二叉树实验报告
数据结构二叉树遍历实验报告

数据结构二叉树遍历实验报告一、实验目的本次实验的主要目的是深入理解和掌握二叉树的三种遍历方式:前序遍历、中序遍历和后序遍历,并通过实际编程实现来加深对这些遍历算法的理解和应用能力。
二、实验环境本次实验使用的编程语言为 Python,开发工具为 PyCharm。
三、实验原理1、二叉树的定义二叉树是一种每个节点最多有两个子节点的树结构,分别称为左子节点和右子节点。
2、前序遍历前序遍历首先访问根节点,然后递归地前序遍历左子树,最后递归地前序遍历右子树。
3、中序遍历中序遍历首先递归地中序遍历左子树,然后访问根节点,最后递归地中序遍历右子树。
4、后序遍历后序遍历首先递归地后序遍历左子树,然后递归地后序遍历右子树,最后访问根节点。
四、实验步骤1、定义二叉树节点类```pythonclass TreeNode:def __init__(self, value):selfvalue = valueselfleft = Noneselfright = None```2、实现前序遍历函数```pythondef pre_order_traversal(root):if root is not None:print(rootvalue, end="")pre_order_traversal(rootleft)pre_order_traversal(rootright)```3、实现中序遍历函数```pythondef in_order_traversal(root):if root is not None:in_order_traversal(rootleft) print(rootvalue, end="")in_order_traversal(rootright)```4、实现后序遍历函数```pythondef post_order_traversal(root):if root is not None:post_order_traversal(rootleft) post_order_traversal(rootright) print(rootvalue, end="")```5、构建二叉树并进行遍历```python构建二叉树root = TreeNode(1) rootleft = TreeNode(2) rootright = TreeNode(3) rootleftleft = TreeNode(4) rootleftright = TreeNode(5)前序遍历print("前序遍历:")pre_order_traversal(root) print()中序遍历print("中序遍历:")in_order_traversal(root) print()后序遍历print("后序遍历:")post_order_traversal(root)print()```五、实验结果1、前序遍历结果:1 2 4 5 32、中序遍历结果:4 2 5 1 33、后序遍历结果:4 5 2 3 1六、结果分析1、前序遍历在前序遍历中,首先访问根节点,然后再访问左子树和右子树。
实验报告:二叉树

实验报告:二叉树第一篇:实验报告:二叉树实验报告二叉树一实验目的1、进一步掌握指针变量,动态变量的含义;2、掌握二叉树的结构特性以及各种存储结构的特点及适用范围。
3、掌握用指针类型描述、访问和处理二叉树的运算。
4、熟悉各种存储结构的特征以及如何应用树结构解决具体问题。
二实验原理树形结构是一种应用十分广泛和重要的非线性数据结构,是一种以分支关系定义的层次结构。
在这种结构中,每个数据元素至多只有一个前驱,但可以有多个后继;数据元素之间的关系是一对多的层次关系。
树形结构主要用于描述客观世界中具有层次结构的数据关系,它在客观世界中大量存在。
遍历二叉树的实质是将非线性结构转为线性结构。
三使用仪器,材料计算机 2 Wndows xp 3 VC6.0四实验步骤【问题描述】建立一个二叉树,请分别按前序,中序和后序遍历该二叉树。
【基本要求】从键盘接受输入(按前序顺序),以二叉链表作为存储结构,建立二叉树(以前序来建立),并采用递归算法对其进行前序,中序和后序遍历,将结果输出。
【实现提示】按前序次序输入二叉树中结点的值(一个整数),0表示空树,叶子结点的特征是其左右孩子指针为空。
五实验过程原始记录基本数据结构描述; 2 函数间的调用关系;用类C语言描述各个子函数的算法;附录:源程序。
六试验结果分析将实验结果分析、实验中遇到的问题和解决问题的方法以及关于本实验项目的心得体会,写在实验报告上。
第二篇:数据结构-二叉树的遍历实验报告实验报告课程名:数据结构(C语言版)实验名:二叉树的遍历姓名:班级:学号:时间:2014.11.03一实验目的与要求1.掌握二叉树的存储方法2.掌握二叉树的三种遍历方法3.实现二叉树的三种遍历方法中的一种二实验内容• 接受用户输入一株二叉树• 输出这株二叉树的前根, 中根, 后根遍历中任意一种的顺序三实验结果与分析//*********************************************************** //头文件#include #include //*********************************************************** //宏定义#define OK 1 #define ERROR 0 #define OVERFLOW 0//*********************************************************** typedef struct BiTNode { //二叉树二叉链表存储结构char data;struct BiTNode *lChild,*rChild;}BiTNode,*BiTree;//******************************** *************************** int CreateBiTree(BiTree &T){ //按先序次序输入二叉中树结点的值,空格表示空树//构造二叉链表表示的二叉树T char ch;fflush(stdin);scanf(“%c”,&ch);if(ch==' ')T=NULL;else{ if(!(T=(BiTNode *)malloc(sizeof(BiTNode))))return(OVERFLOW);T->data=ch;Creat eBiTree(T->lChild);CreateBiTree(T->rChild);} return(OK);} //********************************************************* void PreOrderTraverse(BiTree T){ //采用二叉链表存储结构,先序遍历二叉树的递归算法if(T){ printf(“%c”,T->data);PreOrderTraverse(T->lChild);PreOrd erTraverse(T->rChild);} } /***********************************************************/ void InOrderTraverse(BiTree T){ //采用二叉链表存储结构,中序遍历二叉树的递归算法if(T){ InOrderTraverse(T->lChild);printf(“%c”,T->data);InOrderT raverse(T->rChild);} }//*********************************************************** void PostOrderTraverse(BiTree T){ //采用二叉链表存储结构,后序遍历二叉树的递归算法if(T){ PostOrderTraverse(T->lChild);PostOrderTraverse(T->rChild) ;printf(“%c”,T->data);} }//*********************************************************** void main(){ //主函数分别实现建立并输出先、中、后序遍历二叉树printf(“please input your tree follow the PreOrder:n”);BiTNode *Tree;CreateBiTree(Tree);printf(“n先序遍历二叉树:”);PreOrderTraverse(Tree);printf(“n中序遍历二叉树:”);InOrderTraverse(Tree);printf(“n后序遍历二叉树:”);PostOrderTraverse(Tree);}图1:二叉树的遍历运行结果第三篇:数据结构二叉树操作验证实验报告班级:计算机11-2 学号:40 姓名:朱报龙成绩:_________实验七二叉树操作验证一、实验目的⑴ 掌握二叉树的逻辑结构;⑵ 掌握二叉树的二叉链表存储结构;⑶ 掌握基于二叉链表存储的二叉树的遍历操作的实现。
数据结构实验报告二二叉树实验

实验报告课程名称:数据结构
第 1 页共4 页
五、实验总结(包括心得体会、问题回答及实验改进意见,可附页)
这次实验主要是建立二叉树,和二叉树的先序、中序、后续遍历算法。
通过这次实验,我巩固了二叉树这部分知识,从中体会理论知识的重要性。
在做实验之前,要充分的理解本次实验的理论依据,这样才能达到事半功倍的效果。
如果在没有真正理解实验原理之盲目的开始实验,只会浪费时间和精力。
例如进行二叉树的遍历的时候,要先理解各种遍历的特点。
先序遍历是先遍历根节点,再依次先序遍历左右子树。
中序遍历是先中序遍历左子树,再访问根节点,最后中序遍历右子树。
而后序遍历则是先依次后续遍历左右子树,再访问根节点。
掌握了这些,在实验中我们就可以融会贯通,举一反三。
其次要根据不光要懂得代码的原理,还要对题目有深刻的了解,要明白二叉树的画法,在纸上先进行自我演练,对照代码验证自己写的正确性。
第 3 页共4 页
第 4 页共4 页。
二叉树实验报告

二叉树实验报告二叉树是数据结构中最常见且重要的一种类型。
它由节点组成,每个节点最多有两个子节点,分别称为左节点和右节点。
通过连接这些节点,可以构建一个有序且具有层次结构的树形结构。
本实验报告将介绍二叉树的概念、特点以及常见的操作,同时介绍二叉树在实际应用中的一些典型案例。
一、二叉树的定义和特点二叉树是一种树形结构,它的每个节点至多只有两个子节点。
它的定义可以使用递归的方式进行描述:二叉树要么是一棵空树,要么由根节点和两棵分别称为左子树和右子树的二叉树组成。
二叉树的特点是每个节点最多只有两个子节点。
二、二叉树的创建和操作1.创建二叉树:二叉树可以通过两种方式来创建,一种是使用树的节点类来手动构建二叉树;另一种是通过给定的节点值列表,使用递归的方式构建二叉树。
2.遍历二叉树:二叉树的遍历有三种方式,分别是前序遍历、中序遍历和后序遍历。
a.前序遍历:先遍历根节点,再遍历左子树,最后遍历右子树。
b.中序遍历:先遍历左子树,再遍历根节点,最后遍历右子树。
c.后序遍历:先遍历左子树,再遍历右子树,最后遍历根节点。
3.查找节点:可以根据节点的值或者位置来查找二叉树中的节点。
4.插入节点:可以通过递归的方式在指定位置上插入一个新节点。
5.删除节点:可以通过递归的方式删除二叉树中的指定节点。
三、二叉树的应用案例二叉树在实际应用中有很多重要的用途,下面介绍几个典型的案例。
1.表示文件系统结构:文件系统可以使用二叉树来进行表示,每个文件或文件夹都可以看作是树中一个节点,节点之间的父子关系可以通过左右子树建立连接。
2.实现二叉树:二叉树是一种特殊的二叉树,它要求左子树上的节点值小于根节点的值,右子树上的节点值大于根节点的值。
这种树结构可以快速实现元素的插入、删除和查找等操作。
3.表达式求值:二叉树可以用来表示数学表达式,并且可以通过遍历来对表达式进行求值。
四、实验总结通过本次实验,我们深入了解了二叉树的定义和特点,学会了二叉树的创建和操作方法,以及了解了二叉树在实际应用中的一些典型案例。
二叉树的各种基本运算的实现实验报告

二叉树的各种基本运算的实现实验报告
一、实验目的
实验目的为了深入学习二叉树的各种基本运算,通过操作实现二叉树的建立、存储、查找、删除、遍历等各种基本运算操作。
二、实验内容
1、构造一个二叉树。
我们首先用一定的节点来构建一棵二叉树,包括节点的左子节点和右子节点。
2、实现查找二叉树中的节点。
在查找二叉树中的节点时,我们根据二叉树的特点,从根节点开始查找,根据要查找的节点的值与根节点的值的大小的关系,来决定接下来查找的方向,直到找到要查找的节点为止。
3、实现删除二叉树中的节点。
在删除二叉树节点时,我们要做的是找到要删除节点的父节点,然后让父节点的链接指向要删除节点的子节点,有可能要删除节点有一个子节点,有可能有两个极点,有可能没有子节点,我们要根据每种情况进行处理,来保持二叉树的结构不变。
4、对二叉树进行遍历操作。
二叉树的遍历有多种方法,本实验使用的是先序遍历。
首先从根节点出发,根据先序遍历的顺序,先访问左子树,然后再访问右子树,最后访问根节点。
三、实验步骤
1、构建二叉树:
我们用一个数组代表要构建的二叉树,第一项为根节点,第二项和第三项是根节点的子节点。
树和二叉树的实验报告

《数据结构》实验报告题目: 树和二叉树一、用二叉树来表示代数表达式(一)需求分析输入一个正确的代数表达式, 包括数字和用字母表示的数, 运算符号+ - * / ^ =及括号。
系统根据输入的表达式建立二叉树, 按照先括号里面的后括号外面的, 先乘后除的原则, 每个节点里放一个数字或一个字母或一个操作符, 括号不放在节点里。
分别先序遍历, 中序遍历, 后序遍历此二叉树, 并输出表达式的前缀式, 中缀式和后缀式。
(二)系统设计1.本程序中用到的所有抽象数据类型的定义;typedef struct BiNode //二叉树的存储类型{char s[20];struct BiNode *lchild,*rchild;}BiTNode,*BiTree;2.主程序的流程以及各程序模块之间的层次调用关系, 函数的调用关系图:3. 列出各个功能模块的主要功能及输入输出参数void push(char cc)初始条件: 输入表达式中的某个符号操作结果: 将输入的字符存入buf数组中去BiTree Create_RTree()初始条件: 给出二叉树的定义表达式操作结果:构造二叉树的右子树, 即存储表达式等号右侧的字符组BiTree Create_RootTree()初始条件: 给出二叉树的定义表达式操作结果:构造存储输入表达式的二叉树, 其中左子树存储‘X’, 根节点存储‘:=’void PreOrderTraverse(BiTree T)初始条件: 二叉树T存在操作结果:先序遍历T, 对每个节点调用函数Visit一次且仅一次void InOrderTraverse(BiTree T)初始条件: 二叉树T存在操作结果:中序遍历T, 对每个节点调用函数Visit一次且仅一次void PostOrderTraverse(BiTree T)初始条件: 二叉树T存在操作结果:后序遍历T, 对每个节点调用函数Visit一次且仅一次int main()主函数, 调用各方法, 操作成功后返回0(三)调试分析调试过程中还是出现了一些拼写错误, 经检查后都能及时修正。
数据结构实验报告—二叉树

数据结构实验报告—二叉树数据结构实验报告—二叉树引言二叉树是一种常用的数据结构,它由节点和边构成,每个节点最多有两个子节点。
在本次实验中,我们将对二叉树的基本结构和基本操作进行实现和测试,并深入了解它的特性和应用。
实验目的1. 掌握二叉树的基本概念和特性2. 熟练掌握二叉树的基本操作,包括创建、遍历和查找等3. 了解二叉树在实际应用中的使用场景实验内容1. 二叉树的定义和存储结构:我们将首先学习二叉树的定义,并实现二叉树的存储结构,包括节点的定义和节点指针的表示方法。
2. 二叉树的创建和初始化:我们将实现二叉树的创建和初始化操作,以便后续操作和测试使用。
3. 二叉树的遍历:我们将实现二叉树的前序、中序和后序遍历算法,并测试其正确性和效率。
4. 二叉树的查找:我们将实现二叉树的查找操作,包括查找节点和查找最大值、最小值等。
5. 二叉树的应用:我们将探讨二叉树在实际应用中的使用场景,如哈夫曼编码、二叉搜索树等。
二叉树的定义和存储结构二叉树是一种特殊的树形结构,它的每个节点最多有两个子节点。
节点被表示为一个由数据和指向其左右子节点的指针组成的结构。
二叉树可以分为三类:满二叉树、完全二叉树和非完全二叉树。
二叉树可以用链式存储结构或顺序存储结构表示。
- 链式存储结构:采用节点定义和指针表示法,通过将节点起来形成一个树状结构来表示二叉树。
- 顺序存储结构:采用数组存储节点信息,通过计算节点在数组中的位置来进行访问和操作。
二叉树的创建和初始化二叉树的创建和初始化是二叉树操作中的基础部分。
我们可以通过手动输入或读取外部文件中的数据来创建二叉树。
对于链式存储结构,我们需要自定义节点和指针,并通过节点的方式来构建二叉树。
对于顺序存储结构,我们需要定义数组和索引,通过索引计算来定位节点的位置。
一般来说,初始化一个二叉树可以使用以下步骤:1. 创建树根节点,并赋初值。
2. 创建子节点,并到父节点。
3. 重复步骤2,直到创建完整个二叉树。
二叉树 实验报告

二叉树实验报告二叉树实验报告引言:二叉树是一种常见的数据结构,它由节点和边组成,每个节点最多有两个子节点,分别称为左子节点和右子节点。
在本次实验中,我们将探索二叉树的基本概念、特性以及应用。
一、二叉树的定义与性质1.1 二叉树的定义二叉树是一种递归定义的数据结构,它可以为空,或者由一个根节点和两个二叉树组成,分别称为左子树和右子树。
1.2 二叉树的性质(1)每个节点最多有两个子节点,分别称为左子节点和右子节点。
(2)左子树和右子树也是二叉树。
(3)二叉树的子树之间没有关联性,它们是相互独立的。
二、二叉树的遍历方式2.1 前序遍历前序遍历是指先访问根节点,然后按照先左后右的顺序遍历左子树和右子树。
2.2 中序遍历中序遍历是指先遍历左子树,然后访问根节点,最后遍历右子树。
2.3 后序遍历后序遍历是指先遍历左子树,然后遍历右子树,最后访问根节点。
2.4 层次遍历层次遍历是指按照从上到下、从左到右的顺序遍历二叉树的每个节点。
三、二叉树的应用3.1 二叉搜索树二叉搜索树是一种特殊的二叉树,它的每个节点的值大于其左子树的所有节点的值,小于其右子树的所有节点的值。
这种特性使得二叉搜索树可以高效地进行查找、插入和删除操作。
3.2 哈夫曼树哈夫曼树是一种带权路径长度最短的二叉树,它常用于数据压缩中。
哈夫曼树的构建过程是通过贪心算法,将权值较小的节点放在离根节点较远的位置,从而实现最优编码。
3.3 表达式树表达式树是一种用于表示数学表达式的二叉树,它的叶节点是操作数,而非叶节点是操作符。
通过对表达式树的遍历,可以实现对表达式的求值。
结论:通过本次实验,我们对二叉树的定义、性质、遍历方式以及应用有了更深入的了解。
二叉树作为一种重要的数据结构,在计算机科学和算法设计中发挥着重要的作用。
在今后的学习和工作中,我们应该进一步探索二叉树的高级应用,并灵活运用于实际问题的解决中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验题目:实验九——二叉树实验
算法设计(3)
问题分析:
1、题目要求:编写算法交换二叉树中所有结点的左右子树
2、设计思路:首先定义一个二叉树的数据类型,使用先序遍历建立该二叉树,遍历二叉树,设计左右子树交换的函数,再次遍历交换之后的二叉树,与先前二叉树进行比较。
遍历算法与交换算法使用递归设计更加简洁。
3、测试数据:
A、输入:1 2 4 0 0 5 0 0 3 0 0
交换前中序遍历:4 2 5 1 3
交换后中序遍历:3 1 5 2 4
交换前:交换后:
B、输入:3 7 11 0 0 18 17 0 0 19 0 0 6 13 0 0 16 0 0
交换前中序遍历:11 7 17 18 19 3 13 6 16
交换后中序遍历:16 6 13 3 19 18 17 7 11
概要设计:
1、为了实现上述功能:①构造一个空的二叉树;②应用先序遍历输入,建立二叉树;③中序遍历二叉树;④调用左右子树交换函数;⑤中序遍历交换过后的二叉树。
2、本程序包括4个函数:
①主函数main()
②先序遍历二叉树建立函数creat_bt()
③中序遍历二叉树函数inorder()
④左右子树交换函数 exchange()
各函数间关系如下:
详细设计:
1、结点类型
typedef struct binode //定义二叉树
{
int data; //数据域
struct binode *lchild,*rchild; //左孩子、右孩子
}binode,*bitree;
2、各函数操作
① 先序遍历建二叉树函数
bitree creat_bt()
{
输入结点数据;
判断是否为0{
若是,为空;
不是,递归;}
返回二叉树;
}
② 左右子树交换函数
void exchange(bitree t)
{
判断结点是否为空{
否,交换左右子树;
递归;}
}
③ 中序遍历函数
void inorder(bitree bt)
{
判断是否为空{
递归左子树;
输出;
递归右子树;}
}
main () creat_bt () inorder () exchange ()
源代码:
#include<stdio.h>
#include<malloc.h>
typedef struct binode //定义二叉树
{
int data; //数据域
struct binode *lchild,*rchild; //左孩子、右孩子
}binode,*bitree;
bitree creat_bt() //按先序遍历建二叉树
{
bitree t;
int x;
scanf("%d",&x);
if(x==0) t=NULL; //0表示空结点
else
{
t=(bitree)malloc(sizeof(b inode));
t->data=x;
t->lchild=creat_bt(); //递归
t->rchild=creat_bt();
}
return t;
}
void exchange(bitree t) //左、右子树交换
{
bitree p;
if(t!=NULL) //不是空树
{
p=t->lchild;
t->lchild=t->rchild; t->rchild=p; //左右交换
exchange(t->lchild); //递归
exchange(t->rchild);
}
}
void inorder(bitree bt) //递归的中序遍历
{
if(bt)
{
inorder(bt->lchild);
printf("%d ",bt->data);
inorder(bt->rchild);
}
}
void main()
{
bitree root; printf("先序遍历建立二叉树,输入元素(0表示空):\n"); root=creat_bt();
printf("交换前的中序序列是:");
inorder(root);
exchange(root);
printf("\n交换后的中序序列是:");
inorder(root);
printf("\n");
}
测试结果:
调试分析:
1、函数多以递归设计,虽然大大减轻了代码上的复杂度,是思路更加明了,但也更加容易出错,尤其要注意递归函数出口的设计,否则程序难以执行。
如:
①
If(t!=NULL)即为递归函数出口,当结点为空时,递归函数结束;
②
If(bt)为函数出口,当bt为真时,执行递归;否则,递归结束。
2、注意遍历函数中遍历的次序,
递归时先遍历左子树,后遍历右子树,这是先序遍历。
使用说明:
1、打开左右子树交换.exe
2、按先序遍历输入二叉树的各元素
3、回车确认,比较结果。