(完整版)量子点太阳能电池简介

合集下载

(完整版)量子点太阳能电池简介

(完整版)量子点太阳能电池简介

量子点太阳能电池简介摘要:量子点太阳能电池是第三代太阳能电池,也是目前最尖端、最新的太阳能电池之一,这种电池在使用半导体材料的普通太阳能电池之中,引入了纳米技术与量子力学理论,尽管目前尚没有制作出这种超高转换效率的实用化太阳能电池,但是大量的理论计算和实验研究已经证实,量子点太阳能电池将会在未来的太阳能转换中显示出巨大的发展前景。

简述了量子点太阳能电池的物理机理及研究内容。

关键词:量子点,太阳能电池,机理随着人类面临的环境与能源问题的持续恶化,加强环境保护和开发清洁能源是人类高度关注的焦点。

因此,近年来人们对太阳能开发和利用的研究进展极为迅速。

作为一种重要的光电能量转换器件,太阳能电池的研究一直受到人们的热切关注。

太阳能电池可以分为两大类:一类是基于半导体p-n结中载流子输运过程的无机固态太阳能电池;另一类则是基于有机分子材料中光电子化学过程的光电化学太阳能电池。

单晶GaAs太阳能电池、晶体Si太阳能电池和Si基薄膜太阳能电池属于第一类,而染料敏化太阳能电池和聚合物太阳能电池属于第二类。

第一类太阳能电池已经产业化或商业化,而第二类太阳能电池正处于研究与开发之中。

目前太阳能电池存在能耗高、光电转换效率低等缺点。

尽管人们已采用各种方法使太阳能电池的转换效率得到了一定改善,但尚不能使其大幅度提高。

找到一种更有效的途径或对策,使太阳能电池的实际能量转换效率接近其理论预测值,成为材料物理、光伏器件与能源科学的一项重大课题。

量子点是指三维方向尺寸均小于相应物质块体材料激子的德布罗意波长的纳米结构。

理论研究指出,采用具有显著量子限制效应和分立光谱特性的量子点作为有源区设计和制作的量子点太阳能电池,可以使其能量转换效率获得超乎寻常的提高,其极限值可以达到66%左右,而目前太阳能电池的主流晶体硅技术的光电转换效率理论上最多仅为30%。

尽管目前尚没有制作出这种超高转换效率的实用化太阳能电池,但是大量的理论计算和实验研究已经证实,量子点太阳能电池将会在未来的太阳能转换中显示出巨大的发展前景。

量子点太阳能电池类型

量子点太阳能电池类型

量子点太阳能电池类型量子点太阳能电池是一种新型的太阳能电池技术,应用了量子点材料的特殊性质,具有很大的潜力和优势。

以下将介绍几种常见的量子点太阳能电池类型。

第一种类型是量子点敏化太阳能电池(Quantum Dot Sensitized Solar Cells,QDSC)。

这种电池利用了量子点材料的优异光电特性,将其作为光敏剂,吸收光能并将其转化为电能。

通过这种方式,量子点敏化太阳能电池能够有效地捕捉到太阳能的更多光谱,提高能量转换效率,实现更高的能源产出。

第二种类型是量子点增强型太阳能电池(Quantum Dot Enhanced Solar Cells,QDESC)。

这种电池将量子点材料作为增强层加入到传统的太阳能电池中。

量子点能够吸收并转换太阳光中较高能量的光子,将其转化为更适合太阳能电池吸收的低能量光子。

这种方式可以增强电池对太阳能的吸收能力,提高能量转换效率。

第三种类型是量子点多结太阳能电池(Quantum Dot Multiple Junction Solar Cells,QDJSC)。

这种电池采用多层量子点材料的结构,每一层都能够吸收光谱中的不同能量范围的光子。

通过这种层叠的结构,能够利用太阳能光谱中更多的光子,提高能量转换效率。

量子点多结太阳能电池兼具高效率和宽谱吸收的特点,能够在不同光照条件下表现出较好的性能。

通过研究和探索,科学家们还不断提出新的量子点太阳能电池类型和结构,不断推动该领域的发展。

这些新的电池类型可以根据需要,调整量子点材料的性质、结构和组成,以实现更高的能量转换效率、更长的寿命和更低的成本。

未来,量子点太阳能电池有望成为替代传统太阳能电池的主流技术。

与传统太阳能电池相比,量子点太阳能电池具有更高的能量转换效率、更宽的光谱吸收范围、更长的使用寿命和更好的稳定性。

此外,量子点太阳能电池材料的制备成本也在不断降低,有望实现商业化生产,满足日益增长的能源需求。

在实际应用中,我们可以将量子点太阳能电池广泛运用于各个领域。

《量子点太阳能电池》课件

《量子点太阳能电池》课件

量子点太阳能电池的研究成果和实际应用案例
研究成果:量 子点太阳能电 池具有较高的 光电转换效率
和稳定性
实际应用案例: 量子点太阳能 电池已在太阳 能汽车、太阳 能路灯等领域
得到应用
技术挑战:量 子点太阳能电 池在生产过程 中存在成本高、 稳定性差等问

发展趋势:量 子点太阳能电 池有望在未来 成为主流太阳 能电池技术之
量子点材料的能级结构
量子点材料的能级结构是由量子点尺寸和形状决定的 量子点材料的能级结构具有离散性,可以形成量子阱 量子点材料的能级结构可以通过改变量子点的尺寸和形状来调节 量子点材料的能级结构可以应用于太阳能电池,提高光电转换效率
量子点材料的光学性质
量子点材料的发光特性:量子点材料具有独特的发光特性,可以通过改变量子点的尺寸和形 状来调节其发光波长和强度。

06
量子点太阳能电池的挑 战和前景
量子点太阳能电池面临的挑战和问题
量子点稳定性:量 子点在光照、温度 等条件下容易发生 衰变,影响电池性 能
量子点合成:量 子点合成工艺复 杂,成本较高, 需要进一步优化
量子点太阳能电池 效率:目前量子点 太阳能电池效率较 低,需要进一步提 高
量子点太阳能电池 商业化:量子点太 阳能电池商业化进 程缓慢,需要进一 步推动
稳定性:量子点太阳能电池的稳定性是指电池在长时间使用后,其光电转换效率的 变化情况。稳定性好的电池,其光电转换效率下降较慢。
耐候性:量子点太阳能电池的耐候性是指电池在恶劣环境下,如高温、低温、潮湿 等,其光电转换效率的变化情况。耐候性好的电池,其光电转换效率受环境影响较 小。
量子点太阳能电池的效率提升途径
量子点太阳能电池的发展趋势和未来展望

量子点太阳能电池技术概况

量子点太阳能电池技术概况

以制备 得极 薄 , 因此 可进 一 步降 低 电 池 成本 ; ⑤相对 于 体 相 半导 体 材料 , 采 用量 子 点可 以更 容 易 实现 电子 给
1 .量子点 太阳能电池概念
为 国 际上 的研 究热 点 。 此 类 电池 的主
要特 点 是 以无 机半 导 体纳 米 晶( 量 子 点) 作为 吸光 材料 。 量子点 ( Qu a n t u m
新柚料产业 N O. 3 2 0 1 3 I 田

F R O N T I E R 『 ; E 日
量 子点 太 阳能 电池 技术 概况
■ 文 /孟 庆 波
中国科 学院物理研 究所

概 述
近 年来 , 量 子 点太 阳能 电池 已成
子 点恰 似 一极 小 的点状 物 , 其 内部 电 子 在各 方 向上 的运 动都 受 到局 限 , 即
子点 3 个维度的尺寸均小于块体材料
激 子的德布 罗意 波长。 从外观上 看 , 量
②化学稳定性好 ; ③合成过程简单,
是低成 本 的吸光材 料 ; ④具有高 消光 系数 和本 征偶 极 矩 , 电池 的 吸光层 可
( 多激子效应) , 理论上预测的量子点
电池效率 可 以池 常常被 称作 第 3 代太 阳能
量子局 限效应( q u a n t u m c o n f i n e m e n t e f f e c t ) 特别显 著。
量 子点 有很 多 的优 点 : ①吸光 范
体和 受 体材料 的能级 匹配 , 这 对于 获
得 高 效太 阳能 电池 十分 关 键。 更重 要
围可 以通过调节 颗粒的组分 和尺寸来
获得 , 并 且 可 以从 可 见光 到 红 外光 ;

量子点太阳能电池技术概况

量子点太阳能电池技术概况

量子点太阳能电池技术概况作者:孟庆波来源:《新材料产业》 2013年第3期文/ 孟庆波中国科学院物理研究所一、概述1.量子点太阳能电池概念近年来,量子点太阳能电池已成为国际上的研究热点。

此类电池的主要特点是以无机半导体纳米晶(量子点)作为吸光材料。

量子点(QuantumDots,QDs)是准零维(quasi-zerodimensional)纳米材料。

粗略地说,量子点3个维度的尺寸均小于块体材料激子的德布罗意波长。

从外观上看,量子点恰似一极小的点状物,其内部电子在各方向上的运动都受到局限,即量子局限效应(quantum confinementeffect)特别显著。

量子点有很多的优点:①吸光范围可以通过调节颗粒的组分和尺寸来获得,并且可以从可见光到红外光;②化学稳定性好;③合成过程简单,是低成本的吸光材料;④具有高消光系数和本征偶极矩,电池的吸光层可以制备得极薄,因此可进一步降低电池成本;⑤相对于体相半导体材料,采用量子点可以更容易实现电子给体和受体材料的能级匹配,这对于获得高效太阳能电池十分关键。

更重要的是,量子点可以吸收高能光子并且一个光子可以产生多个电子-空穴对(多激子效应),理论上预测的量子点电池效率可以达到44%。

因此,量子点太阳能电池常常被称作第3代太阳能电池,具有巨大的发展前景。

2.量子点太阳能电池分类目前,量子点太阳能电池主要分为肖特基太阳能电池、耗尽型异质结太阳能电池、极薄层太阳能电池、体相异质结太阳能电池、有机-无机异质结太阳能电池和量子点敏化太阳能电池等,具体说明如下:(1)肖特基量子点太阳能电池肖特基量子点太阳能电池的结构非常简单,在导电玻璃上涂覆量子点层,再在量子点层上加载金属阴极即可。

它的优点在于:第一,结构简单,量子点层可以通过喷雾涂覆或者喷墨打印的方式获得,有利于工业化生产;第二,量子点层的厚度仅为100nm左右,可以进一步降低电池成本。

但是,肖特基量子点太阳能电池有一些缺点:首先,少数载流子(这里为电子)必须在到达目标电极前穿过整个量子点层,易产生较严重的复合;其次,金属-半导体界面的缺陷态导致费米能级的钉扎现象,降低了电池的开路电压,所以肖特基量子点太阳能电池的开路电压一般较低。

量子点太阳能电池

量子点太阳能电池

量子点太阳能电池
量子点太阳能电池是一种利用量子点光电转换材料作为能量转换器,以获得能源的新
型太阳能电池。

它是一种比传统太阳能电池具有更高效率的绿色能源技术。

量子点太阳能
电池能够将太阳能有效转换成电能,可以用于发电和充电电池。

可以使用单纯的量子点材
料制成太阳能电池,也可以将它们与染料敏化剂或活性物质结合使用,制成更先进的太阳
能电池,比如量子点-染料敏化太阳能电池。

量子点太阳能电池原理是使用量子点结构和特性,以使其具有很强的光催化能力,可
以把太阳光转化成电能,从而解决传统太阳能电池低效问题。

量子点可设计成各种不同的
尺寸和形状,它们的光电转换效率远比传统的太阳能电池要高,可以增大太阳能电池的光
强度,从而提高其电力转换效率。

量子点太阳能电池有许多优点,它们的生产成本较低,其静电特性比其他电池技术较低,容易加工和制造,成本低,它们可以轻松地整合到太阳能生产系统中来提高太阳能利
用率,可以增强太阳能电池的灵活性和可靠性。

量子点太阳能电池另一个优点是其完全可再生的特性。

因为它们的结构不会受到任何
有害的气体、温度或湿度的影响,所以它们可以重复使用多次,对环境也是有益的。

虽然目前量子点太阳能电池具有许多优点,但也存在一些问题,比如其成本相对较高,还有一些技术上的挑战,如长期稳定性、可靠性和性能。

因此,生产商和研究者正努力改
进设计,以增加性能,降低成本。

且随着技术的发展,量子点太阳能电池有望在未来成为
一种高效、可靠并低成本的可再生能源技术,是可持续发展的绿色技术。

量子点敏化太阳能电池

量子点敏化太阳能电池

量子点敏化太阳能电池
量子点敏化太阳能电池是一种基于半导体量子点技术的新型太阳能电池。

量子点是尺寸在纳米级别的半导体颗粒,其具有很好的光物理和电子学性质。

通过将量子点吸附于钛某膜表面,可以提高太阳能电池的光吸收效率,从而提高电池的性能。

量子点敏化太阳能电池具有以下优点:
1. 光电转换效率高:量子点可以吸收半导体电池无法吸收的红外光谱,从而提高光电转换效率。

2. 光稳定性好:由于量子点具有很好的光物理性质,因此它们可以吸收和发射光子,从而提高电池的光稳定性。

3. 制备简单:与其他太阳能电池相比,量子点敏化太阳能电池的制备工艺相对简单,成本也较低。

4. 可控性强:通过控制量子点的尺寸和组成,可以调整太阳能电池的光学和电学性质,从而得到更好的性能。

尽管量子点敏化太阳能电池在实验中取得了良好的性能,但在实际应用中还需要克服许多挑战,如长期稳定性、成本、批量生产等问题。

因此,目前该技术仍处
于研究和发展阶段。

量子点太阳能电池的研究及应用

量子点太阳能电池的研究及应用

量子点太阳能电池的研究及应用近年来,随着科学技术的不断发展,太阳能电池作为一种重要的可再生能源得到了广泛关注和研究。

量子点太阳能电池,作为太阳能电池的一种新型形态,具有许多优异的特性,因此引起了科学家们的极大关注。

本文将对量子点太阳能电池的研究及应用进行探讨。

一、量子点太阳能电池的原理在传统的太阳能电池中,其主要原理是将太阳能转化为电能。

而量子点太阳能电池则是利用量子点的光电效应来实现对太阳能的转化。

量子点是一种直径在1~10纳米范围内的微观颗粒,它们能够在一定范围内吸收或发射电磁波,并且具有尺寸能量效应、量子限效应和准受限效应等特性。

通过将这些量子点嵌入到太阳能电池中,可以在吸收太阳光的过程中产生电子,并将其传递到电池中的电极上,从而实现对太阳能的转化。

二、量子点太阳能电池的优点相比于传统的太阳能电池,量子点太阳能电池具有以下几方面的优点:1. 高效率:量子点太阳能电池的效率可以达到30%以上,比传统太阳能电池的效率高出很多。

2. 容易制备:制备量子点太阳能电池的材料和工艺相对简单,成本也较低。

3. 透明性好:量子点太阳能电池可以制成透明材料,可以应用于大面积的太阳能玻璃幕墙等场景。

4. 抗衰减,寿命长:量子点材料可以保持长时间的稳定状态,并具有较长的使用寿命。

以上优点使得量子点太阳能电池在应用方面具有广阔的前景。

三、量子点太阳能电池的应用量子点太阳能电池具有广泛的应用前景,主要涉及以下几个方面:1. 太阳能玻璃幕墙:量子点太阳能电池可以制成透明材料,可以应用于大面积的太阳能玻璃幕墙。

2. 移动电源:量子点太阳能电池可以制作成柔性材料,可以应用于移动电源等场景。

3. 光伏发电:量子点太阳能电池可以与传统的太阳能电池相结合,提高光伏发电的效率。

4. 生活用电:利用量子点太阳能电池可以为生活用电提供新的来源。

四、量子点太阳能电池的挑战虽然量子点太阳能电池具有很大的优点,但是在研究和应用中还存在以下几个挑战:1. 量子点太阳能电池的制备工艺和技术还需要进一步完善,特别是应用于工业化生产场景时需要考虑到工艺稳定性和可复制性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

量子点太阳能电池简介摘要:量子点太阳能电池是第三代太阳能电池,也是目前最尖端、最新的太阳能电池之一,这种电池在使用半导体材料的普通太阳能电池之中,引入了纳米技术与量子力学理论,尽管目前尚没有制作出这种超高转换效率的实用化太阳能电池,但是大量的理论计算和实验研究已经证实,量子点太阳能电池将会在未来的太阳能转换中显示出巨大的发展前景。

简述了量子点太阳能电池的物理机理及研究内容。

关键词:量子点,太阳能电池,机理随着人类面临的环境与能源问题的持续恶化,加强环境保护和开发清洁能源是人类高度关注的焦点。

因此,近年来人们对太阳能开发和利用的研究进展极为迅速。

作为一种重要的光电能量转换器件,太阳能电池的研究一直受到人们的热切关注。

太阳能电池可以分为两大类:一类是基于半导体p-n结中载流子输运过程的无机固态太阳能电池;另一类则是基于有机分子材料中光电子化学过程的光电化学太阳能电池。

单晶GaAs太阳能电池、晶体Si太阳能电池和Si基薄膜太阳能电池属于第一类,而染料敏化太阳能电池和聚合物太阳能电池属于第二类。

第一类太阳能电池已经产业化或商业化,而第二类太阳能电池正处于研究与开发之中。

目前太阳能电池存在能耗高、光电转换效率低等缺点。

尽管人们已采用各种方法使太阳能电池的转换效率得到了一定改善,但尚不能使其大幅度提高。

找到一种更有效的途径或对策,使太阳能电池的实际能量转换效率接近其理论预测值,成为材料物理、光伏器件与能源科学的一项重大课题。

量子点是指三维方向尺寸均小于相应物质块体材料激子的德布罗意波长的纳米结构。

理论研究指出,采用具有显著量子限制效应和分立光谱特性的量子点作为有源区设计和制作的量子点太阳能电池,可以使其能量转换效率获得超乎寻常的提高,其极限值可以达到66%左右,而目前太阳能电池的主流晶体硅技术的光电转换效率理论上最多仅为30%。

尽管目前尚没有制作出这种超高转换效率的实用化太阳能电池,但是大量的理论计算和实验研究已经证实,量子点太阳能电池将会在未来的太阳能转换中显示出巨大的发展前景。

1 量子点太阳能电池的物理机理人们针对太阳能电池存在的能耗高、光电转换率低等缺点,提出了三套解决方案[1]:1)增加带隙数量,制作多带隙叠层太阳能电池;2)热载流子冷却前进行俘获;3)一个高能光子产生多个电子空穴对或者多个低能光子产生一个高能电子空穴对。

目前,方案1已经得到实际应用,后两套方案基于量子点产生的量子限制效应正处于研究之中。

半导体量子点太阳能电池作为第三代太阳能电池具有潜在的优势,它通过以下两个效应可以大大增加光电转换效率:第一个效应是来自具有充足能量的单光子激发产生多激子;第二个效应是在带隙里形成中间带,可以有多个带隙起作用,来产生电子空穴对。

这两个效应的产生是因为量子点中的能级量子化。

能级量子化还会产生其它效应:减缓热电子-空穴对的冷却;提高电荷载流子之间的俄歇复合过程和库仑耦合;并且对于三维限制的载流子,动量不再是一个好量子数,跃迁过程不必满足动量守恒。

提高转换效率的两种基本的方式(增加光电压或者增加光电流)理论上在三维量子点太阳能电池的结构中能够实现。

1.1 量子点多激子太阳能电池的机理在一般的半导体太阳能电池中由碰撞电离引起的多个电子空穴对的形成对于提高量子产能并没有多重要的贡献,这主要是因为只有在光子的能量达到光谱的紫外区才会有可观的碰撞电离效应,而大多数半导体无法满足要求,原因有两个,一个是晶体的动量守恒,另外是碰撞电离的比率必须和由电子-声子散射引起的能量弛豫的比率接近。

在量子点体系中三维限制效应会形成分裂的量子化能级,能有效地减慢电声子的相互作用。

而且对于三维限制载流子,由于动能不再是一个好量子数,因此跃迁过程也不必满足动量守恒,这样碰撞电离效应可得到增强,热电子可产生多个空穴对,因此称为多电子产生。

多电子产生现象在不少纳米晶体中有报道,如PbSe、PbS、PbTe和CdSe等。

但目前实验研究中,基于量子点的光转换器件的量子产能还不理想。

量子点多激子增强效应机制尚处于研究阶段。

1.2 量子点中间带太阳能电池的机理中间带材料是在传统半导体材料的价带和导带之间存在一个中间带。

由于中间带的形成,电子会从价带跃迁到中间带,以及从中间带跃迁到导带,使低于带隙能量的光子也能够对电池的光电流产生贡献。

中间带可通过尺寸为纳米量级的半导体量子点镶嵌在三维的宽带隙半导体材料中来实现—量子点为势阱,宽带隙半导体为势垒。

通过调制阱宽可实现不同的量子限制效应;改变能级分裂的距离,可以形成不同的带隙宽度。

[2](a)(b)图2,(a)中间带材料的结构;(b)量子点中间带太阳能电池的能级构造中间带太阳能电池能够捕获和吸收低于带隙能量的光子,使太阳能电池可以在没有电压降低的情况下提高光电流,因此它是目前第三代太阳能电池研究中最为活跃的领域之一。

在中间带太阳能电池需要解决的基本问题中,最关键的是光的有效吸收问题。

为了使光子有最大能量输出的同时使载流子的热损失最小,具有一定能量的光子应首先被相应的最宽的能隙吸收(不同带隙主要吸收与能隙宽度相近能量的光子,避免高能量的光子被窄能带先吸收),同时要求价带到导带的吸收系数比价带到中间带的吸收系数大,价带到中间带的吸收系数比中间带到导带的吸收系数大。

其次是要求中间带必须是半满的,且应有足够的电子空穴对浓度,能够满足电子从价带到中间带的跃迁和中间带到导带跃迁的要求。

上述要求在实验上是不容易满足的,因此寻找满足上述要求的中间带材料是实现高效中间带太阳能电池的关键之一。

2 量子点太阳能电池研究内容介绍2.1 量子点敏化太阳能电池量子点敏化太阳能电池,是以染料敏化太阳能电池(DSSC)为基础构造的,两者的工作原理相似,只是前者选择窄带隙半导体量子点替代有机染料分子作为光敏剂连接到宽带隙半导体如TiO2、ZnO和SnO2等阳极材料上使其达到敏化效果[3]。

量子点敏化太阳能电池包括导电玻璃、光阳极、光敏剂、电解质和对电极5个部分。

其中光阳极即是量子点附着和光生电子注入的载体,一般是具有长电子扩散长度的宽禁带半导体制成的多孔电极。

目前,光阳极材料的研究主要集中在TiO2、ZnO、SnO2、Nb2O5和In2O3等二元半导体氧化物上。

对光阳极的形貌和成分调控是提高量子点敏化太阳能电池效率的一种途径,也是研究的热点和重点。

量子点敏化太阳能电池研究很多。

文献[4]综述了光分解沉积法简单工艺制备金属硫化物量子点—TiO2太阳能敏化电池。

图2,量子点敏化太阳能电池示意图2.2 量子点太阳能电池材料及其机理研究许多科研实验设计不同材料不同结构的量子点太阳能电池,证明了量子点的多激子产生、中间带效应会提高量子点太阳能电池电流密度和转换效率。

常见的量子点材料有InAs/InGaAs,InAs/GaAs。

有研究者证明Sb调节生长方式是一种构造超高密度量子点结构太阳能电池的可行行为。

为了核实在高聚光条件下量子点太阳能电池吸收光谱的提高,美国国家可再生能源实验室研究了在高强度照射下比较了有20层量子点的太阳能电池和常规GaAs电池的短路电流和光电转换效率,如图3所示,提高是很明显的。

图3 功率效率和短路电流密度的对比Zusing Yang等[5]制备了CdHgTe和CdTe量子点太阳能电池,具有优良的光电转换效率。

Sugaya等人[6]用间断沉积法制备了InGaAs量子点太阳能电池。

2.3 量子点太阳能电池器件及其结构研究目前量子点太阳能电池结构常用的是P-i-n结构,最早应用于非晶Si太阳能电池,其主要目的是利用p-n结自建电场对i层光生载流子所产生的漂移作用提高收集效率。

[7]Seth Hubbard 和Ryne Raffaelle[8]为了提高太阳能电池的转换效率,在2010年构造了InAs/GaAs 量子点提高太阳能电池,并证实了增加量子点的层数能提高量子点太阳能电池的外量子效率,也会影响电池的转换效率。

他们将InAs量子点嵌入到GaAs的p-i-n 太阳能电池的中间,如图4所示。

图4, p-i-n 结构量子点太阳能电池Takata等[9]人利用应变补偿技术在GaAs衬底上生长20、25、100层InAs/GaNAs叠层,构造了量子点中间带太阳能电池,如图5所示。

图5,多层量子点太阳能电池结构3 小结与展望量子点太阳能电池有着良好的应用前景,其中量子点敏化太阳能电池距离商业化应用最为接近,但真正意义上的量子点太阳能电池—基于多激子产生效应设计和制作的太阳能电池,还有待深入研究。

同其它许多具有应用前景的项目一样,量子点太阳能电池研究领域还有很多工作要做,首先是光电转换机制的研究,然后是材料的制备,还有器件的组装以及成本问题。

相信在众多科研人员的努力下,量子点太阳能电池会尽快为解决人类的环境与能源问题作出贡献。

参考文献[1] 姜礼华, 曾祥斌, 金韦利, 张笑. 硅量子点在太阳能电池中的应用, 激光与光电子学进展, 2010.[2] E.Canovas, A.Marti, N.Lopez, et al. Thin Solid Films, 516(2008), 6943-6947.[3] 刘铭,杨君友,冯双龙,朱虎. 量子点敏化太阳能电池研究进展. 功能材料, 2010.[4] Hiroaki Tada, Musashi Fujishima and Hisayoshi Kobayashi. Photodeposition of metal sulfide quantum dots on titanium(IV) dioxide and the applications to solar energy conversion. Chem.Soc.Rev, 2011.[5] Zusing Yang, Huan-Tsung Chang. Solar Energy Materials and Solar cells, 94(2010), 2046-2051.[6] T.sugaya, Y.Kamikawa, S.Furue, T.Amano, M.Mori, S.Niki. Solar Energy Materials and Solar Cells, 95(2011), 163-166.[7] 彭英才, 傅广生. 量子点太阳能的探索. 材料研究学报, 23(2009).[8] 康培, 刘如彬, 王帅, 张启明, 孙强, 穆杰. 量子点太阳能电池研究进展. 电源技术, 135(2011).[9] A.Takata, R.Oshima, Y.Shoji, et al. Fabrication of 100 Layer-Stacked InAs/GaNAs Strain-Compensated Quantum Dots on GaAs (001) for Application to Intermediate Band Solar Cell. 35th IEEE Photovoltaic Specialists Conference. Hawaii, USA:IEEE Piscataway, 2010: 001877-001880.。

相关文档
最新文档