2015年文科导数分类汇编

合集下载

高考数学导数题型归纳(文科)

高考数学导数题型归纳(文科)

导数题型归纳 首先,关于二次函数的不等式恒成立的主要解法:1、分离变量;2变更主元;3根分布;4判别式法5、二次函数区间最值求法:(1)对称轴(重视单调区间)与定义域的关系(2)端点处和顶点是最值所在其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。

最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础一、基础题型:函数的单调区间、极值、最值;不等式恒成立;1、此类问题提倡按以下三个步骤进行解决:第一步:令0)('=x f 得到两个根; 第二步:画两图或列表;第三步:由图表可知;其中不等式恒成立问题的实质是函数的最值问题,2、常见处理方法有三种:第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0)第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元);例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,4323()1262x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围;(2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 例2:设函数),10(3231)(223R b a b x a ax x x f ∈<<+-+-= (Ⅰ)求函数f (x )的单调区间和极值;(Ⅱ)若对任意的],2,1[++∈a a x 不等式()f x a '≤恒成立,求a 的取值范围.第三种:构造函数求最值题型特征:)()(x g x f >恒成立0)()()(>-=⇔x g x f x h 恒成立;从而转化为第一、二种题型例3:已知函数32()f x x ax =+图象上一点(1,)P b 处的切线斜率为3-,326()(1)3(0)2t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[1,4]x ∈-时,求()f x 的值域;(Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。

2015年(陕西版)高考数学分项汇编专题03导数(含解析)理

2015年(陕西版)高考数学分项汇编专题03导数(含解析)理

专题03 导数一.基础题组1. 【2006高考陕西版理第题】n→∞lim 12n(n 2+1-n 2-1) 等于( ) A. 1 B. 12 C.14 D.0【答案】考点:求极限.2. 【2007高考陕西版理第13题】=⎪⎭⎫ ⎝⎛---++→11212lim 21x x x x x .【答案】13考点:求极限.3. 【2008高考陕西版理第13题】(1)1lim 2n a n n a∞++=+→,则a = .【答案】1考点:求极限.4. 【2014高考陕西版理第3题】定积分1(2)x x e dx +⎰的值为( ).2A e + .1B e + .C e .1D e -【答案】C 【解析】 试题分析:1212120(2)()|(1)(0)x x x e dx x e e e e +=+=+-+=⎰,故选C .考点:定积分. 二.能力题组1. 【2007高考陕西版理第11题】f(x)是定义在(0,+∞)上的非负可导函数,且满足x ()f x '+f(x)≤0,对任意正数a 、b ,若a <b ,则必有 A.af(b) ≤bf(a) B.bf(a)≤af(b)C.af(a) ≤f(b) D.bf(b) ≤f(a)【答案】A考点:导数的概念.2. 【2007高考陕西版理第20题】设函数f (x )=,22aax x c ++其中a 为实数.(Ⅰ)04a <<;(Ⅱ) 当02a <<时,()f x 的单调减区间为(02)a -,;当24a <<时,()f x 的单调减区间为(20)a -,.【答案】(Ⅰ)若f (x )的定义域为R ,求a 的取值范围; (Ⅱ)当f (x )的定义域为R 时,求f (x )的单减区间.当24a <<时,()f x 的单调减区间为(20)a -,. 考点:导数的应用.3. 【2009高考陕西版理第16题】设曲线1n y x +=*()n ∈N 在点(1,1)处的切线与x 轴的交点的横坐标为n x ,令lg n n a x =,则1299a a a +++的值为 .4. 【2009高考陕西版理第20题】已知函数1()ln(1)1xf x ax x-=+++,0x ≥,其中0a >. (Ⅰ)若()f x 在1x =处取得极值,求a 的值; (Ⅱ)求()f x 的单调区间;(Ⅲ)若()f x 的最小值为1,求a 的取值范围.5. 【2011高考陕西版理第11题】设20lg 0()30ax x f x x t dt x >⎧⎪=⎨+⎪⎩⎰…,若((1))1f f =,则a = .【答案】1 【解析】 试题分析:考点:分段函数、定积分.6. 【2012高考陕西版理第7题】设函数()2ln f x x x=+,则( ) A .12x =为()f x 的极大值点 B .12x =为()f x 的极小值点C .2x =为()f x 的极大值点D .2x =为 ()f x 的极小值点【答案】D考点:导数的应用.7. 【2014高考陕西版理第10题】.如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处下降, 已知下降飞行轨迹为某三次函数图像的一部分,则函数的解析式为( )(A )3131255y x x =- (B )3241255y x x =-(C )33125y x x =- (D )3311255y x x =-+【答案】A考点:函数的解析式.三.拔高题组1. 【2006高考陕西版理第22题】已知函数f(x)=x 3-x 2+x2 + 14 , 且存在x 0∈(0,12 ) ,使f(x 0)=x 0.(I )证明:f(x)是R 上的单调增函数;设x 1=0, x n+1=f(x n ); y 1=12, y n+1=f(y n ), 其中 n=1,2,……(II )证明:x n <x n+1<x 0<y n+1<y n ; (III )证明:y n+1-x n+1y n -x n < 12.【答案】(I )详见解析;(II )详见解析; (III )详见解析 .(2)假设当n =k (k ≥1)时有x k <x k +1<x 0<y k +1<y k .考点:导数的应用.2. 【2008高考陕西版理第21题】已知函数21()kx f x x c+=+(0c >且1c ≠,k ∈R )恰有一个极大值点和一个极小值点,其中一个是x c =-. (Ⅰ)求函数()f x 的另一个极值点;(Ⅱ)求函数()f x 的极大值M 和极小值m ,并求1M m -≥时k 的取值范围.【答案】(Ⅰ)1x =;(Ⅱ)(2)[2)-∞-+∞,,.(ii )当2k <-时,()f x 在()c -∞-,和(1)+∞,内是增函数,在(1)c -,内是减函数.考点:导数的应用,拔高题.3. 【2010高考陕西版理第21题】已知函数f (x ),g (x )=a ln x ,a ∈R .(1)若曲线y =f (x )与曲线y =g (x )相交,且在交点处有共同的切线,求a 的值和该切线方程;(2)设函数h (x )=f (x )-g (x ),当h (x )存在最小值时,求其最小值φ(a )的解析式; (3)对(2)中的φ(a )和任意的a >0,b >0,证明:φ′()()2()()2a b a b abx a bϕϕϕ+'+'≤≤'+. 【答案】(Ⅰ)a=2e ,()212y e x e e-=- ;(Ⅱ)()h x 的最小值 ()a ϕ的解析式为 ()2(1ln 2)(0).a a a a ϕ=->(Ⅲ)详见解析.当x >4a 2时,h ′(x )>0,h (x )在(4a 2,+∞)上递增.考点:导数的应用,拔高题.4. 【2011高考陕西版理第21题】设函数()f x 定义在(0,)+∞上,(1)0f =,导函数1()f x x'=,()()()g x f x f x '=+.(1)求()g x 的单调区间和最小值; (2)讨论()g x 与1()g x的大小关系; (3)是否存在00x >,使得01|()()|g x g x x-<对任意0x >成立?若存在,求出0x 的取值范围;若不存在,请说明理由.【答案】(1)(0,1) 是()g x 的单调减区间, (1,)+∞ 是()g x 的单调增区间,最小值为(1)1g =;(2)当01x <<时 , 1()()g x g x > 当1x > 时, 1()()g x g x<; (3)满足条件的0x 不存在,证明详见解析.【解析】试题分析:(Ⅰ)由题设易知()ln f x x = ,1()ln g x x x =+21()x g x x-'∴=,令()0g x '= 得1x =,当01|()()|g x g x x-<对任意0x > 成立。

2015届高考数学文科一轮总复习资源包第3篇导数及其应用-002

2015届高考数学文科一轮总复习资源包第3篇导数及其应用-002

诊断基础知识
突破高频考点
培养解题能力
考点二 利用导数研究函数的极值 【例2】 设f(x)=aln x+21x+32x+1,其中a∈R,曲线y=f(x)在点
(1,f(1))处的切线垂直于y轴. (1)求a的值; (2)求函数f(x)的极值. 审题路线 (1)f′(1)=0⇒求a的值. (2)确定函数定义域⇒对f(x)求导,并求f′(x)=0⇒判断根的 左、右f′(x)的符号⇒确定极值.
突破高频考点
培养解题能力
(2)求可导函数极值的步骤
①求f′(x);
②求方程f′(x)=0的根;
③检查f′(x)在方程f′(x)=0的根左右值的符号.如果左正右负,
那么f(x)在这个根处取得
极大;值如果左负右正,那么f(x)
在这个根处取得极小值,如果左右两侧符号一样,那么这个
根不是极值点.
诊断基础知识
0 - 0+
极大 值
极小
-9

+c
诊断基础知识
突破高频考点
培养解题能力
由表知f(x)在x=-2处取得极大值,f(-2)=16+c; 在x=2处取得极小值.f(2)=c-16. 则16+c=28,得c=12, 故f(x)在[-3,3]上的最小值为f(2)=-4.
诊断基础知识
突破高频考点
培养解题能力
规律方法 在解决类似的问题时,首先要注意区分函数最值与 极值的区别.求解函数的最值时,要先求函数y=f(x)在[a,b] 内所有使f′(x)=0的点,再计算函数y=f(x)在区间内所有使f′(x) =0的点和区间端点处的函数值,最后比较即得.
诊断基础知识
突破高频考点
培养解题能力
(2)由(1)知f(x)=x3-12x+c, f′(x)=3x2-12=3(x-2)(x+2). 令f′(x)=0,得x=-2或2. 当x变化时,f(x),f′(x)的变化情况如下表:

高考文科导数考点汇总完整版

高考文科导数考点汇总完整版

高考文科导数考点汇总 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】高考导数文科考点总结一、考试内容导数的概念,导数的几何意义,几种常见函数的导数;两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。

导数概念与运算知识清单1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值x y∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。

如果当0→∆x 时,x y∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

即f (x 0)=0lim→∆x x y ∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。

说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。

如果x y∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。

(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳):(1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0);(2)求平均变化率x y ∆∆=x x f x x f ∆-∆+)()(00;(3)取极限,得导数f’(x 0)=x yx ∆∆→∆0lim。

2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。

也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。

2015最新高考文科数学真题专题分类汇编03导数

2015最新高考文科数学真题专题分类汇编03导数

( 2)已知函数 f ( x) 在 [ - 1,1] 上存在零点, 0 b 2a 1 ,求 b 的取值范围 .
17.【 2015 高考重庆,文 19】已知函数 f (x)
ax3
x2 ( a
R )在 x=
4
处取得极值 .
3
(Ⅰ ) 确定 a 的值,
(Ⅱ ) 若 g( x) f (x)ex ,讨论的单调性 .
( I )讨论 f x 的导函数 f x 的零点的个数;
( II )证明:当 a 0 时 f x
2 2a a ln .
a
16.【 2015 高考浙江,文 20】(本题满分 15 分)设函数 f (x) x2 ax b,( a, b R) .
( 1)当 b = a2 +1时,求函数 f ( x) 在 [ - 1,1] 上的最小值 g(a) 的表达式; 4
( I )求 f x 的单调区间和极值;
( II ) 证明:若 f x 存 在零点,则 f x 在区间 1, e 上仅有一个零点.
( x 1)2
9.【 2015 高考福建,文 22】已知函数 f ( x) ln x

2
(Ⅰ ) 求函数 f x 的单调递增区间;
(Ⅱ)证明:当 x 1 时, f x x 1;
则a
.
5.【2015 高考天津,文 11】已知函数 f x axln x, x 0,
,其中 a 为实数 , f x 为 f x 的导函数 ,
若 f 1 3 ,则 a 的值为

6. 【 2015 高考陕西,文 15】函数 y xex 在其极值点处的切线方程为 ____________.
ax
7.【 2015 高考安徽,文 21】已知函数 f ( x)

高考文科导数考点汇总定稿版

高考文科导数考点汇总定稿版

高考文科导数考点汇总 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】高考导数文科考点总结一、考试内容导数的概念,导数的几何意义,几种常见函数的导数;两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。

导数概念与运算知识清单1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值x y∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。

如果当0→∆x 时,x y∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

即f (x 0)=0lim→∆x x y ∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。

说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。

如果x y∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。

(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳):(1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0);(2)求平均变化率x y ∆∆=x x f x x f ∆-∆+)()(00;(3)取极限,得导数f’(x 0)=x yx ∆∆→∆0lim。

2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。

也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。

2015年高考理数导数大全免费

2015年高考理数导数大全免费

15 高考导数大全1.(安徽)(2)下列函数中,既是偶函数又存在零点的是 (A )y cos x = (B )y sin x = (C )y n l x = (D )21y x =+ 答案:A2.(安徽)9、函数()()2ax bf x x c +=+的图象如图所示,则下列结论成立的是( )(A )0a >,0b >,0c < (B )0a <,0b >,0c >(C )0a <,0b >,0c < (D )0a <,0b <,0c <3.(安徽) 15. 设30x ax b ++=,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是 (写出所有正确条件的编号)(1)3,3a b =-=-;(2)3,2a b =-=;(3)3,2a b =->;(4)0,2a b ==;(5)1,2a b ==.4.(北京)7.如图,函数()f x 的图像为折线ACB ,则不等式()()2log 1f x x +≥的解集是 A .{}|10x x -<≤ B .{}|11x x -≤≤ C .{}|11x x -<≤ D .{}|12x x -<≤ 答案C5.(北京)8.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油 答案D6.(福建)2、下列函数为奇函数的是 A.y x = B.sin y x = C.cos y x = D.x x y e e -=- 答案:D7.(福建) 10、若定义在R 上的函数()f x 满足()01f =- ,其导函数()f x ' 满足()1f x k '>> ,则下列结论中一定错误的是A.11f k k ⎛⎫< ⎪⎝⎭B.111f k k ⎛⎫> ⎪-⎝⎭C.1111f k k ⎛⎫< ⎪--⎝⎭D. 111k f k k ⎛⎫> ⎪--⎝⎭ 答案:C8.(新课标1)12.设函数f (x )=e x (2x -1)-ax +a ,其中a 1,若存在唯一的 整数x 0,使得f (x 0)0,则a 的取值范围是( )A .[32e -,1) B . [33,24e -) C . [33,24e ) D . [32e,1) 答案:D9.(新课标1)(13)若函数f (x )=xln (x +2a x +)为偶函数,则a = 答案:110.(新课标2)(5)设函数f (x )=则f (-2)+f()=(A )3 (B )6 (C )9 (D )1211.(新课标2)(12)设函数f ’(x)是奇函数f(x)(xR)的导函数,f(-1)=0,当x>0时,x f ’(x)- f(x)<0,则使得f(x)>0成立的x 的取值范围是( ) (A )(,-1)∪(0,1) (B )(,0)∪(1,+)(C )(,-1)∪(-1,0) (D )(,1)∪(1,+)12.(广东)3、下列函数中,既不是奇函数,也不是偶函数的是( ) A .21y x =+.1y x x=+ C .122x x y =+D .xy x e =+ 13.(湖北)6.已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,则A .sgn[()]sgn g x x =B .sgn[()]sgn g x x =-C .sgn[()]sgn[()]g x f x =D .sgn[()]sgn[()]g x f x =-答案:B14.(湖北)12.函数2π()4cos cos()2sin |ln(1)|22x f x x x x =---+的零点个数为 .答案:215.(湖南)5.设函数()ln(1)ln(1)f x x x =+--,则()f x 是( ) A.奇函数,且在(0,1)上是增函数 B. 奇函数,且在(0,1)上是减函数 C. 偶函数,且在(0,1)上是增函数 D. 偶函数,且在(0,1)上是减函数 答案:A16.(湖南)15.已知32,(),x x af x x x a⎧≤=⎨>⎩,若存在实数b ,使函数()()g x f x b =-有两个零点,则a 的取值范围是 . 答案:(,0-∞)⋃(1,+∞)17.(江苏)13.已知函数|ln |)(x x f =,⎩⎨⎧>--≤<=1,2|4|10,0)(2x x x x g ,则方程1|)()(|=+x g x f 实根的个数为 。

2015届高考数学(文科)一轮总复习导数及其应用

2015届高考数学(文科)一轮总复习导数及其应用

2015 届高考数学(文科)一轮总复习导数及其应用第三篇导数及其应用第 1 讲导数的观点及运算基础稳固题组( 建议用时: 40 分钟 )一、填空题1.(2014 ?深圳中学模拟 ) 曲线 y =x3 在原点处的切线方程为 ________.分析∵ y′= 3x2 ,∴= y′ |x = 0= 0,∴曲线 y= x3 在原点处的切线方程为y= 0.答案y= 02 .已知 f(x)=xlnx,若f′ (x0)=2,则x0=________.分析f(x)的定义域为(0,+∞ ),f′ (x)=lnx+1,由 f ′ (x0) = 2,即 lnx0 + 1= 2,解得 x0= e.答案 e3 .(2014 ?辽宁五校联考 ) 曲线 y= 3lnx +x+ 2 在点 P0 处的切线方程为 4x- y- 1= 0,则点 P0 的坐标是 ________.分析由题意知 y′= 3x+1= 4,解得 x= 1,此时 4× 1 -y- 1=0,解得 y= 3,∴点 P0 的坐标是 (1,3) .答案 (1,3)4 .(2014 ?烟台期末 ) 设函数 f(x)=xsinx+cosx的图象在点 (t ,f(t))处切线的斜率为,则函数=g(t)的部分图象为 ________.分析函数 f(x)的导函数为 f ′ (x) =(xsinx+cosx)′=xcosx ,即= g(t) = tcost ,则函数 g(t) 为奇函数,图象对于原点对称,清除①,③ . 当 0< t <π 2 时, g(t) > 0,因此清除④,选② .答案②5.曲线 y= sinxsinx + cosx - 12 在点π 4, 0 处的切线的斜率为 ________.分析y′= cos2x + sin2x sinx + cosx2= 11+sin2x ,故所求切线斜率==12.答案126.(2013 ?广东卷 ) 若曲线 y= ax2 - lnx 在点 (1 ,a) 处的切线平行于 x 轴,则 a= ________.分析y′= 2ax- 1x ,∴ y′ |x = 1=2a- 1= 0,∴a=12.7 答案12.已知 f(x)=x2+3xf′ (2),则f′ (2)=________. 分析由题意得 f ′ (x) = 2x+ 3f ′ (2) ,∴f ′ (2) = 2× 2+ 3f ′(2) ,∴ f ′ (2) =- 2.答案- 28 .(2013 ?江西卷 ) 若曲线 y=xα+ 1( α∈ R)在点 (1,2) 处的切线经过坐标原点,则α= ________.分析y′=α xα- 1,∴斜率= y ′ |x = 1=α= 2- 01-0= 2,∴α= 2.答案 2二、解答题9.求以下函数的导数:(1)y=ex?lnx;(2)y=xx2+1x+1x3;(3)y=x-sinx2cosx2;(4)y=(x+1)1x-1.解(1)y ′= (ex ?lnx) ′= exlnx + ex ?1x = exlnx +1x.(2)∵ y= x3 +1+ 1x2,∴ y ′= 3x2- 2x3.(3)先使用三角公式进行化简,得y =x- sinx2cosx2 = x- 12sinx ,∴ y′=x- 12sinx ′= x′-12(sinx) ′= 1- 12cosx.(4)先化简, y = x?1x-x+ 1x - 1=,∴y′= n=- 12x1+ 1x.10 .(2014 ?南通二模 )f(x)=ax-1x,g(x)=lnx,x>0,a∈ R 是常数.(1)求曲线 y = g(x) 在点 P(1 , g(1)) 处的切线 l.(2)能否存在常数 a,使 l 也是曲线 y= f(x) 的一条切线.若存在,求 a 的值;若不存在,简要说明原因.解 (1) 由题意知, g(1) = 0,又 g′(x) = 1x, g′ (1)=1,因此直线 l 的方程为 y= x- 1.(2)设 y=f(x) 在 x= x0 处的切线为 l ,则有ax0 - 1x0= x0- 1, a+1x20 = 1,解得 x0= 2,a= 34,此时 f(2)=1,即当 a=34 时, l 是曲线 y= f(x)在点Q(2,1)的切线.能力提高题组( 建议用时: 25 分钟 )一、填空题1.(2014 ?盐城一模 ) 设 P 为曲线 c :y= x2+ 2x+ 3 上的点,且曲线 c 在点 P 处切线倾斜角的取值范围是0,π 4,则点 P 横坐标的取值范围是________.分析设 P(x0 , y0) ,倾斜角为α,y′= 2x+2,则=tan α= 2x0+ 2∈ [0,1],解得x0∈-1,-12.答案- 1,- 122 .设f0(x)=sinx,f1(x)=f0′ (x),f2(x)=f1′(x) ,, fn(x)=f′ n-1(x),n∈ N*,则f2013(x)=________.分析f1(x) = f0 ′ (x) = cosx , f2(x) = f1 ′ (x) =-4 / 6sinx ,f3(x) =f2 ′(x) =-cosx ,f4(x) =f3 ′(x) =sinx ,,由规律知,这一系列函数式值的周期为4,故f2013(x)f1(x) = cosx.答案cosx3 .(2014 ?武汉中学月考) 已知曲线f(x) = xn+ 1(n ∈ N*)与直线 x= 1 交于点轴交点的横坐标为P,设曲线y= f(x)xn ,则log2013x1在点 P 处的切线与x+ log2013x2 ++log2013x2012 的值为________.分析 f ′ (x) = (n + 1)xn ,=f ′(1) = n+1,点 P(1,1) 处的切线方程为y- 1= (n + 1)(x - 1) ,令 y= 0,得 x = 1- 1n+ 1= nn+1,即 xn= nn+ 1,∴ x1 ?x2 ? ? x2012 = 12 × 23 × 34 × × 20112012 ×20122013 = 12013 ,则log2013x1+log2013x2++log2013x2012=log2013(x1x2x2012) =- 1.答案- 1二、解答题4 .设函数处的切线方程为f(x)=ax-bx,曲线7x- 4y- 12= 0.y= f(x) 在点(2 ,f(2))(1)求 f(x) 的分析式;(2)证明:曲线 y= f(x) 上任一点处的切线与直线x= 0和直线 y= x 所围成的三角形面积为定值,并求此定值.(1)解方程 7x-4y- 12=0 可化为 y= 74x-3,当 x= 2 时, y= 12. 又 f ′(x) = a+ bx2,于是 2a- b2=12, a+b4= 74,解得 a=1, b= 3. 故 f(x)=x-3x.(2)证明设P(x0,y0)为曲线上任一点,由 f ′ (x) = 1+ 3x2 知曲线在点 P(x0 ,y0) 处的切线方程为 y- y0= 1+ 3x20(x - x0) ,即 y- (x0 - 3x0) = 1+3x20(x - x0) .令 x=0,得 y=- 6x0,进而得切线与直线x= 0 交点坐标为0,- 6x0.令 y= x,得 y= x= 2x0,进而得切线与直线 y= x 的交点坐标为 (2x0,2x0) .因此点 P(x0 ,y0) 处的切线与直线x=0,y=x 所围成的三角形面积为12- 6x0|2x0| = 6.故曲线y= f(x) 上任一点处的切线与直线x= 0 和直线y = x 所围成的三角形面积为定值,此定值为 6.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015导数分类汇编
2015期中
1.(海淀期中)已知函数13
1)(23+-=ax x x f . (Ⅰ)若函数)(x f 的图象关于点(0,1)对称,直接写出a 的值;
(Ⅱ)求函数)(x f 的单调递减区间;
(Ⅲ)若()1f x ≥在区间),3[+∞上恒成立,求a 的最大值.
2. (朝阳期中)已知函数2()21f x x ax a =--+,a ∈R .
(Ⅰ)若2a =,试求函数()f x y x
=(0x >)的最小值; (Ⅱ)对于任意的[0,2]x ∈,不等式()f x a ≤成立,试求a 的取值范围.
3. (朝阳期中)已知函数()()ln f x x a x =-,a ÎR .
(Ⅰ)若0a =,对于任意的(0,1)x Î,求证:1()0e f x -?;
(Ⅱ)若函数()f x 在其定义域内不是单调函数,求实数a 的取值范围.
2015年期末
1(海淀期末)已知函数e ()x
f x x
=. (Ⅰ)若曲线()y f x =在点00(,())x f x 处的切线方程为0ax y -=,求0x 的值; (Ⅱ)当0x >时,求证:()f x x >;
(Ⅲ)问集合{()0}x f x bx ∈-=R (b ∈R 且为常数)的元素有多少个?(只需写出结论)
2.(西城期末)
对于函数(),()f x g x ,如果它们的图象有公共点P ,且在点P 处的切线相同,则称函数()f x 和()g x 在点P 处相切,称点P 为这两个函数的切点.
设函数2()(0)f x ax bx a =-≠,()ln g x x =.
(Ⅰ)当1a =-,0b =时, 判断函数()f x 和()g x 是否相切?并说明理由; (Ⅱ)已知a b =,0a >,且函数()f x 和()g x 相切,求切点P 的坐标;
(Ⅲ)设0a >,点P 的坐标为1(,1)e
-,问是否存在符合条件的函数()f x 和()g x ,使得它们在点P 处相切?若点P 的坐标为2(e ,2)呢?(结论不要求证明)
3.(东城期末)
已知函数2()ln f x a x bx =-,a ,b ∈R . (Ⅰ)若()f x 在1x =处与直线12
y =-相切,求a ,b 的值; (Ⅱ)在(Ⅰ)的条件下,求()f x 在1
[,e]e 上的最大值;
(Ⅲ)若不等式()f x x ≥对所有的(,0]b ∈-∞,2(e,e ]x ∈都成立,求a 的取值范围.
4. (朝阳期末)
已知函数()e ln x f x a x =-,a ∈R .
(I )若1x =是()f x 的极值点,求a 的值:
(Ⅱ)当e a =时,求证:()e f x ≥.
5.(丰台期末)
已知函数1()1e
x f x x =+-. (Ⅰ)求函数()f x 的极小值;
(Ⅱ)过点(0,)B t 能否存在曲线()y f x =的切线,请说明理由.
6. (石景山期末)已知函数32()(,)f x ax x bx a b R =-+∈,()f x '为其导函数,且3x =时()f x 有极小值9-.
(Ⅰ)求()f x 的单调递减区间;
(Ⅱ)若不等式()(ln 1)64f x k x x x '>---(为正整数)对任意正实数恒成立,求的最大值.(解答过程可参考使用以下数据:ln7 1.95,
ln8 2.08≈≈)
k x k
7. (昌平期末)
已知函数() 1.x x f x e xe =--
(I )求函数()f x 的最大值; (Ⅱ)设()(),f x g x x =
其中1,0x x >-≠且,证明: ()g x <1.
8.(通州期末)
已知函数()21ln 2
f x x x ax =--()R a ∈,在1x =时取得极值. (Ⅰ)求()f x 的单调区间;
(Ⅱ)若方程()32
f x x b =-+在区间[]1,3上有两个不等实数根,求实数b 取值范围. (Ⅲ)若函数()()2h x f x x =-,利用()h x 的图象性质,
证明:()()2222223(12)ln 12N .n n n *+++>⋅⋅⋅∈
2015年一模
1.(海淀一模20)已知函数1()ln (0)f x a x a x =+
≠. (Ⅰ)求函数()f x 的单调区间;
(Ⅱ)若存在两条直线1y ax b =+,212()y ax b b b =+≠都是曲线()y f x =的切线,求实数a 的取值范围; (Ⅲ)若{}
()0(0,1)x f x ≤⊆,求实数a 的取值范围.
2.(西城一模20)
设*
n ∈N ,函数ln ()n x f x x =,函数e ()x
n g x x =,(0,)x ∈+∞. (Ⅰ)判断函数()f x 在区间(0,)+∞上是否为单调函数,并说明理由;
(Ⅱ)若当1n =时,对任意的12,(0,)x x ∈+∞, 都有12()()g x f x t ≤≤成立,求实数t 的取值范围;
(Ⅲ)当2n >时,若存在直线l y t =:(t ∈R )
,使得曲线()y f x =与曲线()y g x =分别位于直线l 的两侧,写出n 的所有可能取值. (只需写出结论)
3.(东城一模18) 已知1x =是函数()2ln b f x x x x
=+
+的一个极值点. (Ⅰ)求实数b 的值;
(Ⅱ)求()f x 的单调递减区间; (Ⅲ)设函数3()()g x f x x
=-
,试问过点2(,5)可作多少条直线与曲线()y g x =相切?请说明理由.
4.(朝阳一模20)
已知函数()()e x
a f x x x =+,a ∈R .
(Ⅰ)当0a =时,求曲线()y f x =在点(1,(1))f 处的切线方程;
(Ⅱ)当1a =-时,求证:()f x 在(0,)+∞上为增函数;
(Ⅲ)若()f x 在区间(0,1)上有且只有一个极值点,求a 的取值范围.
5.(丰台一模20) 已知函数1()ln ()f x a x a R x
=+∈. (Ⅰ)当2a =时,求曲线()y f x =在点(1,(1))f 处的切线方程;
(Ⅱ)如果函数()()2g x f x x =-在(0,)+∞上单调递减,求a 的取值范围; (Ⅲ)当0a >时,讨论函数()y f x =零点的个数.
6.(石景山一模20) 已知函数21()ln 22
f x x ax x =--. (Ⅰ)若函数()f x 在定义域内单调递增,求实数a 的取值范围; (Ⅱ)若12a =-,且关于x 的方程1()2
f x x b =-+在[1,4]上恰有两个不等的实根,求实数b 的取值范围;
(Ⅲ)设各项为正数的数列{}n a 满足111,ln 2(*)n n n a a a a n N +==++∈, 求证:21n
n a ≤-.
7.(房山一模19)
已知函数()ln 1f x x ax =-+,a 是常数,∈a R .
(Ⅰ)求曲线)(x f y =在点(1,(1))P f 处的切线l 的方程;
(Ⅱ)求函数()f x 的单调区间;
(III )证明:函数()f x )1(≠x 的图象在直线l 的下方.
8.(顺义一模20)
已知函数()22ln f x a x ax x =+-.
(I)当0a >时,求函数()f x 的单调区间;
(II)设()()22g x a x f x =-,且函数()g x 在点1x =处的切线为l ,直线//l l ',且l '在y 轴上的截距为1,求证:无论a 取任何实数,函数()g x 的图像恒在直线l '的下方;
(III)已知点()()()()
001,1,,A g Q x g x ,且当01x >时,直线QA 的斜率恒小于2,求实数a 的取值范围.。

相关文档
最新文档