(人教版)七年级数学一元一次方程单元测试2

合集下载

人教版七年级数学上册《第三章 一元一次方程》单元测试卷-含参考答案

人教版七年级数学上册《第三章 一元一次方程》单元测试卷-含参考答案

人教版七年级数学上册《第三章一元一次方程》单元测试卷-含参考答案一、选择题1.下列方程中是一元一次方程的是()A.x3−3=4+x4B.2x+3x−1C.x2−3x+3=0D.x+2y=32.若x=2是关于x的方程2x+a−4=0的解,则a的值为()A.−8B.0C.2D.8 3.下列说法正确的是()A.如果ac=bc,那么a=b B.如果a=b,那么a+1=b−1 C.如果a=b,那么ac=bc D.如果a2=b2,那么a=b 4.方程2y+1=5的解是()A.y=2B.y=12C.y=1D.y=525.方程3x+4=2x﹣5移项后,正确的是()A.3x+2x=4﹣5 B.3x﹣2x=4﹣5 C.3x﹣2x=﹣5﹣4 D.3x+2x=﹣5﹣46.将方程2x−12−x+13=1去分母后,得到3(2x-1)- 2x+1=6的结果错在()A.最简公分母找错B.去分母时漏乘3项C.去分母时分子部分没有加括号D.去分母时各项所乘的数不同7.某车间有25名工人,每人每天可生产100个螺钉或150个螺母,若1个螺钉需要配两个螺母,现安排名工人生产螺钉,则下列方程正确的是()A.B.C.D.8.某商场购进一批服装,每件服装销售的标价为400元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装的进价是()A.160元B.180元C.200元D.220元二、填空题9.若(a−1)x2+ax+1=0是关于x的一元一次方程,则a=.10.已知两个方程3(x+2)=5x和4x−3(a−x)=6x−7(a−x)有相同的解,那么a的值是 .11.若关于x的方程x−4−ax6=x+46−1的解是正整数,则符合条件的所有整数a的和是。

12.李明组织同学一起去看电影,已知电影票价每张60元,20张以上(不含20张)打八折,他们一共花了1200元,他们共买了张电影票.13.为迎接初一新生,47中清华分校对校园重新美化装修.现计划对教室墙体重新粉刷一遍(所有教室面积相同).现有甲,乙两个装修队承担此项工作.已知甲队3天粉刷5个教室,结果其中有30平方米墙面未来得及粉刷;乙队5天粉刷7个教室外还多粉刷20平方米.已知甲队比乙队每天多粉刷10平方米,则每间教室的面积为平方米.三、解答题14.解方程:(1)(2)15.小马虎在解关于x的方程x−13=x+2m2−1去分母时,方程右边的“−1”没有乘以6,最后他求得方程的解为3.(1)求m的值;(2)求该方程正确的解.16.某牛奶加工厂现有鲜奶8吨,若市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶每天可加工3吨;制成奶片每天可加工1吨.受人员制约,两种加工方式不可同时进行;受气温制约,这批牛奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多?为什么?17.某中学原计划加工一批校服,现有甲、乙两个工厂加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天加工这种校服24件,且单独加工这批校服甲厂比乙厂要多用20天(1)求这批校服共有多少件?(2)为了尽快完成这批校服,若先由甲、乙两工厂按原速度合作一段时间后,甲工厂停工,而乙工厂每天的速度提高25%,乙工厂单独完成剩下的部分,且乙工厂全部工作时间是甲工厂工作时间的2倍还多4天,求乙工厂加工多少天?18.某校七年级3位老师带部分学生去红色旅游,联系了甲、乙两家旅行社,甲旅行社说:“老师免费,学生打八折。

第五章一元一次方程单元测试 2024—2025学年人教版数学七年级上册

第五章一元一次方程单元测试 2024—2025学年人教版数学七年级上册

人教版2024—2025学年七年级上册第五章一元一次方程单元测试考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

笞卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置,填空题填写在答题卡相应的位置写在本试卷上无效。

3.回答第II卷时,将答案写在第II卷答题卡上。

4.考试结束后,将本试卷和答题卡一并交回。

第I卷选择题(每题只有一个正确选项,每小题3分,满分30分)1.方程3x+2(1﹣x)=4的解是()A.x=B.x=C.x=2D.x=12.若代数式4x﹣5与的值相等,则x的值是()A.1B.C.D.23.下列等式根据等式的变形正确的有()①若a=b,则ac=bc;②若ac=bc,则a=b;③若,则a=b;④若a=b,则.A.1个B.2个C.3个D.4个4.解方程时,去分母正确的是()A.3x﹣3=2(x﹣1)B.3x﹣6=2x﹣1C.3x﹣6=2(x﹣1)D.3x﹣3=2x﹣15.古代名著《孙子算经》中有一题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?设有车x辆,则根据题意,可列出方程是()A.3(x+2)=2x﹣9B.3(x+2)=2x+9C.3(x﹣2)=2x﹣9D.3(x﹣2)=2x+96.由于换季,商场准备对某商品打折出售,如果按原售价的七五折出售,将亏损25元,而按原售价的九折出售,将盈利20元,则该商品的原售价为()A.230元B.250元C.270元D.300元7.中国古代数学著作《算法统宗》中有这样一段记载,“三百七十八里关;初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意时,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到关口,则此人第一和第六这两天共走了()A.102里B.126里C.192里D.198里8.日历上竖列相邻的三个数,它们的和是39,则第一个数是()A.6B.12C.13D.14 9.若关于x的方程的解是x=2,则常数a的值是()A.﹣8B.5C.8D.10 10.已知关于x的方程有非负整数解,则整数a的所有可能的取值的和为()A.﹣6B.﹣7C.﹣14D.﹣19二、填空题(6小题,每题3分,共18分)11.关于x的方程mx2m﹣1+(m﹣1)x﹣2=0如果是一元一次方程,则其解为.12.代数式与代数式3﹣2x的和为4,则x=.13.如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”.如图所示,“优美矩形”ABCD的周长为26,则正方形d的边长为.14.关于x的方程x2+bx+2a=0(a、b为实数且a≠0),a恰好是该方程的根,则a+b的值为.15.已知a,b为实数,且关于x的方程x﹣ax=b的解为x=6,则关于y的方程(y﹣1)﹣a(y﹣1)=b的解为y=.16.已知关于x的一元一次方程无解,则m=.第II卷人教版2024—2025学年七年级上册第五章一元一次方程单元测试姓名:____________ 学号:____________准考证号:___________ 12345678910题号答案11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.解方程:﹣=1.18.m为何值时,关于x的方程3x﹣m=2x+1的解是4=2x﹣1的解的2倍.19.七3班数学老师在批改小红的作业时发现,小红在解方程时,把“2﹣x”抄成了“x﹣2”,解得x=8,而且“a”处的数字也模糊不清了.(1)请你帮小红求出“a”处的数字.(2)请你正确地解出原方程.20.已知:方程(m+2)x|m|﹣1﹣m=0①是关于x的一元一次方程.(1)求m的值;(2)若上述方程①的解与关于x的方程x+=﹣3x②的解互为相反数,求a的值.21.对联是中华传统文化的瑰宝,对联装裱后,如图所示,上、下空白处分别称为天头和地头,左、右空白处统称为边.一般情况下,天头长与地头长的比是6:4,左、右边的宽相等,均为天头长与地头长的和的.某人要装裱一副对联,对联的长为100cm,宽为27cm.若要求装裱后的长是装裱后的宽的4倍,求边的宽和天头长.22.某超市有线上和线下两种销售方式.与2023年4月份相比,该超市2024年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2023年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2024年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2023年4月份a x a﹣x2024年4月份 1.1a 1.43x(2)求2024年4月份线上销售额与当月销售总额的比值.23.幻方最早源于我国,古人称之为纵横图.概念:在一个3×3方格中填入九个数,使每行、每列、每条斜对角线上的三个数之和都相等,便得到了一个“三阶幻方”.(1)将九个数按上述方式填入如图1所示的幻方中,求a﹣b的值;(2)将九个数按上述方式填入如图2所示的幻方中,分别求m,n的值;方法:下面介绍一种构造三阶幻方的方法——杨辉法:口诀(如图3所示):“九子斜排,上下对易,左右相更,四维挺出.”学以致用:(3)请你将下列九个数:﹣3,﹣2,﹣1,0,1,2,3,4,5分别填入如图4所示的方格中,使得每行、每列、每条斜对角线上的三个数之和都相等.①求每行三个数的和;②将这九个数分别填入如图4所示的方格中,使得每行、每列、每条斜对角线上的三个数之和都相等.24.一般情况下,对于数m和n(mn≠0),(≠表示不等号),但是对于某些特殊的数m和n(mn≠0),能使等式成立,我们把这些特殊的数m和n 称为等式的“分型数对”,记作〈m,n〉.例如当m=1,n=﹣4时,有,那么〈1,﹣4〉就是等式“分型数对”.(1)〈﹣2,6〉,〈5,﹣20〉可以称为等式“分型数对”的是;(2)如果〈2,x〉是等式的“分型数对”,求x的值;(3)若〈a,b〉是等式的“分型数对”(ab≠0),求代数式(6a+3b﹣3)﹣(b﹣2a﹣1)的值.25.如图,在数轴上A点表示数a,B点表示数b,且a,b满足|a+12|+|6﹣b|=0.(1)求A、B两点之间的距离;(2)点C在A点的右侧,D在B点的左侧,AC为14个单位长度,BD为8个单位长度,求点C与点D之间的距离;(3)在(2)的条件下,动点P以3个单位长度/秒的速度从A点出发沿正方向运动,同时点Q以2个单位长度/秒的速度从点B出发沿负方向运动,则它们几秒钟相遇?相遇点E表示的数是多少?。

人教版七年级数学上册第三章《一元一次方程》单元测试(含答案)

人教版七年级数学上册第三章《一元一次方程》单元测试(含答案)

人教版七年级数学上册第三章《一元一次方程》单元测试一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 已知x=1是方程x−2k3=12−32x的解,则k的值是()A.−2B.2C.0D.−12. 某商品打七折后价格为a元,则原价为( )A.a元B.107a元 C.30%a元 D.710a元3. 在①2x+1;②1+7=15−8+1;③1−12x=x−1;④x+2y=3中,方程共有()A.1个B.2个C.3个D.4个4. 若关于x的方程3x+(2a+1)=x−(3a+2)的解为x=0,则a的值等于( )A.15B.35C.−15D.−355. 将一根长为acm的铁丝首尾相接围成一个正方形,若要将它按如图所示的方式向外等距扩大1cm得到新的正方形,则这根铁丝需增加()A.4cmB.8cmC.(a+4)cmD.(a+8)cm6. 七年级(1)班有30人会下象棋或围棋,已知会下象棋的人数比会下围棋的人数多5人,两种棋都会下的有17人,问只会下围棋的有多少人?设只会下围棋的有x人,可得方程()A.x+(x−5)+17=30B.x+(x+5)+17=30C.x+(x−5)−17=30D.x+(x+5)−17=307. 如图是某月份的日历表,任意框出同一列上的三个数,则这三个数的和不可能是()A.39B.43C.57D.668. 解方程x3−x−12=1时,去分母后,正确的是( )A.3x−2(x−1)=1B.2x−3(x−1)=1C.3x−2(x−1)=6D.2x−3(x−1)=69. 运用等式性质进行的变形,正确的是()A.如果a=b,那么a+c=b−cB.如果ac =bc,那么a=bC.如果a=b,那么ac =bcD.如果a2=3a,那么a=310. 已知x=2是方程5Xm+10=30的解,则m的值为( )A.2B.4C.6D.10二、填空题(本题共计 4 小题,每题 4 分,共计16分,)11. 当代数式2x−2与3+x的值相等时,x=________.12. 已知:(m−2)x−1=0是关于x的一元一次方程,则m________.13. 在等式5x−8=7−9x的两边同时________,得14x=15,这是根据________.14. 李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔的承包地去年甲种蔬菜有________亩.三、解答题(本题共计 5 小题,共计74分,)15.(20分) 解下列方程:(1)8(a+1)−2(3a−4)=13;(2)2x−13=2x+16−1;(3)y−y−12=2−y+25;(4)2x0.3+223=1.4−3x0.2.16.(12分) 列方程.(1)甲班有学生58人,乙班有学生46人,要使甲、乙两班的人数相等,应如何调动?(2)某推销员,卖出全部商品的2后,得到400元,卖出全部商品共得到多少元?517. (14分) “五一”期间,某电器城按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元,该电器的成本价为多少元?(只列方程)18. (14分)一个长方形的周长为28cm,将此长方形的长减少2cm,宽增加4cm,就可成为一个正方形,那么原长方形的长和宽分别是多少?19.(14分) 某公园门票价格规定如下表:某校七年级(1)(2)两个班共102人去游园,其中(1)班有40多人,不足50人.经计算,如果两个班都以班为单位购票,则一共应付1320元.问:(1)如果两班联合起来,作为一个团体购票,可省多少钱?(2)两班各有多少名学生?参考答案与试题解析一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】一元一次方程的解【解析】把x=1代入方程,即可得出一个关于k的一元一次方程,求出方程的解即可.【解答】把x=1代入方程x−2k3=12−32x得:1−2k3=12−32×1,解得:k=2,2.【答案】B【考点】一元一次方程的应用——打折销售问题【解析】此题暂无解析【解答】解:设该商品原价为:x元,∵ 某商品打七折后价格为a元,∵ 0.7x=a,则x=107a(元),故选B.3.【答案】B方程的定义【解析】方程是含有未知数的等式,是等式但不含未知数不是方程,含未知数不是等式也不是方程.【解答】(1)2x+1,含未知数但不是等式,所以不是方程.(2)1+7=15−8+1,是等式但不含未知数,所以不是方程.x=x−1,是含有未知数的等式,所以是方程.(3)1−12(4)x+2y=3,是含有未知数的等式,所以是方程.故有所有式子中有2个是方程.故选:B.4.【答案】D【考点】方程的解【解析】此题暂无解析【解答】解:∵ x=0是方程3x+(2a+1)=x−(3a+2)的解,∵ 2a+1=−(3a+2),,解得:a=−35故选D.5.【答案】B【考点】一元一次方程的应用——其他问题列代数式根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.【解答】解:∵ 原正方形的周长为acm,cm,∵ 原正方形的边长为a4∵ 将它按图的方式向外等距扩1cm,+2)cm,∵ 新正方形的边长为(a4+2)=(a+8)(cm),则新正方形的周长为4(a4因此需要增加的长度为a+8−a=8(cm).故选B.6.【答案】B【考点】由实际问题抽象出一元一次方程【解析】设只会下围棋的有x人,则只会下象棋的有(x+5)人,根据该班有30人会下象棋或围棋且两种棋都会下的有17人,即可得出关于x的一元一次方程,此题得解.【解答】设只会下围棋的有x人,则只会下象棋的有(x+5)人,依题意,得:x+(x+5)+17=30.7.【答案】B【考点】一元一次方程的应用——其他问题解一元一次方程【解析】可设中间的数为x,根据竖列上相邻的数相隔7可得其余2个数,相加等于各选项中数字求解即可.【解答】解:A、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=39,解得:x=13,故此选项错误;B、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=43,解得:x=433,故此选项符合题意;C、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=57,解得:x=19,故此选项错误;D、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=66,解得:x=22,故此选项错误;故选B.8.【答案】D【考点】解一元一次方程【解析】方程两边乘以6去分母得到结果,即可做出判断.【解答】解:方程x3−x−12=1,等式两边同时乘6得:2x−3(x−1)=6.故选D.9.【答案】B【考点】等式的性质【解析】利用等式的性质对每个等式进行变形即可找出答案.【解答】解:A、利用等式性质1,两边都加c,得到a+c=b+c,所以A不成立,故A选项错误;B、利用等式性质2,两边都乘以c,得到a=b,所以B成立,故B选项正确;C、成立的条件c≠0,故C选项错误;D、成立的条件a≠0,故D选项错误.故选B.10.【答案】A【考点】解一元一次方程【解析】把X=2代入方程得到一个关于m的方程,求出方程的解即可【解答】解得:m=2,故选A.二、填空题(本题共计 4 小题,每题 4 分,共计16分)11.【答案】5【考点】解一元一次方程【解析】此题暂无解析【解答】解:由已知得:2x−2=3+x,移项合并得:x=5,故答案为:5.12.【答案】m≠2【考点】一元一次方程的定义【解析】依据一元一次方程的定义可知m−2≠0,从而可求得m的取值范围.【解答】解:∵ (m−2)x−1=0是关于x的一元一次方程,∵ m−2=0.∵ m≠2.故答案为:m≠2.13.【答案】9x+8,等式的性质1【考点】等式的性质【解析】根据等式的基本性质即可解答.【解答】解:两边同时加上9x得:5x+9x−8=7,两边再同时加上8得:14x=5,故5x−8=7−9x两边同时加上9x+8,得到14x=15,根据是:等式的性质1.故答案是:9x+8,等式的性质1.14.【答案】6【考点】一元一次方程的应用——工程进度问题【解析】可设甲种蔬菜种植了x亩,则乙种蔬菜种植了(10−x)亩,等量关系为:甲种蔬菜总获利+乙种蔬菜总获利=18000.【解答】解:设甲种蔬菜种植了x亩,则乙种蔬菜种植了(10−x)亩,依题意得2000x+1500(10−x)=18000,解得x=6,答:甲种蔬菜种植了6亩.故答案为6.三、解答题(本题共计 5 小题,共计74分)15.【答案】去括号得:8a+8−6a+8=13,移项得:8a−6a=13−8−8,合并得:2a=−3,解得:a=−1.5;去分母得:2(2x−1)=2x+1−6,去括号得:4x−2=2x+1−6,移项得:4x−2x=1−6+2,合并得:2x=−3,解得:x=−1.5;去分母得:10y−5(y−1)=20−2(y+2),去括号得:10y−5y+5=20−2y−4,移项得:10y−5y+2y=20−4−5,合并得:7y=11,解得:y=117;方程整理得:20x3+83=7−15x,去分母得:20x+8=21−45x,移项得:20x+45x=21−8,合并得:65x=13,解得:x=0.2.【考点】解一元一次方程【解析】(1)方程去括号,移项合并,把a系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把y系数化为1,即可求出解;(4)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】去括号得:8a+8−6a+8=13,移项得:8a−6a=13−8−8,合并得:2a=−3,解得:a=−1.5;去分母得:2(2x−1)=2x+1−6,去括号得:4x−2=2x+1−6,移项得:4x−2x=1−6+2,合并得:2x=−3,解得:x=−1.5;去分母得:10y−5(y−1)=20−2(y+2),去括号得:10y−5y+5=20−2y−4,移项得:10y−5y+2y=20−4−5,合并得:7y=11,解得:y=117;方程整理得:20x3+83=7−15x,去分母得:20x+8=21−45x,移项得:20x+45x=21−8,合并得:65x=13,解得:x=0.2.16.【答案】解:(1)设从甲班调x人到乙班,则:58−x=46+x;(2)设卖出全部商品共得到x元,则:25x=400.【考点】由实际问题抽象出一元一次方程【解析】(1)根据要使甲、乙两班的人数相等,表示出两班的人数即可得出等式;后,得到400元”,得出等式即可.(2)根据“卖出全部商品的25【解答】解:(1)设从甲班调x人到乙班,则:58−x=46+x;(2)设卖出全部商品共得到x元,则:2x=400.517.【答案】解:设该电器的成本价为x元,依题意有x(1+30%)×80%=2080.【考点】由实际问题抽象出一元一次方程【解析】设该电器的成本价为x元,根据成本价×(1+30%)×80%=售价为2080元可列出方程.【解答】解:设该电器的成本价为x元,依题意有x(1+30%)×80%=2080.18.【答案】长方形的长为10cm,宽为4cm.【考点】一元一次方程的应用——工程进度问题【解析】设长方形的长是xcm,根据正方形的边长相等即可列出方程求解.【解答】解:设长方形的长是xcm,则宽为(14−x)cm,根据题意得:x−2=(14−x)+4,解得:x=10,14−x=14−10=4.19.【解析】(1)根据题意得出两个班联合购票比分别购票的差值即可;(2)设(1)班有xx人,根据题意列出方程解答即可.【解答】解:(1)(1)1320−102×10=1320−102×10=300300(元)答:两个班联合购票比分别购票要省300300元.(2)(2)设(1)(1)班有xx人,因为(1)(1)班有4040多人,不足5050人,所以(2)(2)班人数必定大于5050,则:14x+12(102−x)=132014x+12(102−x)=1320,解得:x=48x=48,102−48=54102−48=54.答:(1)(1)班有4848人,(2)(2)班有5454人.【答案】解:(1)(1)1320−102×10=1320−102×10=300300(元)答:两个班联合购票比分别购票要省300300元.(2)(2)设(1)(1)班有xx人,因为(1)(1)班有4040多人,不足5050人,所以(2)(2)班人数必定大于5050,则:14x+12(102−x)=132014x+12(102−x)=1320,解得:x=48x=48,102−48=54102−48=54.答:(1)(1)班有4848人,(2)(2)班有5454人.。

七年级数学上册《第三章 一元一次方程》单元测试卷-带答案(人教版)

七年级数学上册《第三章 一元一次方程》单元测试卷-带答案(人教版)

七年级数学上册《第三章 一元一次方程》单元测试卷-带答案(人教版)一、选择题1.要使关于x 的方程3(2)(1)x b a x -+=-是一元一次方程,必须满足( )A .0a ≠B .0b ≠C .3a ≠D .a 和b 为任意有理数2.已知32a b =,则下列选项中的等式成立的是( )A .94a b =B .32a b = C .3222a b -=-D .()()3121a b +=+3.方程537x x -=+移项后正确的是( )A .375x x +=+B .357x x +=-+C .375x x -=-D .375x x -=+4.把方程1263x x +-=去分母,下列变形正确的是( ) A .212x x -+= B .2(1)12x x -+= C .2112x x -+=D .2(1)2x x -+=5.新型冠状肺炎疫情正在全球蔓延肆虐,口罩成了人们生活中必不可少的物品,某口罩厂有26名工人,每人每天可以生产800个口罩面或1000个口罩耳绳.一个口罩面需要配两个耳绳,为使每天生产的口罩面和口罩耳绳刚好配套,设安排x 名工人生产口罩面,则下面所列方程正确的是( )A .21000(26)800x x ⨯-=B .1000(13)2800x x -=⨯C .1000(26)2800x x -=⨯D .1000(26)800x x -=6.关于x 的方程318a x +=的解为3x =-,则a 的值为( )A .4B .5C .6D .77.根据等式的性质,下列变形正确的是( )A .若a bc c=,则a =b B .若143x x+=,则3x +4x =1 C .若ab =bc ,则a =c D .若4x =a ,则x =4a8.已知关于x 的方程2x+a=1-x 与方程2x-3=1的解相同,则a 的值为( )A .2B .-2C .5D .-59. 下列方程变形中,正确的是( )A .方程1125x x--=,去分母得()51210x x --= B .方程()3251x x -=--,去括号得3251x x -=-- C .方程2332t =,系数化为1得1t = D .方程3221x x -=+,移项得3212x x -=-+10.为使全国人民都过上幸福的小康生活,近年来各地扶贫办致力于帮扶当地区特色产品走进市民的菜篮子,助力更多优质农产品走出地区、走向全国.已知有一扶贫农产品去年和今年两年的销售总额为180万元,其中该扶贫农产品去年的价格为15元/千克,今年的价格为12元/千克,今年的销售产量比去年增长了25%.今年该扶贫农产品销售( )千克. A .60000B .75000C .6000D .7500二、填空题11.已知x=2是关于x 的方程23x a x +=-的解,则a 的值是 . 12.若方程2x+a =1与方程3x ﹣1=2x+2的解相同,则a 的值为 . 13.若代数式2(3)x -的值与9x -的值互为相反数,x 的值为 .14.重百十周年店庆,小明妈妈以平时八折的优惠购买了一件衣服,节省24元,那么小明妈妈购买这件衣服实际花费了 元.三、计算题15.解方程:(1)()52323x x --=-;(2)212132x x -+=-. 四、解答题16.已知2x-12与x+3互为相反数,求x 的值. 17.方程 ()211x x -=- 的解与方程23x mx m -=+ 的解相同,求 m 的值. 18.在即将到来的“6.18年中大促”活动中,某商场计划对所有商品打折出售.已知某商品的进价是1500元,按照商品标价的八折出售时,利润率是12%,那么该商品的标价是多少元?五、综合题19.定义:若关于x 的一元一次方程ax =b 的解为b+a ,则称该方程为“和解方程”,例如:2x =﹣4的解为x =﹣2,且﹣2=﹣4+2,则该方程2x =﹣4是和解方程. (1)判断﹣3x =94是否是和解方程,说明理由; (2)若关于x 的一元一次方程 -x =m ﹣2是和解方程,求m 的值.20.计算:()32623⎛⎫-⨯--⎪⎝⎭■. 圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是12,请计算()3216232⎛⎫-⨯-- ⎪⎝⎭.(2)如果计算结果等于6,求被污染的数字.21.山西临猗县临晋镇西关小学校长张鹏飞领着全校 700 多名孩子跳鬼步舞,动作非常魔性.在网络走红后,学校纷纷效仿,某商场看准商机,需订购一批跳鬼步舞的舞蹈鞋,现有甲、乙两个供货商,均标价每双 100 元.为了促销,甲说:“凡来我处进货一律八折.“乙说:“凡来我处进货,如果超出 80 双,则超出的部分打七折”.(1)该商场购买多少双舞蹈鞋时,去甲、乙两个供货商处的进货价钱一样多? (2)若该商场要订购 300 双舞蹈鞋,应该选哪个供货商更省钱?为什么?参考答案与解析1.【答案】C【解析】【解答】解:方程3(x-2)+b=a(x-1)可化为(3-a)x+6+a=0∵关于x 的方程3(x-2)+b=a(x-1)是一元一次方程 ∴3-a≠0 ∴a≠3. 故答案为:C.【分析】方程3(x-2)+b=a(x-1)可化为(3-a)x+6+a=0,然后根据一元一次方程的概念可得关于a 的不等式,求解即可.2.【答案】C【解析】【解答】解:A 、由32a b =得96a b =,原变形错误,故本选项不符合题意;B 、由32a b =得23a b=,原变形错误,故本选项不符合题意; C 、由32a b =得3222a b -=-,原变形正确,故本选项符合题意; D 、由32a b =得不到()()3121a b +=+,原变形错误,故本选项不符合题意. 故答案为:C.【分析】等式的两边同时加上或减去同一个数或式子,等式依然成立;等式的两边同时乘以或除以(除数不为0)同一个数或式子,等式依然成立,据此一一判断得出答案.3.【答案】D【解析】【解答】解:移项,得:375x x -=+.故答案为:D .【分析】根据移项的计算方法和注意事项求解即可。

人教版七年级数学第三章《一元一次方程》单元测试带答案解析

人教版七年级数学第三章《一元一次方程》单元测试带答案解析
根据题意得: ( ) .
故选:A.
【点睛】本题考查了一元一次方程的应用,找准等量关系是解题的关键.
10.C
【分析】要求他一次性购买以上两次相同的商品,应付款多少元,就要先求出两次一共实际买了多少元,第一次购物显然没有超过100,即是80元,第二次就有两种情况,一种是超过100元但不超过300元一律9折;一种是购物超过300元一律8折,依这两种计算出它购买的实际款数,再按第三种方案计算即是他应付款数.
7.D
【分析】根据等式的基本性质可判断出选项正确与否;等式的基本性质:①等式两边同时加上(或减去)同一个整式,等式仍然成立;②等式两边同时乘或除以同一个不为0的整式,等式仍然成立.
【详解】解:A.根据等式性质,a=b两边都加c,即可得到a+c=b+c,故选项错误,不符合题意;
B.如果 ,那么a+c−c=b−c-c,即a=b-2c,故选项错误,不符合题意;
C.如果 ,那么 成立的条件是c≠0,原变形错误,故选项错误,不符合题意;
D.如果 ,那么a=b,故选项正确,符合题意;
故选:D.
【点睛】此题考查了等式的基本性质,解题的关键是熟练运用等式的基本性质.
8.C
【分析】设十字框最中间的数为x,表示出其余数字,根据之和为选项中的数字求出x的值,x的值符合题意即可.
人教版七年级数学第三章《一元一次方程》单元测试
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.若关于x的方程 的解是 ,则a的值为()
A. B.9C. D.1
2.如图为某披萨店的公告.某会员购买一个榴莲披萨付款83.6元,则一个榴莲披萨调价前的原价为()

人教2024版七年级上册数学 第五章 一元一次方程 单元测试卷

人教2024版七年级上册数学   第五章    一元一次方程    单元测试卷

人教2024版七年级上册数学第五章一元一次方程单元测试卷一.选择题1.已知关于x的方程3x+a−2=2的解为x=5,则a的值为()A.1B.−11C.−3D.−132.某商品的标价为300元,打8折后销售仍获利40元,该商品的进价为()A.220元B.200元C.180元D.160元3.下列方程变形中,正确的是()A.由y3=0,得y=3B.由2x=3,得x=23C.由2a−3=a,得a=3D.由2b−1=3b+1,得b=24.甲组有33个人,乙组有27个人,从乙组调若干人到甲组后,甲组的人数恰好是乙组人数的3倍,则变化后乙组的人数有()人.A.12B.13C.14D.155.一船在静水中的速度为20km/h,水流速度为4k m/h,从甲码头顺流航行到乙码头,再返回甲码头共用5h.若设甲、乙两码头的距离为x km,则下列方程正确的是()A.x20+x4=5B.20x+4x=5C.(20+4)x+(20-4)x=5D.x20+4+x20−4=56.某商场举行促销活动,全场商品一律打八折销售.杨老师买了一件商品,比标价少付了50元,那么他购买这件商品花了()A.250元B.200元C.150元D.100元7.如图,在数轴上,点A、B表示的数分别为−12,16,(规定数轴上两点A、B之间的距离记为AB).若点C在A,B两点之间,且满足AC−BC=4,则点C对应的数是()A.1B.2C.4D.68.我国古代《孙子算经》中记载了“多人共车”问题:今有三人共车,二车空,二人共车,九人步,问人与车各几何?其大意是:若3个人乘一辆车,则空2辆车;若2个人乘一辆车,则有9个人要步行,问人与车各是多少?若设有x辆车,则可列方程是()A.x3+2=x−92B.3(x−2)=2x+9C.x−23=x−92D.3(x+2)=2x−9二.填空题9.已知x=2是关于x的方程3a+2x=9−x的解,那么关于y的方程2−ay=−1+2y的解为.10.列等式表示“x的3倍与5的和等于x的4倍与2的差”为.11.乐乐在解关于x的方程2x+15−1=x+m2去分母时,方程左边的-1没有乘10,因而求得方程的解为x=4,则这个方程的正确解为12.甲、乙两班共有48人,若从甲班调3人到乙班,此时甲乙两班人数正好相等.那么甲班原来有人.13.幻方最早源于我国,古人称之为纵横图,如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a的值为.−1−6−a02a4a−5−2a−3三.计算题14.解方程:(1)2x−13+1=x−22(2)5x−2x−1=x−2四.解答题15.老师在黑板上出了一道解方程的题:2x−13=1−x+24,东东马上举起了手,要求到黑板上去做,他是这样做的:4(2x−1)=1−3(x+2),①8x−4=1−3x−6,②8x+3x=1−6+4,③11x=−1,④x=−111.⑤老师说:东东解一元一次方程的一般步骤都掌握了,但解题时有一步做错了,请你指出他错在第步(填序号),错误的原因是.现在,请你细心地解下列方程x−32−2x+13=1.16.某车间有28名工人,生产特种螺栓和螺帽,一个螺栓的两头各套上一个螺帽配成一套,每人每天平均生产螺栓12个或螺帽18个.问要有多少工人生产螺栓,其余的工人生产螺帽,才能使一天所生产的螺栓和螺帽刚好配套?17.某校七年级准备观看电影,由各班班长负责买票,每班人数都多于40人,票价每张36元.一班班长问售票员买团体票是否可以优惠,售票员说:“40人以上的团体票有两种优惠方案可选择.方案1:全体人员可打八折;方案2:若打九折,有5人可以免票.”(1)若一班有43名学生,则班长该选择哪个方案?(2)二班班长思考了一会儿说,你知道二班有多少人吗?18.某企业已收购毛竹52.5吨,根据市场信息,将毛竹直接销售,每吨可获得100元,如果对毛竹进行粗加工,每天可加工8吨,每吨可获得1000元;如果进行精加工,每天加工0.5吨,每吨可获得5000元.由于受条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售,为此研究了两种方案:(1)方案一:将毛竹全部粗加工后销售,则可获利元(2)方案二:30天时间都进行精加工,未来得及加工的毛竹,在市场上直接销售,则可获利元(3)问:是否存在第三种方案,将部分毛竹精加工,其余毛竹粗加工,并且恰好在30天内完成?若存在,求销售后所获利润;若不存在,请说明理由.19.乐乐用的练习本可以到甲、乙两家商店购买,已知两家商店的标价都是每本2元,甲商店的优惠条件是购买10本以上,从第11本开始按标价的70%出售;乙商店的优惠条件是从第一本起按标价的80%出售.(1)设乐乐要购买x(x>10)本练习本,则当乐乐到甲商店购买时,须付款元,当到乙商店购买时,须付款元.(2)买多少本练习本时,两家商店付款相同?(3)乐乐准备买50本练习本,为了节约开支,选择哪家更合算?。

人教版七年级数学上册《第五单元-一元一次方程》单元测试题-附答案

人教版七年级数学上册《第五单元一元一次方程》单元测试题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.一元一次方程2x-1=7的解是()A.x=3B.x=4C.x=5D.x=62.下列变形中,正确的是()A.若5x−6=7,则5x=7−6B.若5x−3=4x+2,则5x−4x=2+3C.若−3x=5,则x=−35D.若x−13+x+12=1,则2(x−1)+3(x−1)=13.把方程2x−14=1−3−x8去分母后,正确的结果是().A.2x−1=1−(3−x)B.2(2x−1)=1−(3−x)C.2(2x−1)=8−(3−x)D.2(2x−1)=8−(3+x)4.若关于x的方程ax-4=a的解是x=-3,则a的值是()A.-2B.2C.-1D.15.要组织一场篮球联赛,每两队之间只赛一场,计划安排15场比赛,如果邀请x个球队参加比赛,根据题意,列出方程为()A.x(x−1)=15B.x(x+1)=15C.x(x−1)2=15D.x(x+1)2=156.我国元代朱世杰所著的《算学启蒙》一书中,有一道题目是“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之.”译文:跑得快的马每日走240里,跑得慢的马每日走150里,慢马先走12天,快马几天可以追上慢马?则下列回答正确的是().A.15天B.16天C.18天D.20天7.如图一个正方形先剪去宽为4的长方形,再剪去宽为5的长方形,且剪下来的两个长方形面积相等,那么原正方形的边长为()A.20B.16C.15D.138.若关于x的方程kx+26=12x−23的解为正整数,则所有符合条件的整数k的和为()A.0B.3C.−2D.−39.如图,这是一个用50个奇数排成的数阵,用三角形的框去框住四个数,并求出这四个数的和.在下列给出的选项中,可能是这四个数的和的是()A.146B.150C.198D.210二、填空题10.如果3x−2与2x+1的值相同;那么x=.11.将方程x+24=2x+36的两边同乘12,可得到3(x+2)=2(2x+3),这种变形叫,其依据是.12.一张桌子由一个桌面和四条脚组成,1立方米的木材可制成桌面50张或制作桌脚300条,现有10立方米的木材,问应如何分配木材,可以使桌面和桌脚配套?设用x立方米的木材做桌面,可列方程.13.如果x=4是方程ax=a+3的解,那么a的值为 .14.为了搞活经济,商场将一种商品A按标价的9折出售(即优惠10%)仍可得利润10%,若商品标价为33元,那么该商品的进货价为 .15.如图一个简单的数值运算程序,当输入x的值-1时,则输出的答案是5,则k的值是.16.爸爸今年的年龄是儿子年龄的13倍,6年后,儿子年龄是爸爸年龄的14,则今年爸爸岁,儿子岁.17.如图,两人沿着边长为70米的正方形,按A→B→C→D→A…的方向行走.甲从点A以65米/分的速度、乙从点B以72米/分的速度行走,甲、乙两人同时出发,当乙第一次追上甲时,将在正方形的边上.三、解答题18.解方程(1)4x+3=5x−1(2)3−2(x+1)=2(x−3)(3)x−24−2x−36=1(4)x−1−x3=x+26−119.小亮是一名七年级学生,在解方程2x−13−2x+m2=10x+16−1时,由于忽视了去分母后分式的分子要加括号,结果方程变形为4x−2−6x+3m=10x+1−6,从而求得方程错误的解为x=12,你能求出m的值吗?如果能,请求出m的值和方程正确的解.20.在大约1500年前的《孙子算经》中记载了这样一个有趣的问题:今有鸡兔同笼,上有头三十五,下有足九十四.问鸡、兔各多少.21.阅读下面的解题过程:解方程:|3x|=6.解:分两种情况:(1)当3x≥0时,原方程可化为一元一次方程3x=6,解得x=2;(2)当3x<0时,原方程可化为一元一次方程﹣3x=6,解得x=﹣2;综合(1)、(2),方程的解为x=2或x=﹣2.请仿照上面例题的解法,解方程:3|x﹣1|﹣2=10.22.某商品的进价为200元,标价为300元,打折销售后的利润率为5%,问此商品是按几折销售的?23.云南省某工厂制作一批零件,由一名工人做要80h完成,现计划由一部分工人先做2h,然后增加5名工人与他们一起做8h,完成了这项工作.假设这些工人的工作效率相同,应先安排几名工人工作?24.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定对居民生活用电实施“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时的部分a超过150千瓦时,但不超过300千瓦时的部分0.6超过300千瓦时的部分a+0.3实施“阶梯电价”收费以后,该市居民陈先生家积极响应号召节约用电,10月用电100千瓦时,交电费50元.(1)a=.(2)陈先生家11月用电280千瓦时,应交费多少元?(3)若陈先生家12月份与11月的电费相差60元,求陈先生家12月份用电量是多少?25.在一元一次方程中,如果两个方程的解相同,则称这两个方程为同解方程.(1)若关于x的两个方程2x=4与mx=m+1是同解方程,求m的值;(2)已知关于x的方程9x−3=kx+14有整数解,那么满足条件的所有整数k=_______.(3)若关于x的两个方程5x+343(m+1)=mn与2x−mn=−193(m+1)是同解方程,求此时符合要求的正整数m,n的值.参考答案1.【答案】B2.【答案】B3.【答案】C4.【答案】C5.【答案】C6.【答案】D7.【答案】A8.【答案】A9.【答案】D10.【答案】D11.【答案】去分母等式的基本性质(或方程的变形规则)或填:等式的两边都乘以(或都除以)同一个数(除数不能为0)所得结果仍是等式。

人教版七年级上册数学 第三章 一元一次方程 单元训练题 (2)(有解析)

第三章 一元一次方程 单元训练题 (2)一、单选题1.关于x 的方程1514()2323mx x -=-有负整数解,则所有符合条件的整数m 的和为( ) A .5B .4C .1D .-12.某商品打七折后价格为a 元,则原价为( ) A .a 元B .107a 元 C .30%a 元 D .710a 元 3.下列等式中是一元一次方程的是()A .26x x +=B .0x y -=C .0x =D .1123x =+ 4.某项工程,甲单独完成要45天,乙单独完成要30天.开始时由甲先单独做,从第10日起,乙加入同甲合做,求甲、乙两人合做多少天能完成全部工程.设甲、乙合做x 天完成全部工程,则符合题意的方程是( ) A .914530x x++= B .1014530x x++= C .1014530x += D .14530x x += 5.下列所给条件,不能列出方程的是( ) A .某数比它的平方小6 B .某数加上3,再乘以2等于14 C .某数与它的12的差 D .某数的3倍与7的和等于296.下列等式变形不正确的是( ) A .若33x y =,则x y = B .若33x y -=-,则ax ay = C .若x y =,则2211x ya a =++ D .若ax ay =,则x y =7.某电视台组织知识竞赛,共设有20道选择题,各题分值相同,每题必答.下表记录了3个参赛者的得分情况,如果参赛者F 得76分,则他答对的题数为( )A .16题B .17题C .18题D .19题8.已知等式ax +c =ay +c ,则下列等式不一定成立的是( )A .ax =ayB .x =yC .m -ax =m -ayD .2ax =2ay9.下列各题中的变形,属于移项的是( ) A .由221x y --,得122y x --+ B .由615x x -=+,得615x x -=+ C .由432x x -=-,得324x x -=- D .由22x x -=-,得22x x +=+ 10.下列解方程的过程中,移项正确的是( ) A .由,得 B .由,得 C .由,得 D .由,得11.如图,某商品实施促销“第二件半价”,若购买2件该商品,则相当于这2件商品共打了( )A .5折B .5.5折C .7折D .7.5折12.互联网“微商”经营已成为大众创业新途径,某微商将一件商品按进价上调50%标价,再以标价的八折售出,仍可获利30元,则这件商品的进价为( ) A .80元B .100元C .150元D .180元二、填空题13.现有一段河道整治任务由A 、B 两工程队完成.A 工程队单独整治该河道要16天才能完成;B 工程队单独整治该河道要24天才能完成.现在A 工程队单独做6天后,B 工程队加入合做完成剩下的工程,问A 工程队一共做了多少天?如果设A 工程队一共做了x 天,可列方程为____________14.一个“数值转换机”按如图的程序计算,例如:输入的数为36,则经过一次运算即可输出结果106.若输出的结果127是经过两次运算才输出的,则输入的数是_____.15.根据图中给出的信息,可列方程是______. 小乌鸦:老乌鸦,我喝不到大量筒中的水.老乌鸦:小乌鸦,你飞到装有相同水量的小量筒,就可以喝到水了!16.润洋超市对某种商品实行9折优惠后的价格为90元,则这件商品的原价是_____________元.17.若(n ﹣2)x |n|﹣1+5=0是关于x 的一元一次方程,则n =_____.18.已知关于x 的方程23mx m x +=-的解满足方程11x -=,则m =___________.三、解答题19.某丝巾厂家70名工人义务承接了第十六届亚运会上中国志愿者手上、脖子上的丝巾的制作任务.已知每人每天平均生产手上的丝巾1800条或者脖子上的丝巾1200条,1条脖子上的丝巾要配2条手上的丝巾.(1)为了使每天生产的丝巾刚好配套,应分配多少名工人生产手上的丝巾,多少名工人生产脖子上的丝巾?(2)在(1)的方案中,能配成______套.20.2019年12月14日,中国教育学会第32次学术年会在山东济南召开,某校选派16名教师前往参会,准备用一辆七座汽车(除司机外限载6人,从学校出发),送16位教师去高铁站与机场,其中11位教师准备一起到学校正东方向25千米处的机场,另外5位教师准备一起到学校正东方向15千米处的高铁站,其中去机场的老师中有6人因工作需要需先赶去机场,已知这辆汽车的平均速度为45千米/小时,教师步行的平均速度为5千米/小时.(注:不计教师上、下车时间,教师上车后,中途不下车,汽车到达目的地后立即沿原路返回)(1)求汽车送第一批教师到达机场所用的时间.(2)若只有这辆汽车送这16位教师去目的地后返回学校,请设计一种方案使该车所用总时间最短,并求出这个最短时间. 21.下面为某年11月的日历: 日一二 三 四 五 六1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24252627282930(1)在日历上任意圈出一个竖列上相邻的3个数;①设中间的一个数为a,则另外的两个数为、;②若已知这三个数的和为42,则这三天都在星期;(2)在日历上用一个小正方形任意圈出其中的9个数,设圈出的9个数的中心的数为b,若这9个数的和为153,求21b-的值.22.某园林的门票每张10元,一次性使用.考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年).年票分A、B、C三类,A类年票每张120元,持票者进人园林时,无需再购买门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式.最多几次?(2)求一年中进入该园林超过多少次时,购买A类年票比较合算.23.为保持水土,美化环境,W中学准备在从校门口到柏油公路的这一段土路的两侧栽一些树,并要求土路两侧树的棵数相等间距也相等,且首、尾两端均栽上树,现在学校已备好一批树苗,若间隔30米栽一棵,则缺少22棵;若间隔35米栽一棵,则缺少14棵(1)求学校备好的树苗棵数.(2)某苗圃负责人听说W中学想在校外土路两旁栽树的上述情况后,觉得两树间距太大,既不美观,又影响防风固沙的效果,决定无偿支援W中学300棵树苗.请问,这些树苗加上学校自己备好的树苗,间隔5米栽一棵,是否够用?24.一书店按定价的五折购进某种图书800本,在实际销售中,500本按定价的七折批发售出,300本按八五折零售,若这种图书最终获利8200元,问该图书批发与零售价分别是多少元?25.解方程:(1)4x﹣2=3﹣x;(2)243x+﹣312x-=126.如图①,已知OC是∠AOB内部的一条射线,M、N分别为OA、OB上的点,线段OM、ON同时开始旋转,线段OM以30度/秒绕点O逆时针旋转,线段ON以10度/秒的速度绕点O顺时针旋转,当OM旋转到与OB重合时,线段OM、ON都停止旋转.设OM 的旋转时间为t秒.(1)若∠AOB=140°,当t=2秒时,∠MON=,当t=4秒时,∠MON=;(2)如图②,若∠AOB=140°,OC是∠AOB的平分线,求t为何值时,两个角∠NOB与∠COM中的其中一个角是另一个角的2倍.(3)如图③,若OM、ON分别在∠AOC、∠COB内部旋转时,总有∠COM=3∠CON,请直接写出BOCAOB∠∠的值.【答案与解析】一、单选题1.D解析:D先解方程,再利用关于x的方程15142323mx x⎛⎫-=-⎪⎝⎭有负整数解,求整数m即可.解方程1514 2323 mx x⎛⎫-=-⎪⎝⎭去括号得,1512 2323 mx x-=-移项得,1152 2233 mx x-=-,合并同类项得111 22m x⎛⎫-=⎪⎝⎭,系数化为1,2(1)1x mm=≠-,∵关于x的方程15142323mx x⎛⎫-=-⎪⎝⎭有负整数解,∴整数m为0,-1.∴它们的和为:0+(-1)=-1.故选:D.【点睛】本题主要考查了一元一次方程的解,解题的关键是用m表示出x的值.2.B解析:B直接利用打折的意义表示出价格即可得出答案.设该商品原价为x元,∵某商品打七折后价格为a元,∴原价为:0.7x=a,则x=107a(元),故选B.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键. 3.C试题解析:A. 是一元二次方程,故错误; B. 是二元一次方程,故错误; C. 是一元一次方程,故正确; D. 是分式方程,故错误; 故选C.点睛:一元一次方程:含有一个未知数,未知数的最高次数是1的整式方程.4.A解析:A设甲、乙合做x 天完成全部工程,根据甲完成的部分+乙完成的部分=整项工程(单位1),即可得出关于x 的一元一次方程,求解即可. 设甲、乙合做x 天完成全部工程, 依题意,得:914530x x++=. 故选:A . 【点睛】本题考查一元一次方程的应用.找准等量关系,正确列出一元一次方程是解题的关键.此问题中,若总工程量未知,一般设总工程量为单位1.5.C解析:C根据题意列出各选项中的算式,再根据方程的定义对各选项分析判断后利用排除法求解. 设某数为x ,A 、26x x -=,是方程,故本选项错误;B 、2314x +=(),是方程,故本选项错误;C 、12x x -,不是方程,故本选项正确; D 、3729x +=,是方程,故本选项错误. 故选C . 【点睛】本题考查的知识点是方程的定义,解题关键是依据方程的定义.含有未知数的等式叫做方程.6.D解析:D根据等式的性质进行判断.A. 等式3x=3y 的两边同时除以3,等式仍成立,即x=y ;B.等式33x y -=-的两边同时加上3,等式仍成立,即x=y ,两边都乘a.则ax ay =;C.因为a 2+1≠0,所以当x y =时,两边同时除以a 2+1,则可以得到2211x ya a =++. D.当a=0时,等式x=y 不成立,故选:D .考查了等式的性质.性质1:等式两边加同一个数(或式子)结果仍得等式;性质2:等式两边乘同一个数或除以一个不为零的数,结果仍得等式.7.A解析:A观察表中信息,求得:答对一题得5(分),答错一题扣1(分)根据相等关系“答对得分-答错扣分=总得分”可列方程求解.答对一题得100÷20=5(分),答错一题得94﹣5×19=﹣1(分).设参赛者F答对了x道题目,则答错了(20﹣x)道题目,依题意,得:5x﹣(20﹣x)=76,解得:x=16.故选:A.【点睛】本题考查了一元一次方程的实际应用-和差倍分问题. 关键是理清题意,找准等量关系. 8.B解析:B等式两边同时减c,得ax=ay,故A成立;ax=ay两边同时乘-1,得-ax=-ay,两边再同时加m,得m-ax=m-ay,故C成立;ax=ay两边同时乘2,得,2ax=3ay,故D成立;在ax=ay中,当a=0时,x≠y,故B不一定成立,故选B.【点睛】本题主要考查等式的基本性质,熟记等式的基本性质是解题的关键.9.D解析:D根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立,可得答案.解:A、是加法交换律,故A错误;B、是加法交换律,故B错误;C、等式的对称性,故C错误;D、两边都加(x+2),是移项,故D正确;故选:D.【点睛】本题考查了等式的性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.10.D解析:D把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。

七年级数学 第三章一元一次方程单元测试题含答案

七年级数学第三章一元一次方程单元测试题含答案人教版七年级数学第三章一元一次方程单元测试题一、选择题(每题3分,共24分)1.下列等式中,一元一次方程的个数为()A.1.B.2.C.3.D.42.代数式x-(x+1)的值等于3时,x的值是()A.4.B.1.C.-4.D.-13.下列变形正确的是()A.21/(x-5)=x+3变形得4x-5=3x+3B.32/(2(x-1))=2/(x+3)变形得4x-1=2x+6C.3x=2变形得x=2/3D.以上都不正确4.解方程2/(6-x)=1/3,去分母,得()A.4x-5=x+2变形得3x=7B.2-x-3=3xXXX(x+3)=3xD.2-x+3=3x5.下列方程中,和方程x-2=3的解相同的方程是()A.2x-3=5B.4x+1=15C.4x+4=24D.3x-1=76.一份数学试卷,有25道选择题,做对一道题得4分,做错一道题倒扣1分,某同学做了全部试题,得了80分,他共做对()A.18道。

B.19道。

C.20道。

D.21道7.有甲、乙两桶油,从甲倒出19升到乙桶后,乙桶比甲桶还少6升,乙桶原有32升,问甲桶原来有油()A.76升。

B.60升。

C.42升。

D.36升8.若a、b互为相反(a≠0),则一元一次方程ax+b=0的解是()A.1.B.-1.C.-1或1.D.任意有理数二、填空题(每小题3分,共24分)9.如果x=-1是方程x+a=8的解,则a=9.10.某商品标价605元,打6折(按标价的60%)售出,仍可获利10%,则该商品的进价是500元.11.当x=1时,代数式(1-x)/2与代数式(x+1)/2的值相等.12.已知:x-y+1+(x+4)/(y+1)=3,则x=1,y=-1.13.写出一个一元一次方程,使它的解为2,未知数的系数为负整数,方程为-3x+6=0.14.某工厂今年第一季度的产值2538万元,比去年同季度增产了8%,则去年第一季度的产值是2345万元.15.一项工程,甲单独完成要10天,乙单独完成要15天,则由甲先做5天,然后甲、乙合做余下的部分还需要6天.某人顺流从A地到B地,再逆流从B地到C地,总共船行时间为3小时。

人教版七年级数学上册第三章《一元一次方程》单元练习题(含答案)

人教版七年级数学上册第三章《一元一次方程》单元练习题(含答案)一、单选题1.若使方程(2)1m x +=是关于x 的一元一次方程,则m 的值是( ) A .2m ≠-B .0m ≠C .2m ≠D .2m >-2.已知下列方程:①22x x -=;②0.31x =;③512xx =+;④243x x -=;⑤6x =;⑥20.x y +=其中一元一次方程的个数是( ) A .2B .3C .4D .53.一个长方形的周长为28cm ,若把它的长减少1cm ,宽增加3cm ,就变成一个正方形,则这个长方形的面积是( ) A .482cmB .452cmC .402cmD .332cm4.疫情无情人有情,爱心捐款传真情.某校三个年级为疫情重灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的25,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1916元,求其他两个年级的捐款数若设七年级捐款数为x 元,则可列方程为( )A .65191652x x x ++=B .21191653x x x ++=C .2191635x x x ++= D .25191652x x x ++= 5.若关于x 的方程()5221x m x -=-+的解是2x =-,则m 的值为( ) A .-3 B .-5C .-13D .56.小明解方程12123x x +--=的步骤如下: 解:方程两边同乘6,得()()31122x x +-=-① 去括号,得33122x x +-=-② 移项,得32231x x -=--+③ 合并同类项,得4x =-④以上解题步骤中,开始出错的一步是( ) A .①B .②C .③D .④7.在实数范围内定义运算“☆”:1a b a b =+-☆,例如:232314=+-=☆.如果21x =☆,则x 的值是( ).A .1-B .1C .0D .28.《孙子算经》中有一道题,原文是:今有三人共车,二车空:二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车:若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,可列方程( ) A .2932x x+=- B .9232x x -+=C .9232x x +-=D .2932x x-=+ 9.甲在乙后12千米处,甲的速度为7千米/小时,乙的速度为5千米/小时,现两人同向同时出发,那么甲从出发到刚好追上乙所需要时间是( ) A .5小时B .1小时C .6小时D .2.4小时10.下列运用等式的性质对等式进行的变形中,错误的是( )A .若()()2211a x b x +=+,则a b =B .若a b =,则ac bc =C .若a b =,则22a b c c= D .若x y =,则33x y -=-11.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术,其中方程术是其最高的代数成就.《九章算术》中有这样一个问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”译文:“相同时间内,走路快的人走100步,走路慢的人只走60步.若走路慢的人先走100步,走路快的人要走多少步才能追上?(注:步为长度单位)”设走路快的人要走x 步才能追上,根据题意可列出的方程是( ) A .60100100x x =-B .60100100x x =+C .10010060x x =+ D .10010060x x =- 12.在做科学实验时,老师将第一个量筒中的水全部倒入第二个量筒中,如图所示,根据图中给出的信息,得到的正确方程是( ).A .π×(92)2×x =π×(52)2×(x+4)B .π×92×x =π×92×(x+4)C .π×(92)2×x =π×(52)2×(x-4)D .π×92×x =π×92×(x-4)二、填空题(共0分)13.有一个一元一次方程:11623x x -=-■,其中“■”表示一个被污染的常数.答案注明方程的解是32x =-,于是这个被污染的常数是______.14.“格子乘法”作为两个数相乘的一种计算方法,最早在15世纪由意大利数学家帕乔利提出,在明代数学家程大位著的《算法统宗》一书中被称为“铺地锦”.例如:如图1,计算4671⨯,将乘数46写在方格上边,乘数71写在方格右边,然后用乘数46的每位数字乘以乘数71的每位数字,将结果记入相应的方格中,最后沿斜线方向相加,得3266.如图2,用“格子乘法”计算两个两位数相乘,则k =______.15.数轴上的三个点,若其中一个点与其它两个点的距离满足2倍关系,则称该点是其它两个点的“友好点”,这三点满足“友好关系”.已知点A 、B 表示的数分别为﹣2、1,点C 为数轴上一动点.(1)当点C 在线段AB 上,点A 是B 、C 两点的“友好点”时,点C 表示的数为_______; (2)若点C 从点B 出发,沿BA 方向运动到点M ,在运动过程中有4个时刻使A 、B 、C 三点满足“友好关系”,设点M 表示的数为m ,则m 的范围是_______.16.关于x 的一元一次方程230x kx --=的解是正整数,整数k 的值是____________. 17.一群学生参加夏令营活动,男生戴白色帽子,女生戴红色帽子,休息时他们坐在一起,大家发现了一个有趣的现象:每位男生看到的白色与红色的帽子一样多,而每位女生看到的白色帽子数量是红色的2倍.根据信息,这群学生共有______人. 18.已知a ,b 为定值,且无论k 为何值,关于x 的方程2132-+=-kx a x bk的解总是x =2,则ab =_________.三、解答题19.解方程 (1)324x -= (2)2141168x x --=+20.已知关于x 的一元一次方程320192019xx m +=+的解为2x =,那么关于y 的一元一次方程12019(1)32019yy m -+-=-的解y =______.21.以下是圆圆解方程1323+--x x =1的解答过程. 解:去分母,得3(x +1)﹣2(x ﹣3)=1. 去括号,得3x +1﹣2x +3=1. 移项,合并同类项,得x =﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.22.根据市场调查,某厂某种消毒液的大瓶装(500g) 和小瓶装(250g) 两种产品的销售数量(按瓶计算)比为2:5.该厂每天生产这种消毒液22.5吨,这些消毒液应分装大、小瓶两种产品各多少瓶?23.为积极响应“创建文明城”的号召,某校七年级学生组建了一支“创建文明城”志愿者服务队.其中30%的同学去做“文明劝导、礼让他人”的志愿服务,40%的同学去做“清洁庭院、美化家园”的志愿服务,剩下的150名同学去做“传播文明、奉献爱心”的志愿服务.该校七年级共有多少名同学参加了这次活动?24.粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.25.新冠疫情肆虐春城期间,全市有大批志愿者不畏艰险加入到抗疫队伍中来.“大白”们的出现,给封控小区居民带来了信心,为他们的生活提供了保障.已知某社区在甲小区原有志愿者23名,在乙小区原有志愿者17名.现有来自延边州支援该社区的志愿者20名,分别去往甲小区和乙小区支援,结果在甲小区的志愿者人数比乙小区志愿者人数的三分之二还多5名,求延边州志愿者去往甲小区的人数.26.接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每人每小时生产疫苗500剂,但受某些因素影响,某车间有10名工人不能按时到厂.为了应对疫情,该车间其余工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天能完成预定任务.(1)求该车间当前参加生产的工人有多少人;(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该车间共780万剂的生产任务,问该车间还需要多少天才能完成任务.27.对数轴上的点P进行如下操作:将点P沿数轴水平方向,以每秒m个单位长度的速度,向右平移n秒,得到点P',称这样的操作为点P的“m速移”点P'称为点P的“m速移”点.(1)点A 、B 在数轴上对应的数分别是a 、b ,且()25150a b ++-=. ①若点A 向右平移n 秒的“5速移”点A '与点B 重合,求n ;②若点A 向右平移n 秒的“2速移”点A '与点B 向右平移n 秒的“1速移”点B '重合,求n ; (2)数轴上点M 表示的数为1,点C 向右平移3秒的“2速移”点为点C ',如果C 、M 、C '三点中有一点是另外两点连线的中点,求点C 表示的数;(3)数轴上E ,F 两点间的距高为3,且点E 在点F 的左侧,点E 向右平移2秒的“x 速移”点为点E ',点F 向右平移2秒的“y 速移”点为点F ',如果3E F EF ''=,请直接用等式表示x ,y 的数量关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章《一元一次方程》检测题
姓名: 成绩
一、选择题(每小题4分,共40分)
1.如果4x 2-2m
= 7是关于x 的一元一次方程,那么m 的值是( )
A 、- 12
B 、12
C 、0
D 、1 2.在下列方程中,解是2的方程是( )
A 、3x=x+3
B 、-x+3=0
C 、2x=6
D 、5x-2=8
3.方程x 9
+1=0的解是( ) A 、-10 B 、-9 C 、9 D 、19
4.将方程 - 34 x=12
的未知数的系数化为1,得( ) A 、x= - 83 B 、x= 83 C 、x = 23 D 、- 23
5.一个长方形的周长是40㎝,若将长减少8㎝,宽增加2㎝,长方形就变成了正方形,则正方形的边长为( )
A 、6㎝
B 、7㎝
C 、8㎝
D 、9㎝ 6.如果一元一次方程ax+b=0(a ≠0)的解是正数,则( )
A 、a 、b 为异号
B 、b 大于0
C 、a 、b 为同号
D 、a 小于0 7.下列说法中,正确的是( )
A 、若ac=bc ,则a=b
B 、若 a c = b c ,则a=b
C 、若a 2=b 2,则a=b
D 、若∣a ∣=∣b ∣,则a=b
8.甲比乙大15岁。

5年前,甲的年龄是乙的年龄第二2倍,则乙现在的年龄是 ( )
A 、10岁
B 、15岁
C 、20岁
D 、30岁
9.下列不是一元一次方程的( )
A 、5x+3=3x+7
B 、1+2x=3
C 、2x 3 +5x = 3
D 、x= -7 10.已知∣m -2∣+(n -1)2 = 0,关于x 的方程2m+x=n 的解是( )
A 、x=-4
B 、x=-3
C 、x=-2
D 、x=-1
二、填空题(每小题4分,共20分)
11. 叫一元一次方程。

12.比a 的3倍大5的数等于a 的4倍,列方程是: 。

13.已知关于x 的方程x + k = 1的解为x= 5 ,则 -∣k+2∣= 。

14.某数减去它的23 等于13
,则这个数是 。

15.方程由2x+6=3x -7,变形为2x -3x=-7-6 ,这叫 ,依据是
三、解答下列各题:(注意书写步骤)(每小题5分,共40分)
16.化简:3x -(-2x )-(4+x )
17.解方程:2x+3=x+5 18. 解方程:18x+3x -4x=18-2×3
19.解方程:-3(x -1)= 6 20.3y-14 -1 = 5y-76
21.植树节,甲、乙两班共种树55棵,其中甲班植的树比乙班的一半多10棵,甲、乙两班各植多少棵树?
22.A 、B 两地相距1.8㎞,甲、乙两人从A 、B 两地同时出发相向而行,甲骑自行车的速度为12㎞/h ,乙步行,经过6分钟两人相遇,求乙的速度。

23.根据下面的两种移动电话计费方式表,考虑下列问题。

(1) 一个月本地通话时间150分和300分,计算按两种移动电话计费方式各需要交费多少元?
(2) 会出现两种移动电话计费方式收费一样吗?请你说明在怎样选择下会省钱?。

相关文档
最新文档