知该岛周围6海里内有暗礁,若该船继续向东航行,有无触礁危险?请说明理由.(参考数据:3≈1.732)图28-2-2-117.如图28-2-2-12,武当山风景管理区,为提高游客到某景点的安全性,决定将到达该景点的步行台阶进行改善,把倾角由44°减至32°,已知原台阶AB的长为5米(BC所在地面为水平面).(1)改善后的台阶会加长多少?(精确到0.01米)(2)改善后的台阶多占多长一段地面?(精确到0.01米)图28-2-2-128.如图28-2-2-13,某海关缉私艇巡逻到达A处时接到情报,在A处北偏西60°方向的B 处发现一艘可疑船只正以24海里/时的速度向正东方向前进,上级命令要对可疑船只进行检查,该艇立即沿北偏西45°的方向快速前进,经过1个小时的航行,恰好在C处截住可疑船只,求该艇的速度.(结果保留整数,6=2.449,3=1.732,2=1.414)图28-2-2-13参考答案一、课前预习 (5分钟训练)1.在△ABC 中,已知∠C=90°,BC=3,tanB=2,那么AC 为( )A.3B.4C.5D.6 解析:AC=BC·tanB=6. 答案:D2.如图28-2-2-1,在△ABC 中,∠C=90°,点D 在BC 上,CD=3,AD=BC,且cos ∠ADC=53,则BD 的长是( )图28-2-2-1A.4B.3C.2D.1解析:求BD 需求BC,而BC=AD,在Rt △ADC 中,已知一角一边,可求出AD. 在Rt △ADC 中,CD=3,且cos ∠ADC=53,∴AD=5,∴BC=AD=5.∴BD=2. 答案:C3.如图28-2-2-2,在离地面高度5 m 处引拉线固定电线杆,拉线与地面成60°角,则AC=______,AD=__________.(用根号表示)图28-2-2-2解析:在Rt △ABD 中,∠A=60°,CD=5,∴AC=331060sin =︒CD ,AD=33560tan =︒CD .答案:3310 335二、课中强化(10分钟训练)1.等腰三角形的两条边长分别是4 cm 、9 cm ,则等腰三角形的底角的余弦值是( )A.94 B.45.4 C.92 D.93 解析:根据构成三角形的条件,该等腰三角形的三边长为9、9、4,∴其底角的余弦值为92. 答案:C2.如果由点A 测得点B 在北偏东15°方向,那么点B 测得点A 的方向为___________.解析:搞清观察方向,可以借助示意图来解决. 答案:南偏西15°或西偏南75°3.如图28-2-2-3,已知在△ABC 中,AB =4,AC =6,∠ABC =45°,求BC 长及tanC.图28-2-2-3分析:作BC 边上的高AD ,构造直角三角形.在Rt △ADB 中已知一角一边,可求得AD 、BD ,在Rt △ADC 中由勾股定理求出CD.解:过点A 作AD ⊥BC 于D, 在Rt △ABD 中,∠B =45°, ∵sinB=ABAD, ∴AD=AB·sinB=4·sin45°=4×22=22, ∴BD=22.在Rt △ADC 中,AC=6, 由勾股定理得DC=72)22(62222=-=-AD AC ,∴BC=BD+DC=7222+,tanC=7147222==DC AD . 4.如图28-2-2-4,初三年级某同学要测量校园内的旗杆AB 的高度.在地面上C 点用测角仪测得旗杆顶A 点的仰角为∠AFE=60°,再沿着直线BC 后退8米到D ,在D 点又测得旗杆顶A 的仰角∠AGE=45°.已知测角仪的高度为1.6米,求旗杆AB 的高度.(3的近似值取1.7,结果保留1位小数)图28-2-2-4解:设EF 为x 米, 在Rt △AEF 中,∠AFE=60°, ∴AE=EF·tan60°=3x , 在Rt △AGE 中,∠AGE=45°, ∴AE=GE·tan45°=GE=8+x. ∴3x=8+x.解之,得x=4+43. ∴AE=12+43≈18.8. ∴AB=20.4(米). 答:旗杆AB 高20.4米.5.如图28-2-2-5,在比水面高2 m 的A 地,观测河对岸有一直立树BC 的顶部B 的仰角为30°,它在水中的倒影B′C 顶部B′的俯角是45°,求树高BC.(结果保留根号)图28-2-2-5解Rt △AEB 与Rt △AEB′,得AE 与BE 、EB′的关系,解关于x 的方程可求得答案. 解:设树高BC=x(m),过A 作AE ⊥BC 于E ,在Rt △ABE 中,BE=x -2,∠BAE=30°,cot ∠BAE=BEAE, ∴AE=BE·cot ∠BAE=(x -2)·3=3 (x -2). ∵∠B′AE=45°,AE ⊥BC. ∴B′E=AE=3(x -2).又∵B′E=B′C+EC=BC+AD=x+2, ∴3(x -2)=x+2.∴x=(4+23)(m). 答:树高BC 为(4+23) m. 三、课后巩固(30分钟训练)1.如图28-2-2-6,两建筑物的水平距离为a 米,从A 点测得D 点的俯角为α,测得C 点的俯角为β,则较低建筑物CD 的高度为( )图28-2-2-6A.aB.atanαC.a(sinα-cosα)D.a(tanβ-tanα) 解析:过D 点作AB 的垂线交AB 于E 点,在 Rt △ADE 中,∠ADE=α,DE=a, ∴AE=a·tanα.在Rt △ABC 中,∠ACB=β,BC=a, ∴AB=a·tan β.∴CD=AB -AE=a·tan β-a·tan α. 答案:D2.有人说,数学家就是不用爬树或把树砍倒就能够知道树高的人.小敏想知道校园内一棵大树的高度(如图28-2-2-7),他测得CB=10米,∠ACB=50°,请你帮他算出树高AB,约为________________米.(注:①树垂直于地面;②供选用数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)图28-2-2-7解析:AB=BC·tanC=12(米). 答案:123.某片绿地的形状如图28-2-2-8所示,其中∠A=60°,AB ⊥BC ,AD ⊥CD ,AB=200 m ,CD=100 m ,求AD 、BC 的长.(精确到1 m ,3≈1.732)图28-2-2-8解:延长AD ,交BC 的延长线于点E ,在Rt △ABE 中,∠A=60°,AB=200 m , ∴BE=AB·tanA=3200 (m). AE=2120060cos =︒AB =400(m).在Rt △CDE 中,∠CED=30°,CD=100 m ,∴DE=CD·cot ∠CED=3100(m), CE=21100sin =∠CEDCD =200m.∴AD=AE -DE=400-3100≈227(m), BC=BE -CE=3200-200≈146(m).4.如图28-2-2-9,在△ABC 中,∠B=30°,∠C=45°,AC=2,求AB 和BC.图28-2-2-9解:作三角形的高AD.在Rt △ACD 中,∠ACD=45°,AC=2,∴AD=CD=2.在Rt △ABD 中,∠B=30°,AD=2,∴BD=630tan =︒AD ,AB=2230sin =︒AD.∴CB=BD+CD=2+6.5.如图28-2-2-10,塔AB 和楼CD 的水平距离为80米,从楼顶C 处及楼底D 处测得塔顶A 的仰角分别是45°和60°.求塔高与楼高.(精确到0.01米)(参考数据2=1.414 21,3=1.732 05)图28-2-2-10解:在Rt △ABD 中,BD=80米,∠BDA=60°, ∴AB=BD·tan60°=803≈138.56(米). Rt △AEC 中,EC=BD=80,∠ACE=45°, ∴AE=CE=80(米).∴CD=AB -AE≈58.56(米).答:塔高与楼高分别为138.56米、58.56米.6.如图28-2-2-11,某船向正东方向航行,在A 处望见某岛C 在北偏东60°方向,前进6海里到B 点,测得该岛在北偏东30°方向.已知该岛周围6海里内有暗礁,若该船继续向东航行,有无触礁危险?请说明理由.(参考数据:3≈1.732)图28-2-2-11解:继续向东行驶,有触礁的危险.过点C 作CD 垂直AB 的延长线于D,∵∠CAB=30°,∠CBD=60°,∴∠BCD=30°.设CD 的长为x,则tan ∠CBD=BDx BD CD =, ∴BD=33x. ∴tan ∠CAB=tan30°=x x AD CD 33633+==.∴x=33.∴x≈5.2<6.∴继续向东行驶,有触礁的危险.7.如图28-2-2-12,武当山风景管理区,为提高游客到某景点的安全性,决定将到达该景点的步行台阶进行改善,把倾角由44°减至32°,已知原台阶AB 的长为5米(BC 所在地面为水平面).(1)改善后的台阶会加长多少?(精确到0.01米)(2)改善后的台阶多占多长一段地面?(精确到0.01米)图28-2-2-12解:(1)如图,在Rt △ABC 中,AC=AB·sin44°=5sin 44°≈3.473.在Rt △ACD 中,AD=︒=︒32sin 473.332sin AC ≈6.554. ∴AD -AB=6.554-5≈1.55.即改善后的台阶会加长1.55米,(2)如图,在Rt △ABC 中,BC=ABcos44°=5cos44°≈3.597.在Rt △ACD 中,CD=︒=︒32tan 473.332tan AC ≈5.558, ∴BD=CD -BC=5.558-3.597≈1.96,即改善后的台阶多占1.96米长的一段地面.8.如图28-2-2-13,某海关缉私艇巡逻到达A 处时接到情报,在A 处北偏西60°方向的B 处发现一艘可疑船只正以24海里/时的速度向正东方向前进,上级命令要对可疑船只进行检查,该艇立即沿北偏西45°的方向快速前进,经过1个小时的航行,恰好在C 处截住可疑船只,求该艇的速度.(结果保留整数,6=2.449,3=1.732,2=1.414)图28-2-2-13解:设OA 的长为x ,由于点C 在点A 的北偏西45°的方向上,∴OC=OA=x.根据题意,得tan30°=312243324=⇒+==⇒+x xx x x x +12. AC 2=x 2+x 2⇒AC=22x x +,∴AC≈46(海里). 答:该艇的速度是46海里/时.。

相关文档
最新文档