可控源音频大地电磁法介绍
csamt法

csamt法
CSAMT是“可控源音频大地电磁法”的英文缩写,是目前国际普遍使用的物探手段。
该方法的原理是利用人工场源激发地下岩石,在电流流过时产生电位差,接收不同供电频率形成的一次场电位,由于不同频率的场在地层中的传播深度不同,所反映深度也就与频率构成一个数学关系。
不同电导率的岩石在电流流过时所产生的电位和磁场是不同的,CSAMT方法就是利用不同岩石的电导率差异观测一次场电位和磁场强度变化的一种电磁勘探方法。
电磁波向地下传播方程的求解极其复杂,国际上不得不采用近似的简化公式来实际应用,因此导致CSAMT法只能勘测到地下1.5公里。
为了打破西方在该领域的垄断,中国工程院院士何继善在1996年开始研究,历时10年演算,提出了精确求解地下电磁波方程的“广域电磁法”,将探测深度由1.5公里增加到8公里,是世界先进方法的5倍。
可控源音频大地电磁法CSAMT介绍

红透山小西堡区56线可控源电阻率断面图
比例尺 1:10000
ZK56-4
ZK56-1
ZK56-3 ZK56-2
200
400
1300米
1400米
600
800
1000
1200
1400
1600
1800
2000
5000 3500 2000 1500 1200 1000 700 600 500 400 300 200 100 50 30 0
本区围岩电阻率多在 1000欧 姆 米以上 , 在 这样的高阻区,低频 段常常进入“过渡 区”,甚至进入“近 场区”。不作“非远 区场校正”(或“近 场校正”),可能会 导致近地表层的视电 阻率畸变!
铜录山31线CSAMT法反演电阻率断面及解释推断图(2010年计算)
200 0
-200 -400 -600 -800 -1000 -1200 -1400
静态效应的例子
MT法
已建立 多种
“静态 效应校 正”方 法,效 果不错
CSAMT“静态效应”的特点
CSAMT相对于MT静态效应有特点
1. 测量电极距较小,静态效应更突出; 2. 高频段供电电流较小,观测误差较大
3. 测点距较小,且通常(标量测量)与 测量电极距相同,成EMAP布极;
4. 相位观测精度可能较高。
红透山小西堡区42线可控源电阻率断面图
比例尺 1:10000
200 0
上部静态效应 的“挂面条” 异常,使中部 的低阻异常形 态畸变。
-200
-400 -600 -800 -1000 -1200 -1400
0
200
400
600
800
可控源音频大地电磁测深法(CSAMT)

paleoburial hill
-2000
-2000
-2500
-2500
-3000
-3000
-3500
-3500
-4000
-4000
汇报内容
• 野外施工方法 • 理论模拟 • 资料处理 • 实例 • 资料归档
野外资料归档
• 应提交的原始资料:
– 原始数据盘; – 操作员工作记录、测点班报; – 视电阻率原始记录曲线; – 点位测量记录及其数据盘; – 仪器检测、维护及标定记录。
可控源音频大地电磁法
(Controlled Source Audio Magnetotelluric method)
汇报内容
• 野外施工方法 • 理论模拟 • 资料处理 • 实例 • 资料归档
可控源音频大地电磁法(CSAMT),采用人工 场源供电,其频率范围为0.25~8192Hz。由于 CSAMT法所观测电磁场的频率范围、场强和方向 可由人工控制,其观测方式又与MT方法相同, 所以称为“可控源音频大地电磁法”。
• 提交的主要地质成果图件:
– 地质、地球物理综合解释图; – 构造单元划分图; – 断裂展布图; – 岩性预测图; – 局部构造预测图; – 油气远景预测图。
• 最终成果报告
汇报内容
• 野外施工方法 • 理论模拟 • 资料处理 • 实例 • 资料归档
理论模拟计算
10000
RHO(omm) after correct
RHO(omm) pre-correct Ex
1000
100
100
10
10
1
10000 1000
100
10
1
fre q .(h z)
音频大地电磁测深原理简介

ATM物探仪(音频大地电磁测深)原理一、电磁波:地球物理勘探,简称物探。
分为电法、磁法和电磁法三种。
本质上都是电法,因为磁场也是电场感应而来。
物探电磁法分为两种:一)连续电磁波电磁波不间断(频率域即有很多不同频率的电磁波可作为工作频率进行选择,比如我们可以选择长波(音频范围的电磁波),另外还有微波、红外线等短波等)连续电磁波按产生方式还分为:1、人工场源电磁波又叫可控源音频大地电磁CSAMT,需人工产生发射电磁场。
优点:信号强,精度高,测量时间短。
缺点:近场效应,近处不准,设备大,转场不便,施工电极敷设需要挖较大的坑深埋,设备造价高。
2、天然音频大地电磁波ATM,天然音频大地的英文简称,是此次介绍的重点内容,它主要利用天然产生的电磁波(简称天电)进行地下介质电阻率异常的测量,省掉人工发射电磁波环节。
优点:测量简单,施工效率高。
无需发电设备,转场方便,适合矿区扫面,靶区筛查。
随着数据分析的发展,现在ATM在中国有较好的应用发展趋势。
该法最早由法国、俄罗斯提出。
2000年中南大学何继善院士在此基础上进一步探索,提出广域电磁法,电磁测深由原来的简化的平面波模型回归现在的曲面波模型,并因此获国家科技进步一等奖。
目前大地电磁测深技术无论理论与应用,我国已经有所领先。
缺点:精度较低,单次数据采集时间长。
天然场源电磁波又分长波、中波及短波,其中音频大地电磁波属于长波,是ATM法的工作波段,下节详细介绍。
二)瞬变电磁(时间域,时间为变量)瞬变电磁的电磁波属于间断脉冲型,利用接通、间断电流产生交变电磁波,进行地下介质电阻率异常的测量,与连续电磁波比,属于另一大类,与ATM无关,不多介绍。
见图二、ATM天然音频大地电磁波的波形电场波与磁场波(简称电波与磁波)互相垂直正交,且都垂直于传播方向,其中磁场波由电场波感应产生。
这样,电磁波测量电波与磁波两组信息,与单独的电法与磁法来说,信息量是翻倍提高的。
天然场源电磁波,也叫天电,主要由太阳风、地球磁暴及地球雷电区经几千或几万公里传播而来。
可控源音频大地电磁测深法

可控源音频大地电磁法(CSAMT) 是在大地电磁法 (MT)和音频(n×10-1~n×103)大地电磁法(AMT)的基 础上发展起来的一种人工源频率域电磁测深方法.实质 是人工源卡尼亚电阻率测深法,有三大特点:使用人 工场源; 测量卡尼亚电阻率,而不是测量单分量视电阻 率;改变频率进行测深; 为了克服AMT 观测上的一些困难,20世纪70年代 初,加拿大多伦多大学的D.W.Strangway教授和他的学 生M.A.Goldstein提出沿用AMT的测量方式,观测人工 供电产生的音频电磁场。由于所观测电磁场的频率、 场强和方向可由人工控制,而其观测方式又与AMT法 相同,故称这种方法为可控源音频大地电磁法 (CSAMT)。
垂向区的布置图
CSAMT的仪器是具有实时处理的数字化仪,频率范围要求从0.1到200 Hz为了使用 更为有效,仪器应为多道。最高采样率要求达到0.25ms。每道都要有去假频滤波器和 抑制电源干扰的滤波器,同时整机的特性必须噪声低、输入阻抗高,道间干扰小。 GDP-32Ⅱ+仪器照片 V8仪器照片
3)提高观测质量的技术措施
—— 阻抗相位
3.4.2 CSAMT野外工作方法
1)最佳测量分量和位置的选择 垂向区:供电偶极的赤道区, r 共轴区:供电偶极的轴向区,
4
为远区。
r 5
为远区。
2)野外工作方法技术
供电偶极距:一般为1~3km 测点距供电偶极的距离(收发距):5~20km 电场测量电极距:10~300m,一般用不极化电极 接收的磁场信号经绝缘线输送到接收器与电场同时记录。
3.4.4
应用实例
1)CSAMT在山西沁水盆地煤层气勘探中的应用
可控源音频大地电磁法(CSAMT)在某石墨矿中的应用

可控源音频大地电磁法(CSAMT)在某石墨矿中的应用【摘要】可控源音频大地电磁法(CSAMT)是在大地电磁法(MT)的基础上,针对解决大地电磁法场源的随机性强和信号微弱而发展成的一种人工场源电磁测深方法。
该方法由于使用了功能强大的人工信号源,与大地电磁法(MT)相比,更能够压制干扰,采集到高品质的数据;该方法具有勘探深度大、快速高效、横向分辨力高等优点。
【关键词】石墨地球物理勘探可控源音频大地电磁视电阻率1.工区地质及地球物理特征区内出露地层单一,仅见第四系全新统洪冲积(Qhapl)分布于矿区沟谷及地势低洼地带,出露面积较小,主要由花岗岩碎块、亚粘土松散堆积而成,花岗岩碎块大小0.1~3厘米不等,碎块多呈棱角或次棱角状,磨圆度较差。
地表植被较发育,洪冲积层厚度0.3~1.5米不等。
花岗岩类石墨矿是由岩浆热液不同阶段结晶矿物和石墨组成的各种含石墨花岗岩,石墨呈侵染状分布于花岗岩中,石墨可呈球状、豆状聚积,构成球状石墨花岗岩。
根据统计,本区内主要为含钾长石、斜长石及石英的花岗岩,其常见电阻率如表2-1所示。
根据以往工作经验,含石墨花岗岩电阻率一般为数十欧姆每米,而花岗岩等普遍在数千欧姆每米,随着花岗岩体中石墨矿矿化程度的升高,其整体电阻率反应会呈现逐渐降低的趋势,因此,本区目标矿体石墨矿体与花岗岩等围岩之间存在明显的电性差异,采用可控源音频大地电磁法寻找石墨矿具备良好的地球物理前提。
表2-1 勘探区常见岩矿石电阻率统计表2.工作方法与技术本次可控源音频大地电磁法共布设4条试验测线(X线、Y线、0线、7线),17条勘探测线,其中X、Y线为南北向布设,其余测线均为东西向布设。
东西向测线线距200米,点距50米,南北测线线距200米,点距50米,共设计线上物理点386个。
采用赤道偶极装置方法,测量方式为标量测量,即使用发送机通过接地电极A、B向地下供不同频率交变电流,在距离AB相当远的地方同时测量互相垂直的水平电场分量Ex和磁场分量Hy,从而计算卡尼亚电阻率和阻抗相位。
可控源音频大地电磁法概述

可控源音频大地电磁法介绍1.方法原理和仪器可控源音频大地电磁法(Controlled Source Audio-frequency Magnetotellurics, 简称CSAMT 卡尼亚电阻率测深曲线,因此又称可控源音频大地电磁测深法。
该法最早是由加拿大多伦多大学的D. W.Strangway教授和他的学生Myaron Goldtein于1971年提出。
针对大地电磁测深法场源的随机性和信号微弱,以致观测十分困难这一状况,他们提出了一种改变方案——采用可以控制的人工场源。
从而在理论和实践两方面奠定了CSAMT法的基础。
自70年代中期起CSAMT法得到了实际应用,一些公司相继生产用于CSAMT法测量的仪器和解释应用软件。
主要仪器是美国Zonge公司生产的GDP-16和GDP-32两种多功能电磁仪。
现以GDP-32为例说明仪器的技术指标:该仪器有八个接收通道,能够完成时域激发极化(TDIP)、频域激发极化(RPIP)、复电阻率(CR)、瞬变电磁法(TEM)、可控源音频大地电磁法(CSAMT)测量。
其性能指标为工作频率0.007Hz—8192Hz,工作温度-20℃--60℃,工作湿度5%--100%,时钟稳定度∠5×10¯10∕24h,输入阻抗10 Ω ∕D C ,动态范围190dB,最小检测信号电压0.03µv、相位±0.1mard(毫弧度),最大输入信号电压±32v,自动补赏电压±2.25v(自动),增益1/8-65536(自动)。
2.方法技术80年代以来,方法理论和仪器都得到了很大发展,应用领域也扩展到了地质普查,勘探石油、天然气、地热、金属矿床,水文,环境等方面,从而成为受人重视的一种地球物理方法。
目前在我国已将本方法作为危机矿山深部资源勘探的重要手段,在许多矿山取得了很好的效果。
可控源音频大地电磁测深法是以有限长地电偶极子为场源,在距偶极中心一定距离处同时观测电、磁场参数的一种电磁测深法。
可控源音频大地电磁法在采空区勘探中的应用分析

可控源音频大地电磁法在采空区勘探中的应用分析可控源音频大地电磁法(CSAMT)是近年来所发展起来的一种新的探测技术,在采空区勘探工作中得到了非常广泛的应用。
本文对可控音源大地电磁法的工作远离进行了简单分析,并介绍了可控音源大地电磁法在矿区采空区勘探工作中的应用,通过分析,可以确定该探测方法在矿区采空区勘探工作中应用的可行性。
标签:CSAMT 采空区勘探应用1可控源大地电磁法工作原理在利用可控音频大地电磁法进行勘探时,通常是对均匀半空间电或磁偶极子在地面上的场进行研究,这主要是因为构造电磁法勘探通常实在地面上进行观测的。
众所周知,偶极天线所产生的电磁波是沿着多个方向辐射的,从波的传播途径来看,可以分为天波、地面波和底层博三种。
电磁波在空气中传播的波长为c/f(c表示光速;f表示电磁波的频率),在大地中传播的波长为[107/(fσ1)]1/2。
可以看出电磁波在大地中传播时的波长远远小于在空气中传播时的波长,这样一来,电磁波传播时的地面波s0和地层波s1在某一时刻t时,由于波程差,会在地表附近形成一个接近水平方向的波阵面,造成一个几乎是垂直向下传播的S*波,即近似的水平极化平面波。
s0波、s1波和s*波在传播的过程中,都会与地下地质结构发生作用,并将这种作用的结果反映到地面观测点中[1]。
2采空区地质条件和地球物理特征2.1地层及构造本文以某铁矿为例进行分析,工作区以及周边区域的地层根据揭露情况由老到新包括了奥陶系马家沟组、新近系与第四系。
其中奥陶系马家沟组以石灰岩为主,在矿区内夹有厚度不同的铁矿层。
新近系以粘土岩和砂页岩为主;第四系则以粘土、粘质砂土和砂质粘土为主。
根据现有的矿区地质资料来看,矿区内尚未发现断裂构造的存在。
2.2地球物理特征根据测井以及电法资料统计,矿区的主要岩层电阻率参数如表1所示。
从表1种的数据可以看出,含铁矿石层与石灰岩之间的电性存在较大的差异,铁矿石层的围岩石灰岩电阻率最高,但是在夹铁矿层时,电阻率出现了明显的下降。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可控源音频大地电磁法介绍
1.方法原理和仪器
可控源音频大地电磁法(Controlled Source Audio-frequency Magnetotellurics, 简称CSAMT 卡尼亚电阻率测深曲线,因此又称可控源音频大地电磁测深法。
该法最早是由加拿大多伦多大学的D. W.Strangway教授和他的学生Myaron Goldtein于1971年提出。
针对大地电磁测深法场源的随机性和信号微弱,以致观测十分困难这一状况,他们提出了一种改变方案——采用可以控制的人工场源。
从而在理论和实践两方面奠定了CSAMT法的基础。
自70年代中期起CSAMT法得到了实际应用,一些公司相继生产用于CSAMT法测量的仪器和解释应用软件。
主要仪器是美国Zonge公司生产的GDP-16和GDP-32两种多功能电磁仪。
现以GDP-32为例说明仪器的技术指标:该仪器有八个接收通道,能够完成时域激发极化(TDIP)、频域激发极化(RPIP)、复电阻率(CR)、瞬变电磁法(TEM)、可控源音频大地电磁法(CSAMT)测量。
其性能指标为工作频率0.007Hz—8192Hz,工作温度-20℃--60℃,工作湿度5%--100%,时钟稳定度∠5×10¯10∕24h,输入阻抗10 Ω ∕D C ,动态范围190dB,最小检测信号电压0.03µv、相位±0.1mard(毫弧度),最大输入信号电压±32v,自动补赏电压±2.25v(自动),增益1/8-65536(自动)。
2.方法技术
80年代以来,方法理论和仪器都得到了很大发展,应用领域也扩展到了地质普查,勘探石油、天然气、地热、金属矿床,水文,环境等方面,从而成为受人重视的一种地球物理方法。
目前在我国已将本方法作为危机矿山深部资源勘探的重要手段,在许多矿山取得了很好的效果。
可控源音频大地电磁测深法是以有限长地电偶极子为场源,在距偶极中心一定距离处同时观测电、磁场参数的一种电磁测深法。
需要考虑的装置是:
测点距:20-100米
供电电极距:(AB):1000-3000米
接收电极距(MN):20-100米
可测扇区的夹角(Ø)≤15°
我们可以用图1来说明最常用的一种赤道偶极装置进行标
量CSAMT法的测量过程:
场源:用发送机通过接地电极A、B向地下供交变电流,
在地下形成交变电磁场。
电流的频率可在一定范围内变化,通
常从2-3~213Hz按2进制递变,在接地十分困难的地方可用不
接地回线作垂直磁偶极子来发送电磁场。
测量:在距离AB相当远的地方进行测量。
所谓“相当远”
指的是在这些地方的电磁场已接近平面波,从而可使用卡尼亚
电阻率计算公式并方便解释。
若选用直角坐标系,X 轴平行AB ,Z 轴垂直向下,那么标量测量是在测点测量每一频率的电场分量EX 和正交的磁场分量HY ,并按:
计算卡尼亚电阻率。
式中f 为频率。
根据需要,可以分别以相互垂直的两组场源供电,对每个场源都测量5个电磁场分量,从而形成张量CSAMT 测量。
张量测量虽然信息量丰富,但工作效率低。
作为一种简化,可以测一组场源的电、磁场分量组成矢量CSAMT 测量。
实际应用中,面积性的标量CSAMT 法也可取得良好的地质效果。
概括起来,CSAMT 法主要有如下特点:
1. 工作效率高。
用一个发射偶极子供电,可在它周围的四个很大的扇形区域内测量。
在进行测量时,只需移动接收机,便可进行面积性测深工作,从而得到地下电性的立体分布情况。
2. 勘探深度范围大。
CSAMT 法有效勘探深度的影响因素包括地电构造、噪声水平、发送机功率、接收机灵敏度、精度和抗干扰能力等。
从理论上,其探测深度大致为:
其中ρ为大地电阻率,f 为工作频率。
因此,对于目前所用的频率范围(如从0.125Hz~4096Hz)及可能达到的发送功率,其探测深度范围为几十米至2-3公里。
3. 垂向分辨能力好。
CSAMT 法垂向分辨能力与多种因素有关。
如果把可探测对象的厚度与其埋深之比定义为垂直向分辨率,那么,粗略地讲,它大约为20%至10%。
4. 水平方向分辨率高。
一般的人工场源电法的水平分辨率除受地电条件制约外,还受收距及接收电偶极子大小的影响。
CSAMT 法的水平分辨力与发收距无关,约等于接收电偶极子距离。
5. 地形影响小。
由于卡尼亚电阻率相当于对观测值进行了归一化,同步的地形影响大大减弱;由于是平面波场,测区内地形影响也较小。
6. 高阻电屏蔽作用小。
CSAMT 法使用的是交变电磁场。
因而可以穿过高阻层,特别是高阻薄层。
有些用直流电法无法探测到的高阻薄层下的地质体,用CSAMT 法能很好解决这一问题。
与直流电法相比,以上这些特色均属明显优点,因而CSAMT 法不但可以取得良好地质效果,且应用前景也是广阔的。
然而,由于使用人工场源,不可避免地带来了很多负面效应,如近场源的非波区效应、场源附加效应。
另外,频域电法中的静态效应也是十分麻烦的问题,在资料处理与解释中须十分谨慎。
f
d ρ⨯=356。