音频大地电磁法(AMT)EH4数据采集班报
天然场音频大地电磁法(AMT)在陕西某矿山工程勘查中的应用

空间分布的一种物探方法。影响电阻率的主要因素有矿物成
分、矿石的结构、构造及含水情况等。根据经验统计和工区
地球物理反演结果分析,得出各类矿体的反演电阻率值(见
250~1050
1 勘查区域的地质概况 勘查区处于低中山区,多呈沟壑纵横的塬、梁、峁发育
的黄土地貌,地势中部高两端低,坡形北段较缓,南段地形 切割较大,相对高差在 100m~300m 之间,测线范围内地面 高程在 800m~1100m 之间。研究区域主要分布有新生界第 四系沉积岩及中生界细粒石英砂岩、泥岩及长石石英砂岩, 河流及沟谷地带零星出露有奥陶系灰岩。
Abstract: This paper mainly introduces an effective means of natural field audio frequency magnetotelluric sounding (AMT) in the engineering exploration of a mine in Shaanxi Province, focusing on the data acquisition, processing, two-dimensional inversion of audio frequency magnetotelluric sounding and the exploration effect of fault structure under complex terrain conditions. The example shows that AMT method has a good effect in mine engineering geological exploration, which provides a basis for the development of mineral resources. Keywords: audio frequency magnetotelluric; AMT; Mine engineering exploration
音频大地电磁(AMT)实习

1
地球物理学院
音频大地电磁测深(AMT)
第 1 章 实习目的与意义
在本次生产实习中,我们需要了解 MT (大地电磁法) 及 AMT (音频大 地电 磁法)的基本原理,初步掌握 AMT 法在实际生产过程中的操作流程和相关 仪器及数据处理软件的使用,熟悉 AMT 法在实际应用中的特点及其适用范围, 并将理论与实践结合,加深对课本上的知识的了解,对于此方法有进一步的认 识。
学生(签名) :
指导 教师 评语 成绩评定: 指导教师(签名): 年
1 1
月
日
实习类型生产音频大地电磁测深amt实习报告学院名称地球物理学院专业名称勘查学生姓名学生学号指导教师实习地点实习成绩二一五年九月二一五年十一月地球物理学院21amtmt简介22基本原理实习目的与意义在本次生产实习中我们需要了解mt大地电磁法amt音频大地电磁法的基本原理初步掌握amt法在实际生产过程中的操作流程和相关仪器及数据处理软件的使用熟悉amt法在实际应用中的特点及其适用范围并将理论与实践结合加深对课本上的知识的了解对于此方法有进一步的认音频大地电磁amt原理amt是电法勘探中的一种重要方法其测量原理与大地电磁mt是一样的
(1)
在上式中, 为电阻率( ) , f 为频率( Hz ) ,Zs 为测深。由该式可以知 道穿透深度与频率以及电阻率的关系。 当介质电阻率随深度变化时,当介质层数趋于 1 时,所求出的电阻率为平均 值。由于地层为多层甚至更为复杂的构造,所以视电阻率 s 能代表地层的平均电 阻率,而并非实际的介质电阻率。根据电磁场的趋肤效应,低频信号计算出的电 阻率较深部介质的电阻率高,所以高频信号则用于计算浅层或者第一层的电阻率 值。
图 4-4 Robust 参数处理界面 5、数据处理。点击 “Process”键,进入数据处理流程,Robust 数据处理 界面为 Dos 界面,中间不需要人工干预,处理结束后完成代号为 0 是成功处理 数据的标志。如图 4-5 所示。
EH4大地电磁技术的适用及应用效果

a.地电模型
b.二维地电模型 圈1 二维起伏地形条件的地电模型及水
平地形的二维地电模型
图2大地电磁二维纯地形影响 起伏地形条件下的地电结构的视电阻率曲线比 较复杂,图3是图la模型的视电阻率曲线,与图1b 模型结果(图4)相对比,1-E极化曲线尚能看出是地 形引起干扰场与地下电性结构引起的场的叠加。对 于TM极化曲线,由于地形引起的畸变及位移十分强 烈,几乎完全掩盖了地电结构场响应。因此,在不连 续观测方式下由于地形影响所造成的TM极化方式 产生的数据畸变是不容忽视的。并且经模型模拟实 验表明,在通过包括空间滤波的方法对数据进行校正 后对TE模式可以获得较好的校正效果,但TM模式
p。∽=P柚∽+C 式中,为频率;p。∽为厂点处存在静态偏移的视电 阻率值;p曲∽为厂点处未受静态偏移影响的视电阻
率值;C为静态偏移量,它是一个与频率无关的常 数。一个测点的静态偏移量虽然与频率无关,但不 同测点的C值不同,其大小与近地表局部电性不均 匀体的大小、形状、埋深以及相对于观测点的位置均 有关。在实际工作中,不但无法知道局部电性不均 匀体的这些参数,甚至无法弄清是否存在局部电性 不均匀体,要从观测得到的视电阻率曲线中消除静 态偏移量十分困难。对位于近地表导体之上的测 点,其响应曲线整体下移(视电阻率变低);对位于 近地表阻抗体之上的测点,其响应曲线整体上移 (视电阻率变高)。
(2)雁门关隧道DKll8+300一DKl20+700段
的EH4二维反演断面瞰图6)
图6雁门关隧道DKll8+300一DKl20+ 700段EH-4反演断面图
25 m。
如果单纯根据EH4的成果很难确定断层的准 确位置及倾向,且不可能确定其宽度。但可以大 致确定土石分界,图中的蓝线即为该土石界线,这 一结论也是和该处的电测深解释结果、钻孔资料 相符的。
EH4高频大地电磁测深的数据插值处理方法

EH4高频大地电磁测深的数据插值处理方法康全【摘要】在地质勘查工作中,地球物理方法应用广泛,基于电磁感应原理的EH4高频大地电磁测深是探测大埋深矿产资源的有效方法,本文结合笔者多年工作经验,阐述了EH4高频大地电磁测深的数据插值处理方法.【期刊名称】《低碳世界》【年(卷),期】2017(000)009【总页数】2页(P40-41)【关键词】EH4;高频;大地电磁;测深;数据插值处理【作者】康全【作者单位】湖南省地质矿产勘查开发局418队,湖南娄底417000【正文语种】中文【中图分类】P631.325目前,适用于地下1km至几百米上下深度范围的电法仪器相对较少,研制开发出一种既轻便又可以勘探浅、中深度的电法仪器十分必要,基于此EH4高频大地电磁测深应运而生。
1.1 EH4高频大地电磁测深的产生20世纪90年代中期,美国EMI公司和Geometrics公司联合研制出EH4,这是全新概念的电导率张量测量仪,其利用大地电磁的测量原理,同时配置了磁偶极子发射源。
1.2 EH4方法的重要意义EH4遵循大地电磁测深(MT)的基本原理,支持音频大地电磁测深(AMT)和可控源音频大地电磁测深(CSAMT),属于部分可控源与天然场源相结合的一种大地电磁测深系统,为1000m左右范围的电法勘探提供了一种具有现实价值的新手段。
1.3 EH4方法基本原理通过观测天然变化的电磁场水平分量,将电磁场信号转换成视电阻率曲线和相位曲线,然后反演求得各地层的电阻率和厚度值。
大陆普遍存在地壳内和上地幔高导层。
壳内高导层大多出现在中地壳,有些高导层与壳内低速层有较好相关性,主要反映脱水相变和部分熔融。
一些强震区的中地壳也发育高导层。
高导层的分布与地球动力学过程密切相关。
上地幔高导层顶部深度变化较大,主要反映软流层起伏。
有些埋深较浅的上地幔高导层不同于高导软流层。
EH4属于部分可控源与天然场源相结合的一种大地电磁测深系统,其观测的基本参数为:正交的电场分量(Ex,Ey)和磁场分量(Hx,Hy)的时间序列。
音频大地电磁测深(AMT)方法在西藏某金矿的应用效果

地质勘探G eological prospecting音频大地电磁测深(AMT)方法在西藏某金矿的应用效果宁 堃,李才江,邹 浩(四川省核工业地质局二八二大队,四川 德阳 618000)摘 要:本文从方法原理和应用实例方面介绍音频大地电磁测深(AMT)方法在西藏某金矿上的应用研究。
研究结果表明,利用音频大地电磁测深(AMT)方法在寻找赋矿脉岩、隐伏赋矿断裂破碎带及圈定隐伏岩体等方面是行之有效的。
关键词:音频大地电磁测深;金矿中图分类号:P631.325 文献标识码:A 文章编号:1002-5065(2018)05-0172-3The application effect of audio magnetotelluric sounding (AMT) method in a gold mine in TibetNING Kun, LI Cai-jiang, ZOU Hao(Sichuan provincial Nuclear Industry Geology Bureau 282 brigade, Sichuan Deyang 618000)Abstract: In this paper, the application of audio magnetotelluric sounding (AMT) method in a gold mine in Tibet is introduced from the principle of method and application. The results show that the use of audio frequency magnetotelluric sounding (AMT) method is effective in finding ore vein rocks, concealed ore bearing fracture zones and delineating concealed rock masses.Keywords: Audio magnetotelluric sounding; gold mine众所周知,应用物探方法寻找金属矿产已经取得了比较好的效果,但应用物探方法直接找金矿的工作较少,效果也不稳定,其主要原因是金在矿石中的含量仅为ppm级,不足以影响矿石的物理特性。
音频大地电磁测深(AMT)方法在池沟地区寻找隐伏铜矿体的应用研究

音频大地电磁测深(AMT)方法在池沟地区寻找隐伏铜矿体的应用研究摘要音频大地电磁测深(AMT)方法作为一种对地下地质结构解析度高、有效探测深度适中(800~1200m)的地球物理测深方法,可以较为精确的解析、探测地质体的三维形态、规模、产状特征。
近年来,在南秦岭池沟地区寻找斑岩型铜矿的找矿工作中,通过音频大地电磁测深(AMT)测量,探测了深部斑岩体侵位形态、规模、产状特征及隐伏矿体的赋存部位等,经钻探工程验证,深部斑岩体产状形态、矿化特征等与物探异常基本吻合,证明利用该方法在本区探测斑岩体产态特征及隐伏矿体是可行的,音频大地电磁测深为本区成本低、效率高的有效工作方法。
关键词音频大地电磁测深;隐伏矿体;池沟地区;有效方法2012年作者单位在柞-山盆地池沟地区采用了音频大地电磁测深(AMT)方法进行了斑岩型铜矿找矿及研究工作,探测了斑岩体侵位形态、产状特征、赋矿部位等,经钻探工程验证,基本探明了斑岩体产态特征,发现了深部隐伏铜矿体,证明该方法有效,为该区以后的勘查工作指明了方向。
1 工作区地质及地球物理概况1.1 地质概况柞~山盆地位于秦岭海西褶皱带东段北部,夹持于华北板块与扬子板块的主缝合带商-丹大断裂与山阳~凤镇断裂之间。
区域出露地层由下至上依次为主要为中~上泥盆统牛耳川组(D2n)、池沟组(D2c)、青石垭组(D2q)、下东沟组(D3xd)、桐峪寺组(D3t)及少量下石炭统地层,岩性为一套浅变质海相细碎屑岩~碳酸盐岩,属浅海~半深海浊流沉积,沉积韵律层发育。
区内断裂构造十分发育,近EW向的山阳~凤镇断裂、商~丹断裂和红岩寺~黑山街复式向斜构成区域构造主体,其次发育少量平行的次级断裂、褶皱构造。
另外,在柞水凤沟~干沟、二峪河一带还发育两条南北向基底断裂,这些断裂经纬交错,形成秦岭造山带“立交桥”式的构造特征,为后期成岩、成矿奠定了基础[1]。
区内岩浆活动频繁,多沿断裂或其旁侧分布,其中以印支期和燕山期的岩浆活动最为强烈,分布最为广泛。
水文地质调查中高频大地电磁测深法(eh-4)的应用

本次开展水文地质地区位于青海省东南部拉脊山 山 脉 处 ,深 居 内 陆 ,远 隔 海 洋 昼 夜 温 差 大 ,属 于 典 型 的 半干旱大陆性气候区。按照地貌成因和形态特征,可以 工作区为侵蚀构造中高山,山体走向与构造线方向一 致,海拔 3500~4400 m,相对高差 600~800 m,基岩裸露, 寒冻风化作用强烈。在重点调查的中高山地带主要出 露的地层为寒武系(∈)、白垩系(K)和第四系地层。寒 武系(∈)地层主要由灰绿、暗绿色变质安山岩、安山凝 灰岩等组成,白垩系(K)地层主要由砾岩、砂砾岩、砂岩 及页岩等组成,第四系地层主要由黄土状土、砂砾卵石 及草甸土组成。
作者简介:苏世杰(1991-),男,甘肃临洮人,大学本科,助理工程师,主要从事水工环矿物探技术工作。
184
第1期
苏世杰:水文地质调查中高频大地电磁测深法(EH-4)的应用
3 推断解释
本次工作运用高频大地电磁测深法(EH-4),勘测 了 1条剖面,41 个物理点。以 185毅方位,由北向南沿沟 谷布设,剖面地势北高南低。从剖面 EH-4 反演图可以 看出,剖面电阻率等值线横向差异明显,剖面距 0耀600m 电阻率值高(籽=300~1000 赘·M),推测其岩性为凝灰岩,
地层、岩石物性是物探解释的基础和依据,它的变 化是引起地球物理方法曲线形态特征变化的主要因 素。本次资料解释主要依据工区已有钻孔柱状图、测井 资料和实测物性数据综合分析得出,该工区第四系(Q) 草甸土电阻率值相对较低,是整个工区表部的中低阻 电性特征,其值为 60~170 Ω·m。白垩系(K)砂岩,电阻 率相对较低,是本次高频大地电磁测深法(EH-4)探测 有效深度内的低阻值电性层,电阻率在 80 Ω·m 左右。 寒武系(∈)凝灰岩,电阻率值相对较高,是本次高频大 地电磁测深法 (EH-4) 探测有效深度内的高阻值电性 层,电阻率在 300~1000 Ω·m,由于断层影响,在凝灰岩
音频大地电磁测深(EH-4)在隐伏断裂调查中的应用

音频大地电磁测深(EH-4)在隐伏断裂调查中的应用摘要:在隐伏地质构造调查中,常使用直流电阻率法等地球物理探测技术,但受到地形、地表低阻体等因素的干扰,常规电法勘探深度有限,而音频大地电磁测深恰好弥补常规电法这一不足。
本文以EH-4电磁成像系统为例简单介绍了音频大地电磁测深,并结合实例说明音频大地电磁测深(EH-4)在隐伏断裂调查中的应用效果。
关键词:音频大地电磁 EH-4 断裂调查前言断裂调查对地质工作都来说显得尤为重要,地质矿产调查中断裂构造往往与成矿有密切的关系,在工程勘察中断裂也会对工程建设、地质环境有着重大的影响。
在地表出露的断裂较容易识别,但多数情况下,断裂构造往往隐伏于地表几十至几百米之下,而地表之下数十米至一千米左右范围内的深度,与人类基础建设、地质开发关系密切。
多年来,音频大地电磁测深(EH-4)凭借其在隐伏断裂调查的优势特点,广泛应用于矿产勘查、地热开发、工程建设等领域,并取得了显著的地质效果。
本文简单介绍音频大地电磁测深(EH-4)的工作原理及方法技术,并以工程实例阐述了该方法在隐伏断裂中的应用。
1 音频大地电磁测深(EH-4)工作原理音频大地电磁测深属于电磁法中的一种勘探方法。
它是以地下岩土的导电性与导磁性差异为物质基础,通过观测和研究电磁场空间与时间分布,以达到探测地下地质构造、解决地质问题的目的。
EH-4电磁成像系统是一套以电磁理论为基础的大地电磁测深系统,其场源为部分可控源与天然场源相结合,采用大地电磁场的声频部分(10~100kHz)进行工作。
其理论探测深度能达到几千米,广泛应用于金属矿产、油气勘查、工程环境等各领域,是地球物理勘查技术中的重要方法。
EH-4电磁成像系统工作时观测的基本参数为正交的电场分量Ex、Ey和磁场分量Hx、Hy的时间序列,通过傅立叶变化将时间域的电磁信号变成频率域信号,最后计算视电阻率ρ:式中h勘探深度,单位为m;δ为穿透深度,单位为m;ρ为视电阻率,单位Ω.m;f为频率,单位为Hz。