三阶行列式展开
高二数学三阶行列式2

二阶三阶行列式

a1 1 a1 2 a1n
A a21 a22 a2n
an1 an2 ann
2.10
1
a a τ j1 j2 jn 1 j1 2 j2
a nj n
j1 j2 jn
例3 计算上三角行列式
a11 a12
a1n
a22
a2n
ann
解 分析
展开式中项的通项是 α α 1 j1 2 j2 αnjn .
(2)每项中三个元素的行指标构成一个三级排列, 在式(2.6)中,行指标的排列都是标准排列1 2 3, 列指标构成的三阶排列各不相同,因此式(2.6) 中每项的一般形式为:
2.7
例如 a13a21a32 列标排列的逆序数为
312 1 1 2, 偶排列 正号
a11a23a32
列标排列的逆序数为
132 1 0 1, 奇排列 负号,
a11 a12 a13
a21 a22 a23 (1) ( j1 j2 j3 ) a1 j1 a2 j2 a3 j3 .
a31 a32 a33
三、n阶行列式的定义
定义1.4
由 n2 个数组成的n 阶行列式等于所有
例如,排列2413经过2与3兑换后,就得 到排列3412;排列32415经过2与1兑换 后,就得到排列31425.
由计算逆序数可知,奇排列2413变成了 偶排列3412;而偶排列32415却变成了 奇排列31425.
定理1.1
任一排列经过一次对换后必改变其奇偶性.
证明 设排列为
a1al ab b1bm
其中不为零的项只有 α1 1α2 2 αnn .
a11 a12 a22
三阶行列式

教学内容【知识结构】 1、三阶行列式 ①对角线方式展开②按某一行(或列)展开法333231232221131211a a a a a a a a a =112233122331132132112332122133132231a a a a a a a a a a a a a a a a a a ++--- =11a 33322322a a a a -12a 33312321a a a a+13a 32312221a a a a记 322211a a M =3323a a ,111111)1(M A +-=;312112a a M =3323a a , =12A 1221)1(M +-;312113a a M =3222a a , 133113)1(M A +-= 。
称j M 1为元素j a 1的余子式,即将元素j a 1所在的第一行、第j 列划去后剩下的元素按原来顺序组成的二阶行列式(类似可以定义其它元素的余子式);称j A 1为元素j a 1的代数余子式,j j j M A 111)1(+-=()3,2,1=j 。
则三阶行列式就可以写成D =333231232221131211a a a a a a a a a =131312121111A a A a A a ++,2、用三阶行列式求三角形的面积:若ABC ∆三个顶点坐标分别为),(11y x 、),(22y x 、),(33y x ,则11223311121ABCx y S x y x y ∆= A 、B 、C 三点共线的充分必要条件为1122331101x y x y x y =【例题精讲】例1.方程131321111=x的解=x ____6_______.例2.方程020014211111=--x x的解为_________________.21=x ,5log 22=x例3. 关于x 的多项式xxxxx 22111---中含23,x x 项的系数分别是 -2和4 例4.利用对角线法则计算下列三阶行列式:(1)21141183---; (2)a b cb c a c a b(3)222111a b c a b c ; (4)xy x y y x y x x yxy+++解:(1) -4 (2) 3333c b a abc --- (3) (a-b)(b-c)(c-a) (4) 3322y x --例5.设=-+----=31211142,410132213A A A D 则 0例6.按要求展开行列式:302213231D -=-; (1)按对角线展开;(2)按第一行展开;(3)按第一列展开;解:-40例7. 计算下列行列式:(1)2130;154-- (2)0011052112---;解:注意:这种三角型行列式的值等于其对角线上元素的乘积。
第26讲 二阶行列式与三阶行列式(讲义 练习)(解析版)

第26讲 二阶行列式与三阶行列式知识点概要1.二阶行列式的有关概念及二元一次方程组的解法: 设二元一次方程组(*)⎩⎨⎧=+=+222111c y b x a c y b x a (其中y x ,是未知数,2121,,,b b a a 是未知数的系数且不全为零,21,c c 是常数项) 用加减消元法解方程组(*):当01221≠-b a b a 时,方程组(*)有唯一解:⎪⎪⎩⎪⎪⎨⎧--=--=1221122112211221b a b a c a c a y b a b a b c b c x ,引入记号21a a21b b 表示算式1221b a b a -,即21a a21b b 1221b a b a -=.从而引出行列式的相关概念,包括行列式、二阶行列式、行列式的展开式、行列式的值、行列式的元素、对角线法则等。
记=D 21a a21b b ,=x D 21c c21b b ,=y D 21a a21c c ,则:①当=D 21a a21b b =01221≠-b a b a 时,方程组(*)有唯一解,可用二阶行列式表示为⎪⎪⎩⎪⎪⎨⎧==DD y D D x y x. ②当D =0时,0x y D D ==方程组(*)无穷组解; ③当D =0时,0≠x D 或0≠y D ,方程组(*)无解。
系数行列式1122a b D a b =也为二元一次方程组解的判别式。
2.三阶行列式(1)三阶行列式的展开方法: ①对角线方式展开:②按某一行(或列)展开法:333231232221131211a a a a a a a a a =112233122331132132112332122133132231a a a a a a a a a a a a a a a a a a ++--- =11a 33322322a a a a -12a 33312321a a a a +13a 32312221a a a a记322211a a M =3323a a ,111111)1(M A +-=,312112a a M =3323a a ,=12A 1221)1(M +-,312113a a M =3222a a ,133113)1(M A +-=称j M 1为元素j a 1的余子式,即将元素j a 1所在的第一行、第j 列划去后剩下的元素按原来顺序组成的二阶行列式(类似可以定义其它元素的余子式);称j A 1为元素j a 1的代数余子式,j j j M A 111)1(+-=()3,2,1=j .则三阶行列式就可以写成D =333231232221131211a a a a a a a a a =131312121111A a A a A a ++.这就是说,一个三阶行列式可以表示为它的第一行的元素分别与它们的代数余子式乘积的和。
第一章 行列式 S3 行列式按行(列)展开

得
aaiijj
0
0
0
0
a1, j
a11
a1, j1
a1, j1
a1n
D (1)i1(1) j1 ai1, j ai1, j
ai1,1 ai1,1
ai1, j1 ai1, j1
ai1, j1 ai1, j1
ai1,n ai1,n
anj
an1
a a n, j1
n, j1
aij (1)(i j)2 Mij aij (1)i j Mij aij Aij
11
x2 xn
x
2 2
xn2
( xi x j ). (1)
ni j1
x1n1
x
n1 2
xnn1
证 用数学归纳法
1 D2 x1
1
x2
x2 x1
( xi x j ),
2i j1
当 n 2 时(1)式成立.
17
假设(1)对于 n 1阶范德蒙行列式成立,
对(1)式,由下而上依次从每一行减去上一行的x1倍,得
定理2 n(n≥2)阶行列式的任一行(列)元与另一行(列)对应 元的代数余子式乘积之和为零。即
ai1Ak1 ai2 Ak 2 或
a1 j A1t a2 j A2t
n
ain Akn ais Aks 0, (i k, i,k 1, 2, ,n) s1
n
anj Ant asj Ast 0, ( j t, j,t 1, 2, ,n) s1
3
a11 a12 a13 a14 D a21 a22 a23 a24 ,
a31 a32 a33 a34 a41 a42 a43 a44
a21 a23 a24 M12 a31 a33 a34 ,
行列式的几种计算方法7篇

行列式的几种计算方法7篇第1篇示例:行列式是线性代数中的一个重要概念,它是一个方阵中的一个数值,可以帮助我们判断矩阵的性质,计算行列式的值是线性代数中的基础技能之一。
下面我们将介绍几种行列式的计算方法以及其应用。
一、直接展开法计算行列式最基本的方法就是直接展开法。
以3阶行列式为例,一个3阶方阵的行列式可以表示为:\[\begin{vmatrix}a &b &c \\d &e &f \\g & h & i\end{vmatrix}\]通过公式展开,可以得到:\[\begin{aligned}\begin{vmatrix}a &b &c \\d &e &f \\g & h & i\end{vmatrix} & = aei + bfg + cdh - ceg - bdi - afh \\& = a(ei - fh) - b(di - fg) + c(dh - eg)\end{aligned}\]这样就可以直接计算出行列式的值。
但是这种方法比较繁琐,不适用于高阶行列式的计算。
二、拉普拉斯展开法\[\begin{vmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn} \\\end{vmatrix}\]以第一行为例,可以按照以下公式展开:\[ \text{det}(A) = a_{11}C_{11} + a_{12}C_{12} + \cdots +a_{1n}C_{1n} \]C_{ij}表示元素a_{ij}的代数余子式,通过递归计算代数余子式,最终可以得到行列式的值。
9.4三阶行列式(2)

2 , 3
(4)已知二次函数 f ( x)满足f (1) 0,
f (2) 3, f (3) 28, 求f x 的解析式.
解 : 设f x ax2 bx c, a 0x a b c 0 1 1 1 则 : 4a 2b c 3 D 4 2 1 20 9a 3b c 28 9 3 1
i j
一般用该元素的大写字母加相同的下标表示. b c1 2 1 1 例2 元素 a2 的代数余子式 A2 ( 1) b3 c3
2
4
0
例3.已知行列式 D 2 1 的代数余子式.
1 0 ,写出第一列元素 0 1
11
解:-2的代数余子式为 (1)
1 0 1 0 0 1 0 1
2的代数余子式为 (1)
21
4 0 4 0 0 1 0 1 4 0 4 0 1 0 1 0
1的代数余子式为 (1)
31
三、三阶行列式的展开
定理1:三阶行列式等于其任意列(或行)的所有元 素分别和它们的代数余子式的乘积的和.
四、应用举例
3
0 1 3 按第1列和第2行分别 1
第九章 矩阵和行列式初步
9.4.1 三阶行列式
9.4.2 三阶行列式
一、复习回顾
a1
(1)三阶行列式 a2
b1
c1 c2 对角线方则展开 c3
.
b2 b3
a3
a1 x b1 y c1 z d1 (2) 方程 a2 x b2 y c2 z d 2 有唯一解的条件是 D 0. a x b y c z d 3 3 3 3
(3) 已知 A x1 , y1 , B x2 , y2 , C x3 , y3 ,则 ABC的面积 为 .
3阶行列式展开公式[001]
![3阶行列式展开公式[001]](https://img.taocdn.com/s3/m/d6a82f33773231126edb6f1aff00bed5b9f373f0.png)
3阶行列式展开公式3阶行列式展开公式是线性代数中重要的概念之一,它可以用来求解包含了多个线性方程的问题。
行列式展开是将一个n阶行列式按照行或列展开成若干个n-1阶的行列式的运算过程。
下面,我们将详细介绍3阶行列式展开公式,并讨论它的意义和实际应用。
3阶行列式展开公式可以用于求解3个线性方程组的唯一解。
行列式展开是一种代数运算,它将一个3阶行列式按照其中一行(或一列)展开成若干个2阶行列式的和。
具体来说,3阶行列式展开公式为:D = a11(a22a33 - a23a32) - a12(a21a33 - a23a31) +a13(a21a32 - a22a31)其中,D表示3阶行列式的值,a11、a12、a13为第1行的元素,a21、a22、a23为第2行的元素,a31、a32、a33为第3行的元素。
这个公式的意义在于,通过展开行列式,我们可以将原本较复杂的3阶问题,转化为多个2阶问题的求解。
这样一来,我们可以通过解决较简单的2阶问题,再通过求和的方式,得到整个3阶行列式的值。
这种分解求解方法,大大简化了计算的复杂度,并且可以避免直接求解3阶线性方程组时可能出现的误差。
在实际应用中,3阶行列式展开公式可以用于求解平面几何中的问题。
例如,当我们需要求解一个平面上的三个点构成的三角形的面积时,可以利用3阶行列式展开公式来计算。
通过将三个点的坐标表示为矩阵形式,然后利用展开公式求得行列式的值,再取其绝对值的一半,就可以得到三角形的面积。
这个方法简单直观,且容易计算,因此在数学和物理等领域得到了广泛的应用。
除了求解平面几何问题外,3阶行列式展开公式还可以用于解决线性方程组的问题。
当我们面临一个包含三个线性方程的问题时,可以将其转化为一个行列式的求解问题。
通过展开行列式并代入方程的系数,我们可以求解出未知数的值,从而得到线性方程组的解。
这种方法在工程、经济等实际问题中具有重要意义,可以帮助我们解决复杂的线性方程组求解问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.4 (2)三阶行列式 按一行(或一列)展开一、教学内容分析三阶行列式按一行(或一列)展开是三阶行列式计算的另外一种法 则,学习这种法则有助于学生更好地理解二阶行列式、 三阶行列式的 内在联系,同时这个法则也是较复杂的行列式计算的常用方法, 这个 法则更是蕴涵了数学问题研究过程中将复杂问题转化为简单问题的 研究方法.本节课的教学内容主要围绕代数余子式的符号的确定研究 三阶行列式按一行(或一列)展开法则.二、教学目标设计⑴ 掌握余子式、代数余子式的概念;⑵ 经历实验、分析的数学探究,逐步归纳和掌握代数余子式的 符号的确定方法和三阶行列式按一行(或一列)展开方法,体验研究数 学的一般方法;⑶体会用简单(二阶行列式)刻画复杂(三阶行列式)、将复杂 问题简单化的数学思想. 三、 教学重点及难点三阶行列式按一行(或一列)展开、代数余子式的符号的确定. 四、 教学过程设计一、情景引入【实验探究1】(1)将下列行列式按对角线展开:(2)对比、分析以上几个行列式的展开式,你能将三阶行列式[说明]b 2 C 2 b 3 C 3 & 93 C 2 C 3 b i b 2 q C 292 b 2 33 b 3b i C i b 3 C 3a ib i a 2 b 2 93 b 3C i C 2C 3a i a2a 3b ic ib 2 C 2表示成含有几个二阶行列式运算的式子吗?b 3 C 3a 3b s C 3(i)请学生展开几个行列式的主要目的是:巩固复习前面学习的 知识;同时,有意识地设计这几个行列式的展开,有助于学生发现三 a i b i C,a ?b ? C ?a 3b 3 C 3请同学生选择其中的一个为例谈谈他们是如何发现这些等式的?a i bl C i开式 a 2 b 2 C 2 a i b 2C 3 a zd c, a s b© a s b ?® a z b© a i b s C ?变形为:与相应的二阶行列式间的关系.阶行列式 (2)将二阶行列式a i a ? a 3b i b ? b 3 C iC ? C 3a ib i C i表示成几个含有二阶行列式运算的 式子,结果可能不唯一,可以有a 2 b 2 C 2a ia 3b 3 C 3b ? C ?b3C3b ia2 a3C 2 C3C i a ? b ?a3b3等等.二、学习新课1.知识解析在刚才的实验中,将三阶行列式 阶行列式运算的式子,主要有:a i a 2 a 3b i C ib ? C ?表示成了含有三个二 b 3 C 3aia ? a 3ai a2 a3a i a ? a 3bi Ci b ?C ? b 3 C 3 biCi b ? C ?b 3 C 3 b i C ib ? C ? b 3 C 3b ? C ? b i a ? C ?a ?b ?a ib 3 C 3 a 3 C 3 C ia 3b 3b ? C ? bl C ib i C ia ib 3 C 3a?a3C 3a3b ? C ? a ? C ?a i C ia i C ib ?b 3a 3 C 3a3C3a ? C ?等等. 事实上,以aia2a 3bl b 2 b 3 C i C ? C 3a ib ?b3C2 C 3bla2 a3C2 C3C ia ?b ?a3b3为例,先将展b象这样的展开,我们称之为三阶行列式按第一行展开.类似的, 我们可以将三阶行列式按第二行或按列展开. 从上述研究,我们不难 发现这种展开方法的关键是要找到三阶行列式某一行或某一列各个 元素的代数余子式.不难发现,要确定某元素的代数余子式,我们可 以先确定其余子式,然后确定代数余子式符号,而最主要的就是其符 号的确定.为了让学生有较深刻的体会,教师可以组织学生完成实验 探究2.【实验探究2]请学生结合刚才确定a i , b i , C i 的余子式和代数余子式的方法, 完成下表,并试着研究某个元素的代数余子式的确定方法. 【工作11 填写下表:a , bl C i a 2b 2 C 2 a 3 b a C 3(a i b 2C 3 a i b 3C 2)©be a z be) ©dG a s b zG ),然后分别提取公因式,可以得到 a , b i C ia :b 2 C 2 a 3 b 3 C 3a i 饷3b 3C 2) h (a 3C 2 a 2C 3) C i (a 2b 3 a s b ?)再利用实验中已有的展开式 d C 2d C 3 a 2 a 3a 2a3b 2C 3 b 3C 2 a 2C 3azd a 3b 2 C2C 3 b 2b 3从而很容易就得到结果了.其中二阶行列式①、②、③分别叫做元素 a i , b i , C,的余子式,添上相应的符号(正号省略),如b 2 C 2 b3C3B 1a2qa3 C3a 2b 2 a 3 b 3A 、B i 、C i 分别叫做元素a ,, bl , C ,的代数余子式.于是三阶行列式可 以表示为第一行的各个元素与其代数余子式的乘积之和:a i h G a 2b 2 C 2a 3b 3 C ea ib 2 C 2 a C 3a : C 2a3C3C ia 2b 2a 3 t h【工作21总结代数余子式的确定方法:[说明](1)以上实验主要由学生合作完成,实验的目的主要是让学生经历实验、归纳、猜想、抽象并获得新知的过程;(2)教师可以将学生分成数个学习小组,合作实验研究,并交流研究结果,最后由教师总结.(3)通过上述研究,教师要引导学生发现:确定某个元素的余子式其实就是将这个元素所在的行和列划去,将剩下的元素按照原来的位置关系所组成的二阶行列式;而这个元素的代数余子式与该元素所在行列式的位置(即第i行,第j列)有关,其代数余子式的正负号是“ (1) j”.一般地,三阶行列式可以按其任意一行(或一列)展开成该行(或该列)的各个元素与其代数余子式的乘积之和.其中,最关键的是确定三阶行列式某一行或某一列各个元素的代数余子式(尤其是其符2 .例题解析例题1.按要求计算行列式:(1) 按第一行展开; (2) 按第一列展开.[说明](1) 一个三阶行列式可以按其任意一行(或一列)展开,其中,最 关键的是确定三阶行列式某一行或某一列各个元素的代数余子式 (尤 其是其符号);(2) 当一个三阶行列式的某一行(或某一列)元素中,0的个数较 (或该列),这样计算往往比较方便.例题2.计算: (1)[说明](1) 设计这样一组例题主要有两个目的:一,考查学生的逆向思 维能力;二,为后续知识的学习做准备;(2) 由例题2(2)计算结果,我们可以发现:如果将三阶行列式的某一行(或一列)的元素与另一行(或一列) 的元素的代数余子式对应相乘,那么它们的乘积之和为零;如果一个二阶行列式或(三阶行列式)有两行(或两列)相同,那么 这个行列式等于零.3 .问题拓展思考:我们上节课已经学习了三阶行列式展开的对角线法则, 为 什么这节课还要学习按一行(或按一列)展开呢?你觉得这有什么意 义吗? [说明]一个三阶行列式按一行(或按一列)展开后就转化为二阶行列式 的运算,这种将复杂问题转化为简单问题的思想方法是数学研究中常 用的方法.多,我们往往将行列式按照该行 b2b 3 K 参考答案〗 ⑵a 2 qC 3 (1)0b 2a 2 a 3C 2a2b2b 3(2)0只要学生能领悟到这一点,马上就可以意识到任何一个行列式(哪怕是n阶行列式)最后都可以转化为二阶行列式的运算.三、巩固练习教材第99页,练习9.4 (2).四、课堂小结(1)余子式、代数余子式的概念;(2)三阶行列式按一行(或一列)展开方法.五、作业布置根据学生的具体情况,对习题册中的问题进行增减.五、教学设计说明本节课的教学内容是三阶行列式按一行(或一列)展开方法,从内容上看,这部分内容与上节课一样,同样概念性比较强,同样容易上成教师“一堂言”的枯燥无味的数学课,但是这部分内容却蕴涵了重要的数学思想方法.单纯的死记硬背不是好的学习方法,理解比记忆重要,能力比知识的本身重要.我把本节课的教学模式设计为通过实验探究、对比分析、大胆猜想、证实猜想,从而逐步获得新知,让学生体验数学学习的乐趣,感悟数学研究的一般方法.。