全国卷历年高考函数与导数真题归类分析(含答案)
历年高考理科数学真题汇编+答案解析(2):函数与导数(2017-2020年)

x
1 (0,1] ,则
f
(x)
2
f
(x
1)
2( x
1)( x
2)
,
f
(x) [
1 ,0] 2
∴当 x (2,3] 时, x 2 (0,1],则 f (x) 22 f (x 2) 4(x 2)(x 3) , f (x) [ 1,0]
函数 f (x) 的图像如图所示.
对任意 x (, m] ,都有 f (x) 8 ,因此 m (2,3] 9
2
2
当 x ( 1 ,1) 时, f (x) 0 , f (x) 在 (, 1) 单调递增.
22
2
当 x (1 , ) 时, f (x) 0 , f (x) 在 (, 1) 单调递减.
2
2
【答案】D
4.(2020 全国 III 卷理 12)已知 55 84 ,134 85 ,设 a log5 3, b log8 5 , c log13 8 ,则
的切线方程为
A. y 2x
B. y x
C. y 2x
D. y x
【解析】∵ f(x)为奇函数,∴ f x f x ,∴ a 1,故 f x x3 x ,因此 f x 3x 2 1 .
故曲线 y f x 在点 (0,0) 处的切线斜率 k f (0) 1 ,∴切线方程为 y x .
当直线 y x a 的截距 a 1 ,即 a 1 时,两个函数的图象有2个交点,即函数g(x)存在2个零
点,故a的取值范围是[–1,+∞) .
【答案】C 【考点】必修 1 指数函数、对数函数
16.(2018 全国 II 卷理 3)函数
f
x
ex
ex x2
函数与导数例高考题汇编(含答案)

函数与导数高考题1.(安徽理3)设f(x)是定义在R 上的奇函数,当x≤0时,f(x)=2x'-x,则f()=(A)-3 (B)- 1 (C)1 (D)3【答案】A【命题意图】本题考查函数的奇偶性,考查函数值的求法 .属容易题.【解析】f()= - f( - 1)= - 42( - 1)²- ( - 1)]= - 3 .故选A.2 . (安徽理10)函数f (x )=ax ”g 1- x )“在区 间〔0,1〕上的图像如图所示,则m ,n 的值可 能 是(A)m=1,n=1(B) m=1,n=2(C) m=2,n=1(D) m=3,n=1【答案】B 【命题意图】本题考查导数在研究 函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【 解 析 】 代 入 验 证 , 当m = 1 , n = 2 , f ( x ) = a x g ( 1 - x ) ² = n ( x ³ - 2 x ² + x ) ,则f ' ( x ) = a ( 3 x ² - 4 x + 1 ) , 由 ,结合图像可知函数应在递增,在 递减,即在, 知 a 存 在 . 故 选 B .3.(安徽文5)若点(a,b)在y=lgx 图像上,a≠1,则下列点也在此图像上的是(A)(,b) (B)(10a,1 b) (C)(,b+1) (D)(a2,2b)【答案】D 【命题意图】本题考查对数函数的基本运算,考查对数函数的图像与对应点的关系 .【 解 析 】 由 题 意b = 1 g a , 2 b = 2 1 l g a = 1 g a ² , 即( a ² , 2 b )也 在 函 数 y = l g x 图 像 上 .4 . (安徽文10) 函数f(x )=ax ”g (1 - . x )² 在区间(0,1)上的 图像如图所示,则n 可能是 (A)1 (B) 2取得最大值,由f'(x)=a(3x²-4x+1)=0可知,(C) 3 (D)4【答案】A【命题意图】本题考查导数在研究函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【解析】代入验证,当7=1时,f(x)=axg(1-x)²=a(x³-2x²+x),则f(x)=a(3r²-4x+1)由f ( x ) = a ( 3 x ² 4 x + 1 ) = 0 可知,,结合图像可知函数应在递增,在递减,即在取得最大值,由, 知a 存在. 故选A .7 . (福建理5) 等于A.1B.e- 1C. CD.e+1【答案】C8 . (福建理9 )对于函数f ( x ) = a s i n x + b x + c (其中,a , b ∈R , c ∈Z ) ,选取a , b , C 的一组值计算f ( )和f ( - 1 )所得出的正确结果一定不可能是A . 4和6B . 3和1C . 2和4D . 1和2【答案】D9 . ( 福建理1 0 ) 已知函数f ( x ) = e⁴+ x , 对于曲线y = f ( x ) 上横坐标成等差数列的三个点A , B , c , 给出以下判断:①△ABC 一定是钝角三角形②△ABC可能是直角三角形③△ABC可能是等腰三角形④△ABC不可能是等腰三角形其中,正确的判断是A.①③B.①④C.②③D.②④【答案】B10.(福建文6)若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m的取值范围是A.(- 1,1)B.(-2,2)C.(-o,-2)U(2,+o)D.(-o,- 1)U(1,+c)【答案】C11. (福建文8)已知函数 ,若f(a)+f(1)=0,则实数a的值等于A. 3B. 1C. 1D. 3【答案】A12.(福建文10)若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于A.2B.3C. 6D. 9【答案】D13.(广东理4)设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是A . f(x)+1g(x)是偶函数B . f(x) - 1g(x)是奇函数c.if(x)\+g(x)是偶函数 D . i f ( x ) - g ( x )是奇函数【答案】A【解析】因为g(x)是R 上的奇函数,所以lg(x)是R 上的偶函数,从而f(x)+1g(x)是偶函数,故选A.14 . (广东文4)函 的定义域是 ( )A.(-~,- 1)B.(1,+~) c.(- 1,1)U(1,+oo) D.(-0,+oo)【答案】C16.(湖北理6)已知定义在R 上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a¹-a ⁴+2(a>0,且a≠1),若g(2)=a,则f(2)=A.2B.C.D. a² 【答案】B【解析】由条件f(2)+g(2)=a²-a²+2,f(-2)+g(-2)=a²-a²+2, 即-f(2)+g(2)=a²-a²+2, 由此解得g(2)=2,f(2)=a²-a-所 以 a = 2 ,, 所 以 选 B18 . (湖南文7)曲线主点处的切线的斜率为( )A. B. 2 C. D. 【答案】B【解析】19.(湖南文8)已知函数f(x)=e¹-1,g(x)=-x²+4x -3.若有f(a)=g(b),则b 的取值范围为A.[2-√2,2+√2]B.(2-√2.2+√2)c.[1,3] p.(1,3)【答案】B【解析】由题可知f(x)=e ⁴- 1>- 1,g(x)=-x²+4x-3=-(x-2)²+1≤1,若有f(a)=g(b),则g(b) ∈(- 1,1), 即-b²+4b-3>- 1,解得2-√Z<b<2+√2., 所 以,y=020 . (湖南理6)由直线 与曲线y=COSX 所围成的封闭图形的面积为( )A.2B.1C.D.√3 【答案】D【解析】由定积分知识可得, 故 选 D 。
10.函数、导数及应用(定积分)——2011—2017年新课标全国卷理科数学分类真题解析(含答案)

3y-5z=3log3k-5log5k= -
<0,∴3y<5z;
第 1页 共 30页
2017 课标Ⅱ卷(全国甲卷)
◎ 第 2页 共 30页
……○…………内…………○…………装…………○…………订…………○…………线…………○……… ※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
A.-1
B.-2e-3
C.5e-3
D.1
【答案】A
由 f '(x0)=0 得 ln x0=2(x0-1),故 f(x0)=x0(1-x0). 由 x0∈(0, )得 f(x0)< . 因为 x=x0 是 f(x)在(0,1)的最大值点,由 e-1∈(0,1),f '(e-1)≠0 得 f(x0)>f(e-1)=e-2.
……○…………外…………○…………装…………○…………订…………○…………线…………○………
10-2
新课标卷理科数学近八年高考分类考点真题分析 函数、导数及应用(定积分)
11.若 x=-2 是函数 f(x)=(x2+ax-1)ex-1 的极值点,则 f(x)的极小值为
因为 f '(x)=h(x),所以 x=x0 是 f(x)的唯一极大值点.
【解析】本题主要考查导数的运算以及利用导数判断函数的单调性、求函数的极值, 所以 e-2<f(x0)<2-2.
意在考查考生的运算求解能力及方程思想.
【解析】本题主要考查导数的运算,利用导数判断函数的单调性,求极值点、最值点,
因为 f(x)=(x2+ax-1)ex-1,所以 f '(x)=(2x+a)ex-1+(x2+ax-1)ex-1=[x2+(a+2)x+a-1]ex-1.因为 零点存在性定理,意在考查考生的运算求解能力、推理论证能力、函数与方程思想
全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案)(2015年-2018年共11套) 函数与导数小题(共23小题)一、函数奇偶性与周期性1.(2015年1卷13)若函数f (x )=2ln()x x a x ++为偶函数,则a=【解析】由题知2ln()y x a x =++是奇函数,所以22ln()ln()x a x x a x +++-++ =22ln()ln 0a x x a +-==,解得a =1.考点:函数的奇偶性2.(2018年2卷11)已知是定义域为的奇函数,满足.若,则A.B. 0C. 2D. 50解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.3.(2016年2卷12)已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1x y x+=与()y f x =图像的交点为()11x y ,,()22x y ,,⋯,()m m x y ,,则()1mi i i x y =+=∑( )(A )0 (B )m (C )2m (D )4m【解析】由()()2f x f x =-得()f x 关于()01,对称,而111x y x x+==+也关于()01,对称,∴对于每一组对称点'0i i x x += '=2i i y y +,∴()111022mmmi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .二、函数、方程与不等式4.(2015年2卷5)设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( ) (A )3 (B )6 (C )9 (D )12【解析】由已知得2(2)1log 43f -=+=,又2log 121>, 所以22log 121log 62(log 12)226f -===,故,2(2)(log 12)9f f -+=.5.(2018年1卷9)已知函数.若g (x )存在2个零点,则a 的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞) 解:画出函数的图像,在y 轴右侧的去掉,画出直线,之后上下移动,可以发现当直线过点A 时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.6.(2017年3卷15)设函数1,0,()2,0,+⎧=⎨>⎩xx x f x x ≤则满足1()()12f x f x +->的x 的取值范围是________.【解析】()1,02 ,0+⎧=⎨>⎩x x x f x x ≤,()112f x f x ⎛⎫+-> ⎪⎝⎭,即()112f x f x ⎛⎫->- ⎪⎝⎭由图象变换可画出12y f x ⎛⎫=- ⎪⎝⎭与()1y f x =-的图象如下:12-1211(,)44-1()2y f x =-1()y f x =-yx由图可知,满足()112f x f x ⎛⎫->- ⎪⎝⎭的解为1,4⎛⎫-+∞ ⎪⎝⎭.7.(2017年3卷11)已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =()A .1-2B .13C .12D .1【解析】由条件,211()2(e e )x x f x x x a --+=-++,得:221(2)1211211(2)(2)2(2)(e e )4442(e e )2(e e )x x x x x x f x x x a x x x a x x a ----+----+-=---++=-+-+++=-++∴(2)()f x f x -=,即1x =为()f x 的对称轴,由题意,()f x 有唯一零点,∴()f x 的零点只能为1x =,即21111(1)121(e e )0f a --+=-⋅++=,解得12a =.三、函数单调性与最值8.(2017年1卷5)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]- B .[1,1]- C .[0,4] D .[1,3] 【解析】:()()()()12112112113f x f f x f x x -≤-≤⇒≤-≤-⇒-≤-≤⇒≤≤故而选D 。
全国卷历年高考函数与导数解答题真题归类分析(含答案)

全国卷历年高考函数与导数解答题真题归类分析(含答案)(2015年-2019年,14套)一、函数单调性与最值问题1.(2019年3卷20题)已知函数32()2f x x ax b =-+. (1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由. 【解析】(1)对32()2f x x ax b =-+求导得2'()626()3a f x x ax x x =-=-.所以有当0a <时,(,)3a-¥区间上单调递增,(,0)3a 区间上单调递减,(0,)+¥区间上单调递增;当0a =时,(,)-¥+¥区间上单调递增;当0a >时,(,0)-¥区间上单调递增,(0,)3a 区间上单调递减,(,)3a+¥区间上单调递增. (2)若()f x 在区间[0,1]有最大值1和最小值-1,所以,若0a <,(,)3a-¥区间上单调递增,(,0)3a 区间上单调递减,(0,)+¥区间上单调递增;此时在区间[0,1]上单调递增,所以(0)1f =-,(1)1f =代入解得1b =-,0a =,与0a <矛盾,所以0a <不成立. 若0a =,(,)-¥+¥区间上单调递增;在区间[0,1].所以(0)1f =-,(1)1f =代入解得1a b =ìí=-î. 若02a <£,(,0)-¥区间上单调递增,(0,)3a 区间上单调递减,(,)3a +¥区间上单调递增. 即()f x 在区间(0,)3a 单调递减,在区间(,1)3a 单调递增,所以区间[0,1]上最小值为()3af 而(0),(1)2(0)f b f a b f ==-+³,故所以区间[0,1]上最大值为(1)f . 即322()()13321a a ab a b ì-+=-ïíï-+=î相减得32227a a -+=,即(33)(33)0a a a -+=,又因为02a <£,所以无解. 若23a <£,(,0)-¥区间上单调递增,(0,)3a 区间上单调递减,(,)3a +¥区间上单调递增. 即()f x 在区间(0,)3a 单调递减,在区间(,1)3a 单调递增,所以区间[0,1]上最小值为()3af而(0),(1)2(0)f b f a b f ==-+£,故所以区间[0,1]上最大值为(0)f . 即322()()1331a a a b b ì-+=-ïíï=î相减得3227a=,解得332x =,又因为23a <£,所以无解. 若3a >,(,0)-¥区间上单调递增,(0,)3a区间上单调递减,(,)3a+¥区间上单调递增. 所以有()f x 区间[0,1]上单调递减,所以区间[0,1]上最大值为(0)f ,最小值为(1)f即121b a b =ìí-+=-î解得41a b =ìí=î.综上得01a b =ìí=-î或41a b =ìí=î. 【小结】这是一道常规的利用函数导研究函数单调性、极值、【小结】这是一道常规的利用函数导研究函数单调性、极值、最值问题,最值问题,最值问题,此类问题一般住现此类问题一般住现在第一问,在第一问,但但2019年高考3卷把该题放到第20题位置,难度也相应降低,因此,该题的第二问仍然这类问题,只不过多出一个参数。
2024全国卷真题分类汇编(教师版)(函数与导数)

2024全国卷真题分类汇编(教师版)-函数与导数1.(2024年新课标全国Ⅰ卷)已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=()A .3m -B .3m -C .3mD .3m【详解】因为()cos m αβ+=,所以cos cos sin sin m αβαβ-=,而tan tan 2αβ=,所以sin sin 2cos cos αβαβ=,故cos cos 2cos cos m αβαβ-=即cos cos m αβ=-,从而sin sin 2m αβ=-,故()cos 3m αβ-=-,故选:A.2.(2024年新课标全国Ⅰ卷)已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是()A .(,0]-∞B .[1,0]-C .[1,1]-D .[0,)+∞【详解】因为()f x 在R 上单调递增,且0x ≥时,()()e ln 1xf x x =++单调递增,则需满足()02021e ln1aa -⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a -≤≤,即a 的范围是[1,0]-.故选:B.3.(2024年新课标全国Ⅰ卷)当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭的交点个数为()A .3B .4C .6D .8【详解】因为函数sin y x =的的最小正周期为2πT =,函数π2sin 36y x ⎛⎫=- ⎪⎝⎭的最小正周期为2π3T =,所以在[]0,2πx ∈上函数π2sin 36y x ⎛⎫=- ⎪⎝⎭有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C4.(2024年新课标全国Ⅰ卷)已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A .(10)100f >B .(20)1000f >C .(10)1000f <D .(20)10000f <【详解】因为当3x <时()f x x =,所以(1)1,(2)2f f ==,又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>,(8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>,(11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+>(14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确.故选:B.5.(2024年新课标全国Ⅰ卷)设函数2()(1)(4)f x x x =--,则()A .3x =是()f x 的极小值点B .当01x <<时,()2()f x f x <C .当12x <<时,4(21)0f x -<-<D .当10x -<<时,(2)()f x f x ->【详解】对A ,因为函数()f x 的定义域为R ,而()()()()()()22141313f x x x x x x =--+-=--',易知当()1,3x ∈时,()0f x '<,当(),1x ∞∈-或()3,x ∞∈+时,()0f x '>函数()f x 在(),1∞-上单调递增,在()1,3上单调递减,在()3,∞+上单调递增,故3x =是函数()f x 的极小值点,正确;对B ,当01x <<时,()210x x x x -=->,所以210x x >>>,而由上可知,函数()f x 在()0,1上单调递增,所以()()2f x f x >,错误;对C ,当12x <<时,1213x <-<,而由上可知,函数()f x 在()1,3上单调递减,所以()()()1213f f x f >->,即()4210f x -<-<,正确;对D ,当10x -<<时,()()()()()()222(2)()12141220f x f x x x x x x x --=------=-->,所以(2)()f x f x ->,正确;故选:ACD.6.(2024年新课标全国Ⅰ卷)若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a .【详解】由e x y x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e x y x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 27.(2024年新课标全国Ⅱ卷)设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x ∈-时,曲线()y f x =与()y g x =恰有一个交点,则=a ()A .1-B .12C .1D .2【详解】解法一:令()()f x g x =,即2(1)1cos 2a x x ax +-=+,可得21cos a x ax -=+,令()()21,cos a x F x ax G x =-=+,原题意等价于当(1,1)x ∈-时,曲线()y F x =与()y G x =恰有一个交点,注意到()(),F x G x 均为偶函数,可知该交点只能在y 轴上,可得()()00F G =,即11a -=,解得2a =,若2a =,令()()F x G x =,可得221cos 0x x +-=因为()1,1x ∈-,则220,1cos 0x x ≥-≥,当且仅当0x =时,等号成立,可得221cos 0x x +-≥,当且仅当0x =时,等号成立,则方程221cos 0x x +-=有且仅有一个实根0,即曲线()y F x =与()y G x =恰有一个交点,所以2a =符合题意;综上所述:2a =.解法二:令()()()2()1cos ,1,1h x f x g x ax a x x =-=+--∈-,原题意等价于()h x 有且仅有一个零点,因为()()()()221cos 1cos h x a x a x ax a x h x -=-+---=+--=,则()h x 为偶函数,根据偶函数的对称性可知()h x 的零点只能为0,即()020h a =-=,解得2a =,若2a =,则()()221cos ,1,1h x x x x =+-∈-,又因为220,1cos 0x x ≥-≥当且仅当0x =时,等号成立,可得()0h x ≥,当且仅当0x =时,等号成立,即()h x 有且仅有一个零点0,所以2a =符合题意;故选:D.8.(2024年新课标全国Ⅱ卷)设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为()A .18B .14C .12D .1【详解】解法一:由题意可知:()f x 的定义域为(),b -+∞,令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;若-≤-a b ,当(),1x b b ∈--时,可知()0,ln 0x a x b +>+<,此时()0f x <,不合题意;若1b a b -<-<-,当(),1x a b ∈--时,可知()0,ln 0x a x b +>+<,此时()0f x <,不合题意;若1a b -=-,当(),1x b b ∈--时,可知()0,ln 0x a x b +<+<,此时()0f x >;当[)1,x b ∈-+∞时,可知()0,ln 0x a x b +≥+≥,此时()0f x ≥;可知若1a b -=-,符合题意;若1a b ->-,当()1,x b a ∈--时,可知()0,ln 0x a x b +<+>,此时()0f x <,不合题意;综上所述:1a b -=-,即1b a =+,则()2222211112222a b a a a ⎛⎫=++=++≥ ⎪⎝⎭+,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12;解法二:由题意可知:()f x 的定义域为(),b -+∞,令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;则当(),1x b b ∈--时,()ln 0x b +<,故0x a +≤,所以10b a -+≤;()1,x b ∈-+∞时,()ln 0x b +>,故0x a +≥,所以10b a -+≥;故10b a -+=,则()2222211112222a b a a a ⎛⎫=++=++ ⎪⎝⎭+,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12.故选:C.9.(2024年新课标全国Ⅱ卷)对于函数()sin 2f x x =和π()sin(2)4g x x =-,下列正确的有()A .()f x 与()g x 有相同零点B .()f x 与()g x 有相同最大值C .()f x 与()g x 有相同的最小正周期D .()f x 与()g x 的图像有相同的对称轴【详解】A 选项,令()sin 20f x x ==,解得π,2k x k =∈Z ,即为()f x 零点,令π()sin(204g x x =-=,解得ππ,28k x k =+∈Z ,即为()g x 零点,显然(),()f x g x 零点不同,A 选项错误;B 选项,显然max max ()()1f x g x ==,B 选项正确;C 选项,根据周期公式,(),()f x g x 的周期均为2ππ2=,C 选项正确;D 选项,根据正弦函数的性质()f x 的对称轴满足πππ2π,224k x k x k =+⇔=+∈Z ,()g x 的对称轴满足πππ3π2π,4228k x k x k -=+⇔=+∈Z ,显然(),()f x g x 图像的对称轴不同,D 选项错误.故选:BC10.(2024年新课标全国Ⅱ卷)设函数32()231f x x ax =-+,则()A .当1a >时,()f x 有三个零点B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心【详解】A 选项,2()666()f x x ax x x a '=-=-,由于1a >,故()(),0,x a ∞∞∈-⋃+时()0f x '>,故()f x 在()(),0,,a ∞∞-+上单调递增,(0,)x a ∈时,()0f x '<,()f x 单调递减,则()f x 在0x =处取到极大值,在x a =处取到极小值,由(0)10=>f ,3()10f a a =-<,则(0)()0f f a <,根据零点存在定理()f x 在(0,)a 上有一个零点,又(1)130f a -=--<,3(2)410f a a =+>,则(1)(0)0,()(2)0f f f a f a -<<,则()f x 在(1,0),(,2)a a -上各有一个零点,于是1a >时,()f x 有三个零点,A 选项正确;B 选项,()6()f x x x a '=-,a<0时,(,0),()0x a f x '∈<,()f x 单调递减,,()0x ∈+∞时()0f x '>,()f x 单调递增,此时()f x 在0x =处取到极小值,B 选项错误;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,即存在这样的,a b 使得()(2)f x f b x =-,即32322312(2)3(2)1x ax b x a b x -+=---+,根据二项式定理,等式右边3(2)b x -展开式含有3x 的项为303332C (2)()2b x x -=-,于是等式左右两边3x 的系数都不相等,原等式不可能恒成立,于是不存在这样的,a b ,使得x b =为()f x 的对称轴,C 选项错误;D 选项,方法一:利用对称中心的表达式化简(1)33f a =-,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,事实上,32322()(2)2312(2)3(2)1(126)(1224)1812f x f x x ax x a x a x a x a +-=-++---+=-+-+-,于是266(126)(1224)1812a a x a x a-=-+-+-即126012240181266a a a a -=⎧⎪-=⎨⎪-=-⎩,解得2a =,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,32()231f x x ax =-+,2()66f x x ax '=-,()126f x x a ''=-,由()02af x x ''=⇔=,于是该三次函数的对称中心为,22a a f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,由题意(1,(1))f 也是对称中心,故122aa =⇔=,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确.故选:AD11.(2024年新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tan tan 4αβ+=,tan tan 1αβ=,则sin()αβ+=.【详解】法一:由题意得()tan tan tan 1tan tan αβαβαβ++===--因为π3π2π,2π,2ππ,2π22k k m m αβ⎛⎫⎛⎫∈+∈++ ⎪⎝⎭⎝⎭,,Z k m ∈,则()()()22ππ,22π2πm k m k αβ+∈++++,,Z k m ∈,又因为()tan 0αβ+=-,则()()3π22π,22π2π2m k m k αβ⎛⎫+∈++++ ⎪⎝⎭,,Z k m ∈,则()sin 0αβ+<,则()()sin cos αβαβ+=-+()()22sin cos 1αβαβ+++=,解得()sin 3αβ+=-.法二:因为α为第一象限角,β为第三象限角,则cos 0,cos 0αβ><,cos α==cos β==则sin()sin cos cos sin cos cos (tan tan )αβαβαβαβαβ+=+=+4cos cos αβ=====故答案为:3-.12.(2024年高考全国甲卷数学(理))设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为()A .16B .13C .12D .23【详解】()()()()()222e 2cos 1e 2sin 21xx x x x xf x x ++-+⋅'=+,则()()()()()02e 2cos 010e 2sin 000310f ++-+⨯'==+,即该切线方程为13y x -=,即31y x =+,令0x =,则1y =,令0y =,则13x =-,故该切线与两坐标轴所围成的三角形面积1111236S =⨯⨯-=.故选:A.13.(2024年高考全国甲卷数学(理))函数()()2e e sin x xf x x x -=-+-在区间[2.8,2.8]-的大致图像为()A .B.C.D .【详解】()()()()()22e e sin e e sin x x x xf x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭,故可排除D.故选:B.14.(2024年高考全国甲卷数学(理))已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A.1B.1C.2D.1【详解】因为cos cos sin ααα=-所以11tan =-α,tan 1⇒α=-,所以tan 1tan 11tan 4α+π⎛⎫==-α+ ⎪-α⎝⎭,故选:B.15.(2024年高考全国甲卷数学(理))已知1a >,8115log log 42a a -=-,则=a .【详解】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=,2log 1a ⇒=-或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==故答案为:64.16.(2024年新课标全国Ⅰ卷)已知函数3()ln (1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.【详解】(1)0b =时,()ln 2xf x ax x=+-,其中()0,2x ∈,则()()()112,0,222f x a x x x x x =+=+∈--',因为()22212x x x x -+⎛⎫-≤= ⎪⎝⎭,当且仅当1x =时等号成立,故()min 2f x a '=+,而()0f x '≥成立,故20a +≥即2a ≥-,所以a 的最小值为2-.,(2)()()3ln12x f x ax b x x=++--的定义域为()0,2,设(),P m n 为()y f x =图象上任意一点,(),P m n 关于()1,a 的对称点为()2,2Q m a n --,因为(),P m n 在()y f x =图象上,故()3ln 12m n am b m m=++--,而()()()()3322ln221ln 122m m f m a m b m am b m a m m -⎡⎤-=+-+--=-++-+⎢⎥-⎣⎦,2n a =-+,所以()2,2Q m a n --也在()y f x =图象上,由P 的任意性可得()y f x =图象为中心对称图形,且对称中心为()1,a .(3)因为()2f x >-当且仅当12x <<,故1x =为()2f x =-的一个解,所以()12f =-即2a =-,先考虑12x <<时,()2f x >-恒成立.此时()2f x >-即为()()3ln21102x x b x x+-+->-在()1,2上恒成立,设()10,1t x =-∈,则31ln 201t t bt t+-+>-在()0,1上恒成立,设()()31ln2,0,11t g t t bt t t+=-+∈-,则()()2222232322311t bt b g t bt t t -++=-+=-'-,当0b ≥,232332320bt b b b -++≥-++=>,故()0g t '>恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当203b -≤<时,2323230bt b b -++≥+≥,故()0g t '≥恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当23b <-,则当01t <<时,()0g t '<故在⎛ ⎝上()g t 为减函数,故()()00g t g <=,不合题意,舍;综上,()2f x >-在()1,2上恒成立时23b ≥-.而当23b ≥-时,而23b ≥-时,由上述过程可得()g t 在()0,1递增,故()0g t >的解为()0,1,即()2f x >-的解为()1,2.综上,23b ≥-.17.(2024年新课标全国Ⅱ卷)已知函数3()e x f x ax a =--.(1)当1a =时,求曲线()y f x =在点()1,(1)f 处的切线方程;(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.【详解】(1)当1a =时,则()e 1x f x x =--,()e 1x f x '=-,可得(1)e 2f =-,(1)e 1f '=-,即切点坐标为()1,e 2-,切线斜率e 1k =-,所以切线方程为()()()e 2e 11y x --=--,即()e 110x y ---=.(2)解法一:因为()f x 的定义域为R ,且()e '=-x f x a ,若0a ≤,则()0f x '≥对任意x ∈R 恒成立,可知()f x 在R 上单调递增,无极值,不合题意;若0a >,令()0f x '>,解得ln x a >;令()0f x '<,解得ln x a <;可知()f x 在(),ln a -∞内单调递减,在()ln ,a +∞内单调递增,则()f x 有极小值()3ln ln f a a a a a =--,无极大值,由题意可得:()3ln ln 0f a a a a a =--<,即2ln 10a a +->,构建()2ln 1,0g a a a a =+->,则()120g a a a'=+>,可知()g a 在()0,∞+内单调递增,且()10g =,不等式2ln 10a a +->等价于()()1g a g >,解得1a >,所以a 的取值范围为()1,+∞;解法二:因为()f x 的定义域为R ,且()e '=-x f x a ,若()f x 有极小值,则()e '=-x f x a 有零点,令()e 0x f x a '=-=,可得e x a =,可知e x y =与y a =有交点,则0a >,若0a >,令()0f x '>,解得ln x a >;令()0f x '<,解得ln x a <;可知()f x 在(),ln a -∞内单调递减,在()ln ,a +∞内单调递增,则()f x 有极小值()3ln ln f a a a a a =--,无极大值,符合题意,由题意可得:()3ln ln 0f a a a a a =--<,即2ln 10a a +->,构建()2ln 1,0g a a a a =+->,因为则2,ln 1y a y a ==-在()0,∞+内单调递增,可知()g a 在()0,∞+内单调递增,且()10g =,不等式2ln 10a a +->等价于()()1g a g >,解得1a >,所以a 的取值范围为()1,+∞.18.(2024年高考全国甲卷数学(理))已知函数()()()1ln 1f x ax x x =-+-.(1)当2a =-时,求()f x 的极值;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围.【详解】(1)当2a =-时,()(12)ln(1)f x x x x =++-,故121()2ln(1)12ln(1)111x f x x x x x+'=++-=+-+++,因为12ln(1),11y x y x =+=-++在()1,∞-+上为增函数,故()f x '在()1,∞-+上为增函数,而(0)0f '=,故当10x -<<时,()0f x '<,当0x >时,()0f x '>,故()f x 在0x =处取极小值且极小值为()00f =,无极大值.(2)()()()()11ln 11ln 1,011a x ax f x a x a x x x x+-=-+'+-=-+->++,设()()()1ln 101a x s x a x x x +=-+->+,则()()()()()()222111211111a a x a a ax a s x x x x x ++++-++=-=-=-+++'+,当12a ≤-时,()0s x '>,故()s x 在()0,∞+上为增函数,故()()00s x s >=,即()0f x '>,所以()f x 在[)0,∞+上为增函数,故()()00f x f ≥=.当102a -<<时,当210a x a+<<-时,()0s x '<,故()s x 在210,a a +⎛⎫- ⎪⎝⎭上为减函数,故在210,a a +⎛⎫- ⎪⎝⎭上()()0s x s <,即在210,a a +⎛⎫- ⎪⎝⎭上()0f x '<即()f x 为减函数,故在210,a a +⎛⎫- ⎪⎝⎭上()()00f x f <=,不合题意,舍.当0a ≥,此时()0s x '<在()0,∞+上恒成立,同理可得在()0,∞+上()()00f x f <=恒成立,不合题意,舍;综上,12a ≤-.。
专题03导数2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)

2013-2022十年全国高考数学真题分类汇编专题03 导数选填题一、选择题1.(2022年全国甲卷理科·第6题)当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=( )A 1-B .12-C .12D .1【答案】B解析:因为函数()f x 定义域为()0,∞+,所以依题可知,()12f =-,()10f '=,而()2a bf x x x '=-,所以2,0b a b =--=,即2,2a b =-=-,所以()222f x x x'=-+,因此函数()f x 在()0,1上递增,在()1,+∞上递减,1x =时取最大值,满足题意,即有()112122f '=-+=-.故选:B .【题目栏目】导数\导数的应用\导数与函数的最值\含参函数的最值问题【题目来源】2022年全国甲卷理科·第6题2.(2022新高考全国I 卷·第7题)设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a<<C .c a b <<D .a c b<<【答案】C解析: 设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++,当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增,所以1()(0)09f f <=,所以101ln099-<,故110ln ln 0.999>=-,即b c >,所以1()(0)010f f -<=,所以91ln+01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11xx x g x x x x -+'=+=--,令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,.当01x <<-时,()0h x '<,函数2()e (1)+1x h x x =-单调递减,11x -<<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增,又(0)0h =, 所以当01x <<-时,()0h x <,所以当01x <<-时,()0g x '>,函数()e ln(1)xg x x x =+-单调递增,所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c >故选:C .【题目栏目】导数\导数的应用\导数与函数的最值\具体函数的最值问题【题目来源】2022新高考全国I 卷·第7题3.(2021年新高考Ⅰ卷·第7题)若过点(),a b 可以作曲线e x y =的两条切线,则( )A .e b a <B .e a b <C .0e b a <<D .0e ab <<【答案】D解析:在曲线x y e =上任取一点(),tP t e ,对函数x y e =求导得e x y '=,所以,曲线x y e =在点P 处的切线方程为()t t y e e x t -=-,即()1t ty e x t e =+-,由题意可知,点(),a b 在直线()1t t y e x t e +-上,可得()()11t t tb ae t e a t e =+-=+-,令()()1t f t a t e =+-,则()()tf t a t e '=-.当t a <时,()0f t '>,此时函数()f t 单调递增,当t a >时,()0f t '<,此时函数()f t 单调递减,所以,()()max af t f a e ==,由题意可知,直线y b =与曲线()y f t =的图象有两个交点,则()max ab f t e <=,当1t a <+时,()0f t >,当1t a >+时,()0f t <,作出函数()f t 的图象如下图所示:由图可知,当0a b e <<时,直线y b =与曲线()y f t =的图象有两个交点,故选D .【题目栏目】导数\导数的概念及运算\导数的几何意义【题目来源】2021年新高考Ⅰ卷·第7题4.(2021年高考全国乙卷理科·第10题)设0a ≠,若x a =为函数()()()2f x a x a x b =--的极大值点,则( )A a b < B .a b >C .2ab a <D .2ab a >【答案】D解析:若a b =,则()()3f x a x a =-为单调函数,无极值点,不符合题意,故a b ¹.()f x ∴有x a =和x b =两个不同零点,且在x a =左右附近是不变号,在x b =左右附近是变号的.依题意,为函数的极大值点,∴在x a =左右附近都是小于零的.当0a <时,由x b >,()0f x ≤,画出()f x的图象如下图所示:.由图可知b a <,0a <,故2ab a >.当0a >时,由x b >时,()0f x >,画出()f x 的图象如下图所示:由图可知b a >,0a >,故2ab a >.综上所述,2ab a >成立.故选:D【点睛】本小题主要考查三次函数的图象与性质,利用数形结合的数学思想方法可以快速解答.【题目栏目】导数\导数的应用\导数与函数的极值\含参函数的极值问题【题目来源】2021年高考全国乙卷理科·第10题5.(2020年高考数学课标Ⅰ卷理科·第6题)函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为( )A .21y x =--B .21y x =-+C .23y x =-D .21y x =+【答案】B【解析】()432f x x x =- ,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+.故选:B .【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题【题目栏目】导数\导数的概念及运算\导数的几何意义【题目来源】2020年高考数学课标Ⅰ卷理科·第6题6.(2020年高考数学课标Ⅲ卷理科·第10题)若直线l 与曲线y和x 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12【答案】D解析:设直线l在曲线y =上的切点为(0x ,则00x >,函数y =的导数为y '=,则直线l的斜率k =,设直线l的方程为)0y x x =-,即00x x -+=,由于直线l 与圆2215x y +==两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.故选:D .【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.【题目栏目】导数\导数的概念及运算\导数的几何意义【题目来源】2020年高考数学课标Ⅲ卷理科·第10题7.(2019年高考数学课标Ⅲ卷理科·第6题)已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则( )A .,1a e b ==-B .,1a e b ==C .1,1a e b -==D .1,1a eb -==-【答案】【答案】D【解析】由/ln 1x y ae x =++,根据导数的几何意义易得/1|12x y ae ==+=,解得1a e -=,从而得到切点坐标为(1,1),将其代入切线方程2y x b =+,得21b +=,解得1b =-,故选D .【点评】准确求导是进一步计算的基础,本题易因为导数的运算法则掌握不熟,二导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.另外对于导数的几何意义要注意给定的点是否为切点,若为切点,牢记三条:①切点处的导数即为切线的斜率;②切点在切线上;③切点在曲线上。
全国卷导数合集(试题+解析)

(一) 导数的极最值问题1.(2015新课标Ⅱ)设函数2()mxf x ex mx =+-.(Ⅰ)证明:()f x 在(,0)-∞单调递减,在(0,)+∞单调递增;(Ⅱ)若对于任意1x ,2x [1,1]∈-,都有12|()()|f x f x -1e -≤,求m 的取值范围.【解析】(Ⅰ)()(e 1)2mxf x m x '=-+.若0m ≥,则当(,0)x ∈-∞时,10mx e -≤,()0f x '<; 当(0,)x ∈+∞时,10mx e -≥,()0f x '>.若0m <,则当(,0)x ∈-∞时,10mx e ->,()0f x '<; 当(0,)x ∈+∞时,10mx e -<,()0f x '>.所以,()f x 在(,0)-∞单调递减,在(0,)+∞单调递增.(Ⅱ)由(Ⅰ)知,对任意的m ,()f x 在[1,0]-单调递减,在[0,1]单调递增. 故()f x 在0x =处取得最小值.所以对于任意1x ,2x [1,1]∈-,12|()()|1f x f x e --≤的充要条件是:(1)(0)1(1)(0)1f f e f f e --⎧⎨---⎩≤≤,即11m m e m e e m e -⎧--⎨+-⎩≤≤ ① 设函数()1tg t e t e =--+,则()1tg t e '=-.当0t <时,()0g t '<;当0t >时()0g t '>. 故()g t 在(,0)-∞单调递减,在(0,)+∞ 单调递增.又(1)0g =,1(1)20g e e --=+-<,故当[1,1]t ∈-时,()0g t ≤. 当[1,1]m ∈-时,()0,()0g m g m -≤≤,即①式成立;当1m >时,由()g t 得单调性,()0g m >,即1me m e ->-;当1m <-时,()0g m ->,即1m e m e -+>- 综上,m 的取值范围是[1,1]-.2.(2014新课标Ⅰ)设函数()()21ln 12a f x a x x bx a -=+-≠,曲线()y f x =在点 (1,(1))f 处的切线斜率为0.(Ⅰ)求b ;(Ⅱ)若存在01,x ≥使得()01af x a <-,求a 的取值范围.【解析】(Ⅰ)()(1)af x a x b x'=+--, 由题设知(1)0f '=,解得1b =.(Ⅱ)()f x 的定义域为(0,)+∞,由(Ⅰ)知,21()ln 2a f x a x x x -=+-, 1()(1)1()(1)1a a a f x a x x x x x a-'=+--=--- (ⅰ)若12a ≤,则11aa≤-,故当(1,)x ∈+∞时,()0f x '>,()f x 在(1,)+∞单调递增,所以,存在01x ≥,使得0()1a f x a <-的充要条件为(1)1af a <-,即1121a a a --<-,解得11a <<. (ii )若112a <<,则11a a >-,故当(1,)1ax a ∈-时,'()0f x <;当(,)1a x a ∈+∞-时,()0f x '>,()f x 在(1,)1a a -单调递减,在(,)1aa+∞-单调递增.所以,存在01x ≥,使得0()1a f x a <-的充要条件为()11a af a a <--, 而2()ln 112(1)11a a a a af a a a a a a =++>-----,所以不合题意. (iii )若1a >,则11(1)1221a a af a ---=-=<-.综上,a的取值范围是(1)(1,)+∞U .3.(2013新课标Ⅰ)已知函数,曲线()y f x =在点处切线方程为. (Ⅰ)求的值;(Ⅱ)讨论的单调性,并求的极大值.【解析】(I )2()()24f x e ax a b x '=++--.由已知得(0)4f =,(0)4f '=.故4b =,8a b +=.从而4a b ==; (II) 由(I )知,2()4(1)4xf x e x x x =+--,1()4(2)244(2)().2x x f x e x x x e '=+--=+-令()0f x '=得,ln 2x =-或2x =-.从而当(,2)(12,)x n ∈-∞--+∞U 时,()0f x '>;当(2,12)x n ∈--,()0f x '<. 故()f x 在(,2)-∞-,(ln 2,)-+∞单调递增,在(2,ln 2)--单调递减. 当2x =-时,函数()f x 取得极大值,极大值为2(2)4(1)f e --=-.4.(2013新课标Ⅱ)已知函数.(Ⅰ)求的极小值和极大值;(Ⅱ)当曲线()y f x =的切线的斜率为负数时,求在轴上截距的取值范围.2()()4x f x e ax b x x =+--(0,(0))f 44y x =+,a b ()f x ()f x 2()xf x x e -=()f x l l x(Ⅰ)()f x 的定义域为(),-∞+∞,()()2xf x e x x -'=-- ①当(),0x ∈-∞或()2,x ∈+∞时,()0f x '<;当()0,2x ∈时,()0f x '> 所以()f x 在(),0-∞,()2,+∞单调递减,在()0,2单调递增.故当0x =时,()f x 取得极小值,极小值为()00f =;当2x =时,()f x 取得极大值,极大值为()224f e -=.(Ⅱ)设切点为()(),t f t ,则l 的方程为()()()y f t x t f t '=-+ 所以l 在x 轴上的截距为()()()22322f t t m t t t t f t t t =-=+=-++'-- 由已知和①得()(),02,t ∈-∞+∞U 令()()20h x x x x=+≠,则当()0,x ∈+∞时,()h x的取值范围为)+∞; 当(),2x ∈-∞-时,()h x 的取值范围是(),3-∞-.所以当()(),02,t ∈-∞+∞U 时,()m t 的取值范围是(),03,)-∞+∞U . 综上,l 在轴上截距的取值范围(),03,)-∞+∞U .5.(2015新课标2)已知函数()ln (1)f x x a x =+-. (Ⅰ)讨论()f x 的单调性;(Ⅱ)当()f x 有最大值,且最大值大于22a -时,求a 的取值范围.【解析】(Ⅰ)()f x 的定义域为(0,)+∞,1()f x a x'=-. x若0a ≤,则()0f x '>,所以()f x 在(0,)+∞单调递增.若0a >,则当1(0,)x a∈时,()0f x '>;当1(,)x a∈+∞时,()0f x '<.所以()f x 在1(0,)a 单调递增,在1(,)a+∞单调递减. (Ⅱ)由(Ⅰ)知,当0a ≤时,()f x 在(0,)+∞上无最大值;当0a >时,()f x 在1x a=取得最大值,最大值为111()ln(1)ln 1f a a a a a a=+-=-+-. 因此1()22f a a>-等价于ln 10a a +-<.令()ln 1g a a a =+-,则()g a 在(0,)+∞单调递增,(1)0g =. 于是,当01a <<时,()0g a <;当1a >时,()0g a >. 因此a 的取值范围是(0,1).(二) 导数的恒成立问题1.(2018全国卷Ⅲ)已知函数2()(2)ln(1)2f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求a .【解析】(1)当0a =时,()(2)ln(1)2f x x x x =++-,()ln(1)1x f x x x'=+-+. 设函数()()ln(1)1xg x f x x x'==+-+,则2()(1)x g x x '=+.当10x -<<时,()0g x '<;当0x >时,()0g x '>.故当1x >-时,()(0)0g x g =≥,且仅当0x =时,()0g x =,从而()0f x '≥,且仅当0x =时,()0f x '=. 所以()f x 在(1,)-+∞单调递增.又,故当10x -<<时,()0f x <;当0x >时,()0f x >.(2)(i )若0a ≥,由(1)知,当0x >时,()(2)ln(1)20(0)f x x x x f ++->=≥,这与0x =是()f x 的极大值点矛盾. (ii )若0a <,设函数22()2()ln(1)22f x xh x x x ax x ax ==+-++++. 由于当1||min{}||x a <时,220x ax ++>,故()h x 与()f x 符号相同. 又(0)(0)0h f ==,故0x =是()f x 的极大值点当且仅当是()h x 的极大值点.2222222212(2)2(12)(461)()1(2)(1)(2)x ax x ax x a x ax a h x x x ax x ax x ++-++++'=-=++++++. 如果610a +>,则当6104a x a +<<-,且1||min{}||x a <时,()0h x '>, 故0x =不是()h x 的极大值点.如果610a +<,则224610a x ax a +++=存在根10x <,(0)0f =0x =故当1(,0)x x ∈,且1||min{1,}||x a <时,()0h x '<,所以不是()h x 的极大值点.如果610a +=,则322(24)()(1)(612)x x h x x x x -'=+--.则当(1,0)x ∈-时,()0h x '>;当(0,1)x ∈时,()0h x '<.所以0x =是()h x 的极大值点,从而0x =是()f x 的极大值点 综上,16a =-.2. (2012新课标)设函数()2x f x e ax =--.(Ⅰ)求()f x 的单调区间;(Ⅱ)若1a =,k 为整数,且当0x >时,()()10x k f x x '-++>,求k 的最大值.【解析】(Ⅰ)()f x 的定义域为(,)-∞+∞,()xf x e a '=-.若0a …,则()0f x '>,所以()f x 在(,)-∞+∞单调递增.若0a >,则当(,ln )x a ∈-∞时()0f x '<,当(ln ,)x a ∈+∞,()0f x '>, 所以()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增. (Ⅱ) 由于1a =,所以(x -k ) f ´(x )+x +1=()(1)1x x k e x --++. 故当0x >时,(x -k ) f ´(x )+x +1>0等价于11xx k x e +<+- (0x >) ① 0x =令1()1x x g x x e +=+-,则221(2)()1(1)(1)x x x xx xe e e x g x e e ----'=+=-- 由(Ⅰ)知,函数()2xh x e x =--在(0,)+∞单调递增.而(1)0,(2)0h h <>,所以()h x 在(0,)+∞存在唯一的零点,故()g x '在(0,)+∞存在唯一的零点,设此零点为α,则(1,2)α∈.当(0,)x α∈时,()0g x '<;当(,)x α∈+∞时,()0g x '>,所以()g x 在(0,)+∞的最小值为()g α,又由()0g α'=,可得2e αα=+,所以()1(2,3)g αα=+∈ 故①等价于()k g α<,故整数k 的最大值为2.3.(2011新课标)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a ,b 的值;(Ⅱ)证明:当0x >,且1x ≠时,ln ()1xf x x >-.【解析】(Ⅰ)221(ln )'()(1)x x b x f x x x α+-=-+由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩ ,解得1a =,1b =.(Ⅱ)由(Ⅰ)知ln 1()1x f x x x=++,所以)1ln 2(111ln )(22xx x x x x x f -+-=-=考虑函数()2ln h x x =+xx 12-(0)x >,则22222)1()1(22)(xx x x x x x h --=---=' 所以当1≠x 时,,0)1(,0)(=<'h x h 而故 当)1,0(∈x 时,;0)(11,0)(2>->x h xx h 可得当),1(+∞∈x 时,;0)(11,0)(2>-<x h xx h 可得从而当.1ln )(,01ln )(,1,0->>--≠>x xx f x x x f x x 即且4. (2010新课标)设函数2()(1)x f x x e ax =--. (Ⅰ)若12a =,求()f x 的单调区间; (Ⅱ)若当0x ≥时()0f x ≥,求a 的取值范围.【解析】(Ⅰ)12a =时,21()(1)2x f x x e x =--, '()1(1)(1)x x x f x e xe x e x =-+-=-+.当(),1x ∈-∞-时'()f x >0;当()1,0x ∈-时,'()0f x <;当()0,x ∈+∞时,'()0f x >. 故()f x 在(),1-∞-,()0,+∞单调增加,在(1,0)-单调递减.(Ⅱ)()(1)af x x x ax =--.令()1ag x x ax =--,则'()xg x e a =-.若1a ≤,则当()0,x ∈+∞时,'()g x >0,()g x 为减函数,而(0)0g =,从而当x ≥0时()g x ≥0,即()f x ≥0.若a >1,则当()0,ln x a ∈时,'()g x <0,()g x 为减函数,而(0)0g =,从而当()0,ln x a ∈时()g x <0,即()f x <0.综合得a 的取值范围为(],1-∞.5. (2017新课标Ⅱ)设函数2()(1)x f x x e =-.(1)讨论()f x 的单调性;(2)当0x ≥时,()1f x ax +≤,求a 的取值范围.【解析】(1)2()(12)xf x x x e '=--令()0f x '=得 12x =-12x =-+当(,12)x ∈-∞--时,()0f x '<;当(12,12)x ∈--+时,()0f x '>;当(12,)x ∈-++∞时,()0f x '<.所以()f x 在(,12)-∞-,(12,)-++∞单调递减,在(12,12)--+单调递增.(2)()(1)(1)xf x x x e =+-.当1a ≥时,设函数()(1)xh x x e =-,()0xh x xe '=-<,因此()h x 在[0,)+∞单调递减,而(0)1h =,故()1h x ≤,所以()(1)()11f x x h x x ax =+++≤≤.当01a <<时,设函数()1xg x e x =--,()10(0)xg x e x '=->>,所以()g x 在[0,)+∞单调递增,而(0)0g =,故1x e x +≥.当01x <<时,2()(1)(1)f x x x >-+,22(1)(1)1(1)x x ax x a x x -+--=---, 取0541a x --=,则0(0,1)x ∈,2000(1)(1)10x x ax -+--=,故00()1f x ax <+. 当0a ≤时,取051x -=,则0(0,1)x ∈,20000()(1)(1)11f x x x ax >-+=+≥. 综上,a 的取值范围是[1,)+∞.6. (2016年全国II 卷)已知函数.(Ⅰ)当时,求曲线在处的切线方程; (Ⅱ)若当时,,求的取值范围.【解析】(Ⅰ)()f x 的定义域为(0,)+∞.当4=a 时,1()(1)ln 4(1),()ln 3'=+--=+-f x x x x f x x x,(1)2,(1)0.'=-=f f 曲线()=y f x 在(1,(1))f 处的切线方程为220.x y +-= (Ⅱ)当(1,)∈+∞x 时,()0>f x 等价于(1)ln 0.1-->+a x x x 令(1)()ln 1-=-+a x g x x x ,则 222122(1)1(),(1)0(1)(1)+-+'=-==++a x a x g x g x x x x ,(i )当2≤a ,(1,)∈+∞x 时,222(1)1210+-+≥-+>x a x x x ,故()0,()'>g x g x 在(1,)∈+∞x 上单调递增,因此()0>g x ;()(1)ln (1)f x x x a x =+--4a =()y f x =()1,(1)f ()1,x ∈+∞()0f x >a(ii )当2>a 时,令()0'=g x 得22121(1)1,1(1)1=----=-+--x a a x a a ,由21>x 和121=x x 得11<x ,故当2(1,)∈x x 时,()0'<g x ,()g x 在2(1,)∈x x 单调递减,因此()(1)0g x g <=. 综上,a 的取值范围是(],2.-∞(三) 导数的零点问题1.(2018全国卷Ⅱ)已知函数2()e =-xf x ax . (1)若1=a ,证明:当0≥x 时,()1≥f x (2)若()f x 在(0,)+∞只有一个零点,求a【解析】(1)当1=a 时,()1≥f x 等价于2(1)e10-+-≤xx .设函数2()(1)1-=+-xg x x e,则22()(21)(1)--=--+=--x x g'x x x e x e .当1≠x 时,()0<g'x ,所以()g x 在(0,)+∞单调递减. 而(0)0=g ,故当0≥x 时,()0≤g x ,即()1≥f x . (2)设函数2()1e -=-xh x ax .()f x 在(0,)+∞只有一个零点当且仅当()h x 在(0,)+∞只有一个零点.(i )当0≤a 时,()0>h x ,()h x 没有零点;(ii )当0a >时,()(2)e xh'x ax x -=-.当(0,2)∈x 时,()0<h'x ;当(2,)∈+∞x 时,()0>h'x . 所以()h x 在(0,2)单调递减,在(2,)+∞单调递增. 故24(2)1e =-ah 是()h x 在[0,)+∞的最小值. ①若(2)0>h ,即2e 4<a ,()h x 在(0,)+∞没有零点;②若(2)0=h ,即2e 4=a ,()h x 在(0,)+∞只有一个零点;③若(2)0<h ,即2e 4>a ,由于(0)1=h ,所以()h x 在(0,2)有一个零点,由(1)知,当0>x 时,2e >x x ,所以33342241616161(4)11110e (e )(2)=-=->-=->a a a a a h a a a. 故()h x 在(2,4)a 有一个零点,因此()h x 在(0,)+∞有两个零点.综上,()f x 在(0,)+∞只有一个零点时,2e 4=a .2.(2017新课标Ⅰ)已知函数2()(2)xx f x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【解析】(1)()f x 的定义域为(,)-∞+∞,2()2(2)1(1)(21)x x x x f x ae a e ae e '=+--=-+,(ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减.(ⅱ)若0a >,则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>, 所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增. (2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+. ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20nnnnf n a a n n n =+-->->->. 由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点. 综上,a 的取值范围为(0,1).3.(2016年全国Ⅰ) 已知函数2()(2)(1)xf x x e a x =-+-有两个零点. (I )求a 的取值范围;(II )设1x ,2x 是()f x 的两个零点,证明:122x x +<.【解析】(Ⅰ).'()(1)2(1)(1)(2)xxf x x e a x x e a =-+-=-+(i )设,则,只有一个零点.(ii )设,则当时,;当时,. 所以在上单调递减,在上单调递增. 又,,取满足且,则 ,故存在两个零点. (iii )设,由得或. 若,则,故当时,, 因此在上单调递增.又当时,, 所以不存在两个零点. 若,则,故当时,; 当时,.因此在上单调递减, 在上单调递增.又当时,, 所以不存在两个零点.综上,的取值范围为.(Ⅱ)不妨设,由(Ⅰ)知,, 又在上单调递减,所以等价于, 即.由于,而,所以.设,则.所以当时,,而,故当时,. 从而,故.0a =()(2)xf x x e =-()f x 0a >(,1)x ∈-∞'()0f x <(1,)x ∈+∞'()0f x >()f x (,1)-∞(1,)+∞(1)f e =-(2)f a =b 0b <ln2ab <223()(2)(1)()022a fb b a b a b b >-+-=->()f x 0a <'()0f x =1x =ln(2)x a =-2ea ≥-ln(2)1a -≤(1,)x ∈+∞'()0f x >()f x (1,)+∞1x ≤()0f x <()f x 2ea <-ln(2)1a ->(1,ln(2))x a ∈-'()0f x <(ln(2),)x a ∈-+∞'()0f x >()f x (1,ln(2))a -(ln(2),)a -+∞1x ≤()0f x <()f x a (0,)+∞12x x <12(,1),(1,)x x ∈-∞∈+∞22(,1)x -∈-∞()f x (,1)-∞122x x +<12()(2)f x f x >-2(2)0f x -<222222(2)(1)x f x x ea x --=-+-22222()(2)(1)0xf x x e a x =-+-=222222(2)(2)x x f x x e x e --=---2()(2)xx g x xex e -=---2'()(1)()x x g x x e e -=--1x >'()0g x <(1)0g =1x >()0g x <22()(2)0g x f x =-<122x x +<4.(2014新课标Ⅱ)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为-2. (Ⅰ)求a ;(Ⅱ)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点【解析】(Ⅰ)'()f x =236x x a -+,'(0)f a =.曲线()y f x =在点(0,2)处的切线方程为2y ax =+. 由题设得22a-=-,所以1a =. (Ⅱ)由(Ⅰ)知,32()32f x x x x =-++设()g x ()2f x kx =-+323(1)4x x k x =-+-+,由题设知10k ->. 当x ≤0时,'()g x 23610x x k =-+->,()g x 单调递增,(1)10,(0)4g k g -=-<=,所以()g x =0在(],0-∞有唯一实根.当0x >时,令32()34h x x x =-+,则()g x ()(1)()h x k x h x =+->.2'()363(2)h x x x x x =-=-,()h x 在(0,2)单调递减,在(2,)+∞单调递增,所以()()(2)0g x h x h >≥=,所以()0g x =在(0,)+∞没有实根.综上,()g x =0在R 有唯一实根,即曲线()y f x =与直线2y kx =-只有一个交点.5. (2018全国卷Ⅱ)已知函数321()(1)3=-++f x x a x x . (1)若3=a ,求()f x 的单调区间; (2)证明:()f x 只有一个零点.【解析】(1)当3=a 时,321()3333=---f x x x x ,2()63'=--f x x x .令()0'=f x 解得3=-x 或3=+x当(,3(3)∈-∞-++∞U x 时,()0'>f x ;当(3∈-+x 时,()0'<f x .故()f x 在(,3-∞-,(3)++∞单调递增,在(3-+单调递减.(2)由于210++>x x ,所以()0=f x 等价于32301-=++x a x x . 设32()31=-++x g x a x x ,则2222(23)()0(1)++'=++≥x x x g x x x , 仅当0=x 时()0'=g x ,所以()g x 在(,)-∞+∞单调递增. 故()g x 至多有一个零点,从而()f x 至多有一个零点. 又22111(31)626()0366-=-+-=---<f a a a a ,1(31)03-=>f a , 故()f x 有一个零点. 综上,()f x 只有一个零点.6. (2015新课标1)设函数()2eln xf x a x =-(Ⅰ)讨论()f x 的导函数()f x '零点的个数; (Ⅱ)证明:当0a >时()22ln f x a a a+≥【解析】(Ⅰ)()f x 的定义域为(0+)∞,,()2()=20x af x e x x'->. 当0a ≤时,()0f x '>,()f x '没有零点;当0a >时,因为2e x 单调递增,ax -单调递增,所以()f x '在(0+)∞,单调递增.又()0f x '>,当b 满足04a b <<且14b <时,()0f b '<,故当0a >时,()f x '存在唯一零点.(Ⅱ)由(Ⅰ),可设()f x '在(0+)∞,的唯一零点为0x ,当0(0)x x ∈,时,()0f x '<;当0(+)x x ∈∞,时,()0f x '>. 故()f x 在0(0)x ,单调递减,在0(+)x ∞,单调递增, 所以当0x x =时,()f x 取得最小值,最小值为0()f x . 由于0202e=0x a x -,所以00022()=2ln 2ln 2a f x ax a a a x a a+++≥. 故当0a >时,2()2ln f x a a a+≥.(四) 导数的不等式问题1.(2017新课标Ⅲ)已知函数()1ln f x x a x =--. (1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222n m ++⋅⋅⋅+<,求m 的最小值.【解析】(1)()f x 的定义域为(0,)+∞.①若a 0≤,因为11()ln 2022f a =-+<,所以不满足题意; ②若>0a ,由()1a x a f 'x x x-=-=知,当()0x ,a ∈时,()<0f 'x ;当(),+x a ∈∞时,()>0f 'x ,所以()f x 在(0,)a 单调递减,在(,)a +∞单调递增,故x a =是()f x 在(0,)+∞的唯一最小值点.由于()10f =,所以当且仅当a =1时,()0f x ≥. 故a =1.(2)由(1)知当(1,)x ∈+∞时,1ln 0x x -->令112n x =+得11ln(1)22n n +<,从而 221111111ln(1)ln(1)ln(1)112222222n n n ++++⋅⋅⋅++<++⋅⋅⋅+=-<故2111(1)(1)(1)222n e ++⋅⋅⋅+<而23111(1)(1)(1)2222+++>,所以m 的最小值为3.2.(2016年全国Ⅲ) 设函数()cos 2(1)(cos 1)f x x x αα=+-+,其中0α>, 记|()|f x 的最大值为A .(Ⅰ)求()f x ';(Ⅱ)求A ;(Ⅲ)证明|()|2f x A '≤.【解析】(Ⅰ)()2sin 2(1)sin f x a x a x '=---.(Ⅱ)当1a …时,|()||sin 2(1)(cos 1)|f x a x a x '=+-+2(1)a a +-…32a =-(0)f =因此,32A a =-.当01a <<时,将()f x 变形为2()2cos (1)cos 1f x a x a x =+--. 令2()2(1)1g t at a t =+--,则A 是|()|g t 在[1,1]-上的最大值,(1)g a -=,(1)32g a =-,且当14at a-=时,()g t 取得极小值, 极小值为221(1)61()1488a a a a g a a a--++=--=-. 令1114a a --<<,解得13a <-(舍去),15a >.(ⅰ)当105a <…时,()g t 在[1,1]-内无极值点,|(1)|g a -=,|(1)|23g a =-,|(1)||(1)|g g -<,所以23A a =-.(ⅱ)当115a <<时,由(1)(1)2(1)0g g a --=->,知1(1)(1)()4ag g g a-->>.又1(1)(17)|()||(1)|048a a a g g a a--+--=>,所以2161|()|48a a a A g a a -++==. 综上,2123,05611,18532,1a a a a A a a a a ⎧-<⎪⎪++⎪=<<⎨⎪-⎪⎪⎩……. (Ⅲ)由(Ⅰ)得|()||2sin2(1)sin |2|1|f x a x a x a a '=---+-…. 当105a <…时,|()|1242(23)2f x a a a A '+-<-=剟.当115a <<时,131884a A a =++…,所以|()|12f x a A '+<….当1a …时,|()|31642f x a a A '--=剟,所以|()|2f x A '….3.(2018全国卷Ⅰ)已知函数()ln 1=--x f x ae x . (1)设2x =是()f x 的极值点.求a ,并求()f x 的单调区间; (2)证明:当1ea ≥时,()0≥f x .【解析】(1)()f x 的定义域为(0)+∞,,1()'=-x f x ae x. 由题设知,(2)0'=f ,所以212e =a . 从而21()e ln 12e =--x f x x ,211()e 2e '=-x f x x.当02<<x 时,()0'<f x ;当2>x 时,()0'>f x . 所以()f x 在(0,2)单调递减,在(2,)+∞单调递增. (2)当1e ≥a 时,()≥f x e ln 1exx --.设e ()ln 1e =--x g x x ,则e 1()e x g x x'=-.当01<<x 时,()0'<g x ;当1>x 时,()0'>g x .所以1=x 是()g x 的最小值点. 故当0>x 时,()(1)0=≥g x g . 因此,当1e≥a 时,()0≥f x .4.(2018全国卷Ⅲ)已知函数21()e xax x f x +-=.(1)求曲线()y f x =在点(0,1)-处的切线方程; (2)证明:当1a ≥时,()e 0f x +≥.【解析】(1)2(21)2()exax a x f x -+-+'=,(0)2f '=. 因此曲线()y f x =在点(0,1)-处的切线方程是210x y --=. (2)当1a ≥时,21()e (1e )e x x f x x x +-++-+≥.令21()1ex g x x x ++-+≥,则1()21ex g x x +'++≥.当1x <-时,()0g x '<,()g x 单调递减;当1x >-时,()0g x '>,()g x 单调递增; 所以()(1)=0g x g -≥.因此()e 0f x +≥.5.(2017新课标Ⅲ)已知函数2()ln (21)f x x ax a x =+++. (1)讨论()f x 的单调性; (2)当0a <时,证明3()24f x a--≤.【解析】(1)()f x 的定义域为(0,)+∞,1(1)(21)()221x ax f x ax a x x++'=+++=. 若0a ≥,则当(0,)x ∈+∞时,()0f x '>,故()f x 在(0,)+∞单调递增.若0a <,则当1(0,)2x a ∈-时,()0f x '>;当1(,)2x a∈-+∞时,()0f x '<.故()f x 在1(0,)2a -单调递增,在1(,)2a-+∞单调递减.(2)由(1)知,当0a <时,()f x 在12x a=-取得最大值,最大值为111()ln()1224f a a a-=----. 所以3()24f x a --≤等价于113ln()12244a a a -----≤,即11ln()1022a a-++≤.设()ln 1g x x x =-+,则1()1g x x'=-.当(0,1)x ∈时,()0g x '>;当(1,)x ∈+∞时,()0g x '<.所以()g x 在(0,1)单调递增,在(1,)+∞单调递减.故当1x =时,()g x 取得最大值,最大值为(1)0g =.所以当0x >时,()g x ≤0.从而当0a <时,11ln()1022a a-++≤,即3()24f x a--≤.6.(2016年全国III 卷)设函数()ln 1f x x x =-+.(Ⅰ)讨论()f x 的单调性; (Ⅱ)证明当(1,)x ∈+∞时,11ln x x x-<<; (III )设1c >,证明当(0,1)x ∈时,1(1)xc x c +->.【解析】(Ⅰ)由题设,()f x 的定义域为(0,)+∞,1()1f x x'=-,令()0f x '=,解得1x =.当01x <<时,()0f x '>,()f x 单调递增;当1x >时,()0f x '<,()f x 单调递减. (Ⅱ)由(Ⅰ)知,()f x 在1x =处取得最大值,最大值为(1)0f =. 所以当1x ≠时,ln 1x x <-. 故当(1,)x ∈+∞时,ln 1x x <-,11ln1x x <-,即11ln x x x-<<. (Ⅲ)由题设1c >,设()1(1)xg x c x c =+--,则()1ln xg x c c c '=--,令()0g x '=,解得01lnln ln c c x c-=. 当0x x <时,()0g x '>,()g x 单调递增;当0x x >时,()0g x '<,()g x 单调递减. 由(Ⅱ)知,11ln c c c-<<,故001x <<,又(0)(1)0g g ==, 故当01x <<时,()0g x >. 所以当(0,1)x ∈时,1(1)xc x c +->.(五) 导数的隐零点问题1.(2017新课标Ⅱ)已知函数2()ln f x ax ax x x =--,且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220()2ef x --<<.【解析】(1)()f x 的定义域为(0,)+∞.设()ln g x ax a x =--,则()()f x xg x =,()0f x ≥等价于()0g x ≥. 因为(1)0g =,()0g x ≥,故(1)0g '=,而1()g x a x'=-,(1)1g a '=-,得1a =. 若1a =,则1()1g x x'=-.当01x <<时,()0g x '<,()g x 单调递减;当1x >时,()0g x '>,()g x 单调递增.所以1x =是()g x 的极小值点,故()(1)0g x g =≥.综上,1a =.(2)由(1)知2()ln f x x x x x =--,()22ln f x x x '=--. 设()22ln h x x x =--,则1()2h x x'=-. 当1(0,)2x ∈时,()0h x '<;当1(,)2x ∈+∞时,()0h x '>.所以()h x 在1(0,)2单调递减,在1(,)2+∞单调递增.又2()0h e ->,1()02h <,(1)0h =,所以()h x 在1(0,)2有唯一零点0x ,在1[,)2+∞有唯一零点1,且当0(0,)x x ∈时,()0h x >;当0(,1)x x ∈时,()0h x <;当(1,)x ∈+∞时,()0h x >.因此()()f x h x '=,所以0x x =是()f x 的唯一极大值点. 由0()0f x '=得00ln 2(1)x x =-,故000()(1)f x x x =-. 由0(0,1)x ∈得,01()4f x <. 因为0x x =是()f x 在(0,1)的最大值点,由1(0,1)e -∈,1()0f e -'≠得120()()f x f e e -->=.所以220()2ef x --<<.2.(2016年全国Ⅱ) (I)讨论函数2()e 2xx f x x -=+的单调性,并证明当0x >时,(2)e 20x x x -++>; (II)证明:当[0,1)a ∈ 时,函数()2e =(0)x ax ag x x x --> 有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域.【解析】(I )证明:()2e 2xx f x x -=+ ()()()22224e e 222xxx x f x x x x ⎛⎫-' ⎪=+= ⎪+++⎝⎭∵当x ∈()()22,-∞--+∞U ,时,()0f x '> ∴()f x 在()()22,-∞--+∞,和上单调递增 ∴0x >时,()2e 0=12xx f x ->-+ ∴()2e 20x x x -++>(Ⅱ)33(2)(2)2()(())x x e a x x g x f x a x x-+++'==+, 由(Ⅰ)知,()f x a +单调递增,对任意的[)01a ∈,,(0)10f a a +=-<, (2)0f a a +=…,因此,存在唯一(0,2]a x ∈,使得()0a f x a +=,即()0a g x '=当0a x x <<时,()0f x a +<,()0g x '<,()g x 单调递减; 当a x x >时,()0f x a +>,()0g x '>,()g x 单调递增. 因此()g x 在a x x =处取得最小值,最小值为22(1)()(1)()2a a ax x x a a a a a a a e a x e f x x e g x x x x -+-+===+. 于是()2ax a e h a x =+,由2(1)()02(2)x x e x e x x +'=>++,得2x e x +单调递增. 所以,由(0,2]a x ∈,得0221()2022224a x a e e e e h a x =<==+++…,因为2x e x +单调递增,对任意的21(,]24e λ∈,存在唯一的(0,2]a x ∈,()[0,1)a a f x =-∈,使得()h a λ=,所以()h a 的值域为21e 24⎛⎤ ⎥⎝⎦,.综上,当[0,1)a ∈时,()g x 有最小值()h a ,()h a 的值域为21e 24⎛⎤⎥⎝⎦,.(六) 导数的双变量问题1.(2018全国卷Ⅰ)已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:1212()()2-<--f x f x a x x【解析】(1)()f x 的定义域为(0,)+∞,22211()1a x ax f x x x x -+'=--+=-.(i )若2≤a ,则()0'≤f x ,当且仅当2a =,1x =时()0f x '=,所以()f x 在(0,)+∞单调递减.(ii )若2a >,令()0f x '=得,24a a x --=或24a a x +-=.当2244)a a a a x --+-∈+∞U 时,()0f x '<;当x ∈时,()0f x '>.所以()f x在,)+∞单调递减,在单调递增.(2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点1x ,2x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >.由于12121221212121222()()ln ln ln ln 2ln 11221f x f x x x x x x a a a x x x x x x x x x x ----=--+=-+=-+----, 所以1212()()2f x f x a x x -<--等价于22212ln 0x x x -+<.设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)0g =,从而当(1,)x ∈+∞时,()0g x <.所以22212ln 0x x x -+<,即1212()()2f x f x a x x -<--.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国卷历年高考函数与导数真题归类分析(含答案)全国卷历年高考函数与导数真题归类分析(含答案)(2015年-2018年共11套)函数与导数小题(共23小题)一、函数奇偶性与周期性1.(2015年1卷13)若函数$f(x)=x\ln(x+a+x^2)$为偶函数,则$a=$解析】由题知$y=\ln(x+a+x^2)$是奇函数,所以$\ln(x+a+x^2)+\ln(-x+a+x^2)=\ln(a+x-x)=\ln a$,解得$a=1$。
考点:函数的奇偶性。
2.(2018年2卷11)已知$$f(x)=\begin{cases}\frac{x+1}{x},x<0\\ax^2,x\geq0\end{cases}$$ 是定义域为$(-\infty,0)\cup[0,+\infty)$的奇函数,满足$f(\frac{1}{2})=1$。
若,$f'(-1)=-2$,则$a=$解:因为$f(x)$是奇函数,所以$f(-\frac{1}{2})=-1$,$f(0)=0$。
又因为$f'(-1)=-2$,所以$f'(-x)|_{x=1}=2$,$f'(0+)=0$,$f'(0-)=0$。
由此可得$$\begin{aligned}a&=\lim\limits_{x\to 0^+}\frac{f(x)-f(0)}{x-0}\\&=\lim\limits_{x\to 0^+}\frac{ax^2}{x}\\&=\lim\limits_{x\to0^+}ax\\&=\lim\limits_{x\to 0^-}ax\\&=-\frac{1}{2}\end{aligned}$$ 故选B。
3.(2016年2卷12)已知函数$f(x)(x\in R)$满足$f(-x)=2-f(x)$,若函数$y=\sum\limits_{i=1}^m(x_i+y_i)$的图像的交点为$(x_1,y_1),(x_2,y_2),\cdots,(x_m,y_m)$,则$\sum\limits_{i=1}^m(x_i+y_i)=( )$解析】由$f(x)$的奇偶性可得$f(0)=1$,又因为$f(x)$是偶函数,所以$f'(0)=0$。
所以$y=x+f(x)$在$x=0$处有切线,且斜率为1.因此对于每一组对称点$(x_i,y_i),(x_i',y_i')$,有$x_i+x_i'=y_i+y_i'=2$,所以$\sum\limits_{i=1}^m(x_i+y_i)=\sum\limits_{i=1}^m2m=2m^2$,故选C。
二、函数、方程与不等式4.(2015年2卷5)设函数$$f(x)=\begin{cases}1+\log_2(2-x),x<1\\x-1,x\geq1\end{cases}$$ 已知$f(-2)+f(\log_2 12)=()$解析】由已知得$f(-2)=1+\log_2 4=3$,又$\log_2 12>1$,所以$f(\log_2 12)=\log_2 12-1=2$,故$f(-2)+f(\log_212)=3+2=5$。
故选D。
5.(2018年1卷9)已知函数$$f(x)=\begin{cases}x+1,x\leq 0\\1+\log_2(2-x),x>0\end{cases}$$ 画出函数$f(x)$的图像,在$y$轴右侧的去掉,设直线$x+a$与函数$f(x)$的图像有两个交点,则$a$的取值范围是$[$$-1,+\infty)$。
解:画出函数$f(x)$的图像,发现在$x=2$处有一个间断点,故在$y$轴右侧的去掉。
设直线为$y=kx+b$,则$$\begin{cases}kx+b=x+1,x\leq 0\\kx+b=1+\log_2(2-x),x>0\end{cases}$$ 解得$k=1$,$b=1$。
故直线为$y=x+1$,$a=-1$,故选C。
1.设函数 $f(x)=\frac{6}{x+2}-\frac{1}{x}$,则满足$f(x)+f(x-2)>1$ 的 $x$ 的取值范围是 $\left(2,+\infty\right)$。
解析:将 $f(x)+f(x-2)>1$ 化简得到 $f(x-2)>1-f(x)$,即$\frac{6}{x}+\frac{6}{x-2}>1$。
化简得到$x\in\left(2,+\infty\right)$,故选 C。
2.已知函数$f(x)=x^2-2x+a(e^x-1+e^{-x}+1)$ 有唯一零点,则 $a=\frac{1}{2}$。
解析:由条件,$f(x)=x^2-2x+a(e^x-1+e^{-x}+1)$,得到$f(2-x)=(2-x)^2-2(2-x)+a(e^{2-x}-1+e^{x-2}+1)=x^2-2x+a(e^x-1+e^{-x}+1)=f(x)$,即 $x=1$ 为 $f(x)$ 的对称轴。
由题意,$f(x)$ 有唯一零点,即 $x=1$,代入 $f(x)$ 得到$a=\frac{1}{2}$。
3.函数$f(x)$ 在$(-\infty,+\infty)$ 单调递减,且为奇函数。
若 $f(1)=-1$,则满足 $-1\leq f(x-2)\leq 1$ 的 $x$ 的取值范围是$[1,3]$。
解析:$-1\leq f(x-2)\leq 1$ 可化为 $f(1)\leq f(x-2)\leq f(-1)$,即 $-1\leq x-2\leq 1$,解得 $1\leq x\leq 3$,故选 D。
4.已知 $a=2$,$b=4$,$c=25$,则 $b<a<c$。
解析:$a=2=\sqrt{4}>2^{\frac{2}{3}}=\sqrt[3]{8}=b$,$c=25>2^3=8=2^{\frac{6}{3}}>2^{\frac{4}{3}}=4=a$,故$b<a<c$,选 A。
1.用特殊值法,令a=3,b=2,c=1,得到32>22,3log2<2log3,故选项C正确。
2.为正数,且2x=3y=5z,则可求得2x=log2(1/30),3y=log3(1/30),5z=log5(1/30)。
对分母乘以30可得30log2=1,30log3=2,30log5=1,故而可得m>1,log3>log2>log5,即3y<2x<5z,故选D。
3.设a=log0.2(0.3),b=log2(0.3),则XXX(0.3)log2(0.3),a+b=log0.2(0.3)+log2(0.3)。
化简可得ab<log0.2(0.3)+log2(0.3)<a+b,故选B。
4.根据函数的奇偶性,排除A和C;根据函数图像,排除B,故选D。
5.在点处的切线方程为y=-2x+3,1处的切线的斜率为-2,则a=-2.6.曲线y=(ax+1)ex在点(0,1)处的斜率为a+1,且过该点的切线方程为y=x+1,解得a=0.7.设f(x)=x^3+ax^2+bx+c,则f(-x)=-x^3+ax^2-bx+c,因为f(x)为奇函数,所以f(-x)=-f(x),代入得到-a=0,即a=0.8.已知f(x)在x=1处的导数为2,设g(x)=f(x-1),则g'(x)=f'(x-1)=2,即g(x)在x=2处的导数为2,故选B。
9.设f(x)=x^3+ax^2+bx+c,则f'(x)=3x^2+2ax+b,f''(x)=6x+2a,因为f''(0)=2,所以2a=2,即a=1,代入f'(1)=0得到b=-4,代入f(0)=1得到c=1,故f(x)=x^3+x^2-4x+1.10.设f(x)=ax^3+bx^2+cx+d,则f'(x)=3ax^2+2bx+c,f''(x)=6ax+2b,因为f'(1)=0,所以3a+2b+c=0,因为f''(1)=0,所以6a+2b=0,解得a=-b/3,c=-2b,代入f(1)=1得到b=3/4,代入f(0)=0得到d=0,故f(x)=3/4x^3+9/4x。
1.给定函数f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,求曲线y=f(x)在点(1,-3)处的切线方程。
解析】当x>0时,-x<0,因此f(-x)=ln(x)-3x。
由于f(x)为偶函数,因此f(x)=f(-x)=ln(x)-3x。
因此f'(x)=1/x-3.在x=1处,f(1)=-2,因此切线斜率为f'(1)=-2,所以切线方程为y+3=-2(x-1),即y=-2x-1.考点:1、函数的奇偶性与解析式;2、导数的几何意义。
2.给定函数f(x)=e^(2x-1)-ax+a,其中a>1.若存在唯一的整数x,使得f(x)<f(1)-1,则a的取值范围是()。
解析】设g(x)=e^(2x-1),y=ax-a。
由题知存在唯一的整数x,使得g(x)在直线y=ax-a的下方。
因为g'(x)=e^x(2x+1),所以当x0时,g'(x)>0.因此,g(x)在x=0处取得极小值。
由于a>1,因此y=ax-a在x=1处与y=f(1)-1相交,且在x=1处g(x)的导数为正。
因此,当a>2e时,g(x)在y=ax-a的下方存在唯一的整数解x。
因此,a的取值范围为(a>2e)。
考点:导数的几何意义;函数的单调性。
1.已知函数 $f(x)=x^3+ax+\frac{1}{4}。
g(x)=-\ln x$。
Ⅰ)求出使得曲线 $y=f(x)$ 在 $x$ 轴上有切线的 $a$ 的取值。
Ⅱ)定义函数 $h(x)=\min\{f(x),g(x)\}$,讨论 $h(x)$ 的零点个数。
解析:Ⅰ)设曲线 $y=f(x)$ 在点 $(x,0)$ 处与 $x$ 轴相切,则$f(x)=0$,$f'(x)=0$。
解得 $x=\frac{1}{2}$,$a=-\frac{3}{2}$,此时曲线$y=f(x)$ 在 $x$ 轴上有切线。
Ⅱ)当 $x\in(1,+\infty)$ 时,$g(x)=-\ln x<0$,因此$h(x)=\min\{f(x),g(x)\}\leq g(x)<0$,所以 $h(x)$ 在$(1,+\infty)$ 无零点。
当 $x=1$ 时,若 $a\geq -\frac{5}{5}$,则$f(1)=a+\frac{1}{4}\geq 0$,$h(1)=\min\{f(1),g(1)\}=g(1)=0$,所以 $x=1$ 是 $h(x)$ 的一个零点;若 $a<-\frac{5}{4}$,则$f(1)=a+\frac{1}{4}<0$,$h(1)=\min\{f(1),g(1)\}=f(1)<0$,所以 $x=1$ 是 $h(x)$ 的一个零点。