量子点太阳能电池的初步探索
量子点太阳能电池的研究进展与展望

量子点太阳能电池的研究进展与展望随着全球能源需求的不断增加和以化石能源为主的能源结构趋于枯竭,可再生能源逐渐成为人们眼中的宝贵财富。
太阳能电池是一种最为广泛应用的可再生能源,但其能效和成本仍然是相对薄弱的环节,这也使得太阳能电池的性能与稳定性受到诸多限制。
近年来,量子点太阳能电池作为一种新型太阳能电池备受研究人员关注,其特殊的光电性质和高效率的能量转换使得其被誉为太阳能电池技术的“未来之星”。
本文将就量子点太阳能电池的研究进展及其未来发展趋势进行探讨。
一、量子点太阳能电池的基本原理量子点太阳能电池是一种基于半导体量子点的太阳能电池,利用量子点表面和体积效应调控电子能带结构和载流子性质,来提高太阳能电池的转换效率。
其基本结构由p型和n型半导体夹层组成,中间加入由量子点形成的导电通道,形成一个电子-空穴对的太阳能电池器件。
量子点具有在大面积表面积下形成高能量状态的能力,这使得量子点具有独特的光电性质。
太阳光线照射量子点,可激发其内部原子的电子跃迁至更高的能级,释放出生动的电子-空穴对。
这些电子-空穴对会向导电通道聚集,形成电子流和空穴流,从而发挥太阳能电池所应有的作用。
二、量子点太阳能电池的研究进展1.量子点材料的开发和改良量子点太阳能电池依赖于量子点材料的特殊性质,大多数被用作量子点材料的是二氧化硅和硒化硒等无机材料。
此外,近年来也出现了基于有机分子、高分子、金属有机框架等新型量子点材料。
在量子点材料的改良方面,主要包含两个方向:一是利用新型合成技术,生产出单晶质量较高的大面积化合物量子点;二是通过表面修饰、包覆等手段,控制量子点光电性能,提高光电转换效率和稳定性。
这都为量子点太阳能电池的研究提供了基础。
2.量子点太阳能电池性能的改善量子点太阳能电池将太阳能转化成电能的效率主要取决于太阳光的吸收程度、电荷转移效率和载流子耗散的抑制程度。
近年来的研究表明,在量子点太阳能电池的系统中引入阴极、阳极二氧化钛载体等结构,可以大幅度提升电池的光电转换效率。
量子点敏化太阳能电池的研究及应用前景

量子点敏化太阳能电池的研究及应用前景随着环保意识的日益增强,太阳能电池作为一种可再生能源,备受人们的关注。
近年来,量子点敏化太阳能电池的研究备受关注,被认为是未来太阳能电池的发展方向之一。
本文将从量子点敏化太阳能电池的基本原理、研究进展和应用前景三个方面展开探讨。
一、基本原理量子点是一种新型半导体材料,由于其晶体大小只有几个纳米级别,使其具有很多特殊的性质。
量子点敏化太阳能电池是一种以量子点材料为敏化剂的电池,主要由传统钙钛矿太阳能电池和量子点层组成。
传统钙钛矿太阳能电池是目前市场上应用最广泛的太阳能电池,其材料主要有二氧化钛等。
由于钙钛矿材料的局限性,如光电性能不稳定、生产成本高等问题,人们将目光投向了材料和结构更加复杂的量子点敏化太阳能电池。
量子点敏化太阳能电池的原理是通过将量子点敏化剂涂在钙钛矿层上,利用量子点本身的特性来增加太阳能电池对光的吸收能力,从而提高光电转化效率。
具体来说,量子点可以实现光的多次散射,形成“光捕获漏斗”结构,使得钙钛矿更容易吸收光线并将其转化为电流。
此外,量子点的带隙可以通过控制粒子的大小和组成来调整,以实现对太阳光谱的优化。
二、研究进展量子点敏化太阳能电池的研究始于20世纪90年代,至今已有20余年历史。
研究者们通过不断尝试新的材料和结构,逐渐提高了太阳能电池的光电转化效率。
如2005年,研究者就利用CdS量子点敏化剂成功制备了4.2%的太阳能电池,并将效率提升至6.7%后,量子点材料正式引起了全球研究者的关注。
不断的研究和改进,使得该太阳能电池的效率已达到了13%。
在研究进展的基础上,量子点敏化太阳能电池被广泛应用于生活中的不同领域。
如,量子点敏化太阳能电池可以应用于智能家居领域,为家居设备提供可更换电池的智能技术,增强家居设备的收集、传输和处理信息的能力;在可穿戴电子产品中,量子点敏化太阳能电池可以再次使用与紫外线下充电。
在农业领域,量子点敏化太阳能电池可以实现水稻光合途径的光谱优化,从而提高光合作用水平,增加作物产量。
量子点太阳能电池的研究及应用

量子点太阳能电池的研究及应用近年来,随着科学技术的不断发展,太阳能电池作为一种重要的可再生能源得到了广泛关注和研究。
量子点太阳能电池,作为太阳能电池的一种新型形态,具有许多优异的特性,因此引起了科学家们的极大关注。
本文将对量子点太阳能电池的研究及应用进行探讨。
一、量子点太阳能电池的原理在传统的太阳能电池中,其主要原理是将太阳能转化为电能。
而量子点太阳能电池则是利用量子点的光电效应来实现对太阳能的转化。
量子点是一种直径在1~10纳米范围内的微观颗粒,它们能够在一定范围内吸收或发射电磁波,并且具有尺寸能量效应、量子限效应和准受限效应等特性。
通过将这些量子点嵌入到太阳能电池中,可以在吸收太阳光的过程中产生电子,并将其传递到电池中的电极上,从而实现对太阳能的转化。
二、量子点太阳能电池的优点相比于传统的太阳能电池,量子点太阳能电池具有以下几方面的优点:1. 高效率:量子点太阳能电池的效率可以达到30%以上,比传统太阳能电池的效率高出很多。
2. 容易制备:制备量子点太阳能电池的材料和工艺相对简单,成本也较低。
3. 透明性好:量子点太阳能电池可以制成透明材料,可以应用于大面积的太阳能玻璃幕墙等场景。
4. 抗衰减,寿命长:量子点材料可以保持长时间的稳定状态,并具有较长的使用寿命。
以上优点使得量子点太阳能电池在应用方面具有广阔的前景。
三、量子点太阳能电池的应用量子点太阳能电池具有广泛的应用前景,主要涉及以下几个方面:1. 太阳能玻璃幕墙:量子点太阳能电池可以制成透明材料,可以应用于大面积的太阳能玻璃幕墙。
2. 移动电源:量子点太阳能电池可以制作成柔性材料,可以应用于移动电源等场景。
3. 光伏发电:量子点太阳能电池可以与传统的太阳能电池相结合,提高光伏发电的效率。
4. 生活用电:利用量子点太阳能电池可以为生活用电提供新的来源。
四、量子点太阳能电池的挑战虽然量子点太阳能电池具有很大的优点,但是在研究和应用中还存在以下几个挑战:1. 量子点太阳能电池的制备工艺和技术还需要进一步完善,特别是应用于工业化生产场景时需要考虑到工艺稳定性和可复制性。
量子点在太阳能电池中的使用

量子点在太阳能电池中的使用在当今科技日新月异的时代,人类对于能源的需求与日俱增。
传统的化石能源不仅资源有限,而且燃烧过程中产生的温室气体对环境造成了严重的污染。
因此,寻求一种清洁、可再生的能源成为了科学家们努力的方向。
而太阳能电池作为一种利用太阳能转化为电能的装置,正逐渐成为解决能源危机的重要途径之一。
在这个过程中,量子点的引入为太阳能电池的发展带来了革命性的突破。
首先,我们需要了解什么是量子点。
量子点是一种由半导体材料制成的纳米颗粒,其尺寸在几个纳米到几十个纳米之间。
由于其独特的量子效应,量子点具有许多优异的光学和电子性质。
正是这些性质使得量子点在太阳能电池中发挥了巨大的作用。
那么,量子点是如何提高太阳能电池的效率的呢?我们可以将其比喻为一个神奇的“能量放大器”。
当太阳光照射到太阳能电池上时,量子点能够吸收并转化更多的光子,从而产生更多的电子-空穴对。
这些电子-空穴对在电池内部形成电流,最终转化为可用的电能。
通过这种方式,量子点极大地提高了太阳能电池的光吸收能力和光电转换效率。
然而,仅仅依靠量子点是不够的。
为了进一步提高太阳能电池的性能,科学家们还进行了一系列的研究和实验。
例如,他们发现通过改变量子点的大小和形状,可以调整其能级结构,从而实现对太阳光谱的更广泛吸收。
此外,将不同材料的量子点组合在一起,可以形成一个多层的结构,使得太阳能电池能够在不同波长的光线下工作。
这种多层结构的设计使得太阳能电池的效率得到了进一步的提升。
尽管量子点在太阳能电池中的应用取得了显著的成果,但我们仍然面临着一些挑战。
首先,量子点的制备过程相对复杂,成本较高。
其次,量子点的稳定性也是一个需要解决的问题。
在长时间的光照和高温条件下,量子点可能会发生退化,导致太阳能电池性能下降。
因此,如何在保证性能的同时降低成本和提高稳定性,是科学家们需要继续努力的方向。
总之,量子点作为一种新兴的材料,为太阳能电池的发展带来了巨大的潜力。
纳米半导体量子点在太阳能电池中的应用研究

纳米半导体量子点在太阳能电池中的应用研究随着环保理念的日益普及,太阳能电池作为一种绿色能源,越来越受到人们的关注。
太阳能电池的效率是其中最为关键的一个问题,而纳米半导体量子点的应用则成为了一种提高太阳能电池效率的新技术。
本文将介绍纳米半导体量子点在太阳能电池中的应用研究。
一、纳米半导体量子点的概念和性质纳米半导体量子点是一种尺寸在纳米级别的半导体微粒,其在三维空间中被限制在几个纳米的范围内,具有与其尺寸密切相关的特异性质。
由于其具有小尺寸、量子限制效应、表面效应和分子尺度分散性等性质,因此具有较高的光电转换效率、光稳定性、光谱可调性、量子储存性和分子感测性等独特的性质,使其在太阳能电池中具有广泛应用前景。
二、太阳能电池的基本结构与原理太阳能电池是将太阳能辐射能转化为电能的一种电池,其基本原理是光电效应。
太阳能电池有多种不同的类型,其中最为常见的是硅基太阳能电池。
硅基太阳能电池是由P型硅层、N型硅层和中间PN结构层构成的。
当光子入射P区,则其中一部分会与材料中自由电子进入光电子转移过程,使得这些电子的能量增加并穿透PN结结合层向N区运动,产生电势差,进而产生电流。
同时,在硅基太阳能电池中,衬底、玻璃和保护层等元件不仅可以保护PN结、防止延迟发光,也可以增强光吸收,提高电池的转换效率。
三、纳米半导体量子点在太阳能电池中的应用在太阳能电池中,纳米半导体量子点的应用主要是两个方面:改善光吸收率和提高电池效率。
具体来说,纳米半导体量子点在太阳能电池中的应用有以下两个方面:1. 纳米半导体量子点可以作为光伏材料,能够增强太阳能电池的光吸收率。
研究表明,纳米半导体量子点具有优异的量子限制效应和分子尺度分散性质,能够对不同波长的太阳光进行有效吸收和储存,提高光电转换效率。
2. 纳米半导体量子点可以作为电容层,增强太阳能电池的电池效率。
研究表明,纳米半导体量子点具有较高的电子传输能力和超快载流子注入-排出速度,能够有效提高电池的载流子传输效率和储存能力,从而提高电池的转换效率。
量子点敏化太阳能电池结构调控及光伏性能研究

量子点敏化太阳能电池结构调控及光伏性能研究量子点敏化太阳能电池结构调控及光伏性能研究摘要:随着能源需求的不断增长,太阳能作为一种可再生能源受到了广泛关注。
在太阳能电池研究中,量子点敏化太阳能电池因其高效率和低成本的特点而备受研究者的青睐。
本文通过研究量子点敏化太阳能电池的结构调控及光伏性能,探讨了提高其光电转换效率的方法,并对未来的发展进行了展望。
1. 引言太阳能电池是一种将太阳能转化为电能的装置,广泛应用于户外供电、数字产品和航空航天等领域。
传统的太阳能电池主要由硅材料构成,但由于成本较高且生产过程对环境影响较大,研究者开始寻找替代材料。
量子点是一种具有特殊结构和优异性能的纳米材料,与传统的材料相比,量子点敏化太阳能电池具有优异的光电转换效率和较低的成本。
2. 量子点敏化太阳能电池的结构调控量子点敏化太阳能电池的结构调控是提高其光伏性能的关键。
在量子点敏化太阳能电池中,量子点被用作光吸收剂,并通过电子传输和多重荧光共振的方式将光能转化为电能。
通过调控量子点的大小、形状和组成,可以使其吸收更广泛的光谱范围,并提高光电转换效率。
此外,调控电解质和电容性电解质界面的性质也可以改善电荷传输效率,进一步提高光伏性能。
3. 光伏性能研究光伏性能是评价量子点敏化太阳能电池性能的重要指标之一。
研究表明,量子点敏化太阳能电池具有优异的光伏性能,其光电转换效率可达到较高水平。
在研究中,通过改变量子点的尺寸和组成,以及优化电解质和电容性电解质界面的性质,可以提高光伏性能。
此外,合适的材料组合和结构设计也可以改善电子传输和电荷分离效率,从而进一步提高光伏性能。
4. 发展展望量子点敏化太阳能电池由于其优异的光伏性能和低成本的特点已经成为太阳能电池研究的热点。
未来的发展可从以下几个方面展望:首先,进一步优化量子点的结构和组成,提高光电转换效率。
其次,研究新型电解质和电容性电解质以实现更高的电荷传输效率。
此外,结合其他纳米材料,如石墨烯等,可以进一步改善光伏性能。
基于量子点的太阳能电池的研究及其性能分析

基于量子点的太阳能电池的研究及其性能分析如今的社会,发展越来越快,科技也越来越成熟。
能源问题一直是人类面临的难题之一,如何利用太阳能这一稳定的可再生能源成为了各国研究的重点。
而基于量子点的太阳能电池,则是近年来备受关注的新型太阳能电池。
本文将就基于量子点的太阳能电池的研究及其性能进行一些探讨。
一、基于量子点的太阳能电池的概念和原理1. 概念:基于量子点的太阳能电池是一种新型的光电转化设备,它是利用量子点的特殊物理和化学性质,以半导体为载体的太阳能电池。
基于量子点的太阳能电池中,通过将量子点嵌入半导体薄膜中,使得它们能够吸收太阳能,从而充当半导体的激发器,并将光能转化为电能。
2. 原理:基于量子点的太阳能电池,是通过利用量子点的特殊物理和化学性质来实现强化光电转化效果的。
其基本原理如下:(1)利用量子效应:基于量子点的太阳能电池,利用的就是单个或少数量子点的特殊量子效应。
这种量子效应只有在量子点的尺寸小于其束缚波长时才会出现。
在这种情况下,量子点呈现出独特的光电学性质,具有非常高的光电转化效率。
(2)通过数量控制调节物理特性:不同数量的量子点可以调节不同的物理特性,特别是光电学特性。
通过数量控制,可以达到调节物理特性的目的。
(3)提高光谱利用率:基于量子点的太阳能电池由于特殊的光谱利用方式,能够提高光谱利用率,增加太阳能光谱的覆盖面积,提高光电转化的效率。
二、基于量子点的太阳能电池的性能分析1. 优点:(1)光电转化效率高:相比于传统太阳能电池,基于量子点的太阳能电池光电转化效率更高,因为它利用了量子点的特殊物理性质,能够强化光电转化效果。
(2)光度响应窄:基于量子点的太阳能电池光度响应窄,能够很好地充分利用太阳光谱的能量,从而提高其转化效率。
(3)灵活性和可控性强:基于量子点的太阳能电池,可以通过调节量子点的大小、形态以及种类等方法来实现不同光学参数的调节,具有非常好的灵活性和可控性。
2. 局限性:(1)研究难度大:基于量子点的太阳能电池研究需要实现量子点与半导体接触的良好性质以及光电性质的优化调控,这些都需要很高的技术水平和实验经验。
量子点在太阳能电池中的应用研究

量子点在太阳能电池中的应用研究一、协议关键信息1、研究目的:探索量子点在太阳能电池中的应用,提高太阳能电池的效率和性能。
2、研究期限:从起始日期至结束日期。
3、研究团队:包括主要研究者和参与人员的姓名及职责。
4、研究经费:预算及来源。
5、研究成果归属:明确知识产权的归属和分配。
6、保密条款:涉及研究过程中的保密要求和责任。
7、违约责任:对于违反协议的责任和处理方式。
二、研究背景和意义1、介绍太阳能电池的发展现状和面临的挑战。
11 传统太阳能电池的局限性。
111 效率瓶颈。
112 成本问题。
2、阐述量子点的特性和优势。
21 量子点的尺寸效应。
211 对光电转换的影响。
212 能带结构调控。
3、说明量子点应用于太阳能电池的潜力和前景。
三、研究内容和方法1、量子点材料的制备与优化。
11 合成方法的选择与改进。
111 控制量子点的尺寸和形貌。
2、量子点在太阳能电池结构中的集成。
21 不同类型太阳能电池(如硅基、薄膜等)中的应用方案。
3、性能测试与分析。
31 光电转换效率的测量。
311 稳定性和耐久性评估。
4、理论模拟与机制研究。
41 建立数学模型。
411 揭示量子点增强太阳能电池性能的内在机制。
四、研究计划和进度安排1、前期准备阶段。
11 文献调研和方案设计。
111 实验设备和材料采购。
2、实验研究阶段。
21 按照预定方案进行实验。
211 定期进行数据采集和分析。
3、成果总结阶段。
31 整理实验数据和研究结果。
311 撰写研究报告和论文。
五、研究团队1、主要研究者。
11 姓名:____________________________ 111 学历背景和研究经历。
112 负责的研究任务和职责。
2、参与人员。
21 姓名:____________________________ 211 分工和职责。
六、研究经费1、预算明细。
11 设备购置费用。
111 材料费用。
112 测试分析费用。
113 人员劳务费用。
2、经费来源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
量子点的合成方法有很多,连续离子沉积法,电化学沉积法,反胶束法与热 注入法都是合成量子点的方法。
连续离子沉积法是将电极片在 两种反应物溶液中浸渍的方法, 其具体步骤如右图:
该方法是一种历史较为悠久的方法,也是大家制备量子点太阳能电池最 普遍,该方法的技术较为成熟。但是,单纯用该法,得到的量子点太阳 能电池的激子复合效应较大,太阳能电池的光电转换效率不高,如Hyo Joong Lee教授,他利用连续离子层法制出的硫化镉太阳能电池,光电转 换效率只有0.43%,硒化镉光电转换效率为2.02%。但当在硫化镉上吸附 上一层硒化镉后,光电转换效率提高到2.86%。[22]
蓝移等电子状态。
表面效应:随着量子点的粒径 减小,大部分原子位于量子点 的表面,量子点的比表面积随 粒径减小而增大。由于纳米颗 粒大的比表面积,表面相原子 数的增多,导致了表面原子的 配位不足、不饱和键和悬键增 多,使这些表面原子具有高的 活性,极不稳定,很容易与其 它原子结合。
量子点具 有的物理
效应
Libin Tang利用微波法,加热葡萄糖溶液,合成出了石墨烯量子点,我想 借鉴他的方法。不过我重复其实验时发现,在微波炉中密闭容器易爆炸, 但使用带孔容器时,内部溶液会爆沸而出,在反应时间达到时,生成有 很甜气味的物质,故我怀疑生成了焦糖,并不是石墨烯量子点,但现在 又无方法鉴别,故考虑如何判定。
电化学沉积法是利用点荷正负吸引,使其带电,然后再用反点荷去沉淀的方法。
电化学沉积法通常以沉积有导电载体且附有特定图案的模板为阴极,使金 属离子或半导体物质,通过电极还原沉积到模板的表面或孔隙,形成具有 特定形状的纳米阵列。电沉积法的模板现在用的比较多的是多孔铝阳极氧 化膜(AAO)和ITO玻璃。黑龙江大学的池玉娟教授,利用该法合成了10到 12nm左右的硫化镉量子点。
胶束法是利用表面活性剂在溶剂中形成的胶束,来合成量子点的方法。胶束 法合成的量子点拥有粒径分布均一,激子复合率低的特点。但由于量子点表 面被敦化试剂覆盖,故该法合成出的量子点并不能发挥量子点太阳能电池多 重激子效应,现在,许多学者用该法来制作量子点荧光探针。
反胶束法属于胶束法的一种,多用控制Wo(水与表面活性剂的量比)来控制 大小,因为依据计算,当其他条件不变,单改变水的加入量或是表面活性剂 的加入量,可以制得相应大小颗粒的量子点,即表面活性剂量不变,水量变 为原来的1/2,则得到的量子点粒径应也为原来的1/2。
多激子效应:当纳米 半导体吸收一个能量 至少等于或者大于二 倍纳米半导体材料的 禁带宽度的光子而在 其内部产生两个或者 更多的电子-空穴对。
介电限域效应:电子局 限在纳米空间,电子输 运受到限制,电子平均 自由程很短,电子的局 域性和相干性增强,将 引起量子限域效应。激 子的最低能量向高能方 向移动即蓝移。
因为纳米颗粒易于团聚,故照sem并不能很清晰看到他们的粒径,故现在 还不能确定合成出来的粒径大小
4mol/L的氯化镉 0.7mol/L0.03mol/L的氯化镉 效率约为0.2%
遇到的问题:
1.配置的硫化钠溶液与量子点太阳能电池电解液出现黑色沉淀。 2.碲的前驱体打算用碲代硫酸钠,在reaxys上我查到该物质是存在的, 但是不能确定该物质是否稳定,文献上对其资料不全。硒的前驱体最近 在做,因为资料不多,所以也在摸索条件 3.合成出的量子点分布不均。 4.量子点在洗出后,不易分散。 5.自身装电池的技术不过关。 接下来的实验计划:
城市热岛效应是指城市因大量的人工发热、建筑 物和道路等高蓄热体及绿地减少等因素,造成城 市“高温化”。城市中的气温明显高于外围郊区 的现象。在近地面温度图上,郊区气温变化很小, 而城区则是一个高温区,就象突出海面的岛屿, 由于这种岛屿代表高温的城市区域,所以就被形 象地称为城市热岛。
太阳能电池是指通过光电效应或者光化学效应直接把光能转化成电能的装置。 自从1883年Charles用锗半导体上覆上一层极薄的金层形成半导体金属结,制 备出了第一块光电池。太阳能电池有了长足的进步。
量子点
量子点是量子点是准零维的纳米材料,粗略地说,量子点三个维度的尺寸 都在100纳米以下,外观恰似一极小的点状物,由于其内部电子在各方向 上的运动都受到局限,所以量子局限效应特别显著。现在量子点主要应用 与荧光材料与太阳能电池领域。
量子尺寸效应:通过 调节尺寸,形状和结 构,可以调节其能隙 宽度、激子束缚能的 大小以及激子的能量
*量子点太阳能电池的
初步探索
报告人:白述铭 指导老师:田建华
核污染主要指核物质泄露后的遗留物对环境的破坏,包括核辐 射、原子尘埃等本身引起的污染,还有这些物质对环境的污染 后带来的次生污染,比如被核物质污染的水源对人畜的伤害。
大气污染指的是随着现代工业和交通运输的发展,向 大气中持续排放的物质数量越来越多,种类越来越复 杂,引起大气成分发生急剧的变化。当大气正常成分 之外的物质达到对人类健康、动植物生长以及气象气 候产生危害的时候,我们就说大气受了污染。
热注入法是由 Murray 提出并被广泛使用量子点合成的方法。该方法合成的胶体 量子点的尺寸大小和尺寸分布能够通过改变反应时间、成核和生长温度,前驱 液的浓度,稳定剂和前驱液的比例及包覆配体来实现调节。现在,该法制出的 量子点电池有较高的效率,2011年加拿大多伦多大学Jiang Tang制出了6%光电 转换效率的PbS太阳能电池。2012年,该大学的Alexander教授又制出了光电转 换效率高达7%的硫化铅量子点电池。
谢谢
1.试着做做碲代硫酸钠,硒代硫酸钠,探索下其合成工艺。 2.寻找合适的链接剂,让量子点与二氧化钛结合紧密,且使其易二次 分散。 3.合成石墨烯量子点,并让其做链接剂,或与硫化镉复合。
石墨烯量子点作为碳量子点的一种,除了具有碳量子点所具有的优点,还 具有石墨烯独特的结构和优异的特性,故我想把石墨烯量子点与其他量子 点结合,以制备新型太阳能电池,得到的光电池内部,被光激发的光电子 可以更容易的传输到二氧化钛上。
经历的失败:
总算合成了所需大小的纳米量子点:
CdS
PbS
并探索了助表面活性剂的量对微乳液的影响和反应时间对微乳合成的影响,发 现助表面活性剂不加入,可以形成更稳定的微乳液(即溶液不会有微粒生成)。
0-2.3
2.3-3.5
下图是两张不同加水量,合成出来的硫化镉,在陈化12h之后,其任然保 持溶液状态,未出现明显沉淀(还是有),理论上右边的粒径应该是左边 的1/2。