信息论第2章信息的度量

合集下载

信息论与编码-第2讲-信源及信息度量1

信息论与编码-第2讲-信源及信息度量1



自信息含义
当事件xi发生以前:表示事件xi发生的不确定性。 当事件xi发生以后:表示事件xi所含有(或所提供)的信
息量。在无噪信道中,事件xi发生后,能正确无误地传输到 收信者,所以I(xi)可代表接收到消息xi后所获得的信息量。 这是因为消除了I(xi)大小的不确定性,才获得这么大小的信 息量。
2.1.1 单符号离散信源的数学模型
(1) 信源的描述方法 (2) 单符号离散信源数学模型
(1) 信源的描述方法
在通信系统中收信者在未收到消息以前,对信源发出 什么消息是不确定的。
① 离散信源:输出的消息常常是以一个个符号形式出现,


这些符号的取值是有限的或可数的。 单符号离散信源:只涉及一个随机事件,可用随机变量描述。 多符号离散信源:每次输出是一个符号序列,序列中每一位出现




② 联合自信息量

信源模型为
x2 y1 ,, x2 ym ,, xn y1 ,, xn y m XY x1 y1 ,, x1 ym , P( XY ) p( x y ),, p( x y ), p( x y ),, p( x y ),, p( x y ),, p( x y ) 1 m 2 1 2 m n 1 n m 1 1

计算y1与各种天气之间的互信息量 对天气x1,不必再考虑 对天气x2, I ( x2 ; y1 ) log2 p( x2 / y1 ) log2 1/ 2 1(比特) p( x ) 1/ 4
i i

验概率的函数。

函数f [p(xi)]应满足以下4个条件 根据上述条件可以从数学上证明这种函数形式是对 数形式。

信息论研究的主要内容

信息论研究的主要内容

信息论研究的主要内容
信息论是一门研究信息传输、存储、处理等问题的学科,其主要内容包括以下几个方面:
1. 信息的度量和表示:信息的度量可以通过熵、互信息等指标来实现,而信息的表示则可以通过编码的方式来实现。

2. 信道编码和解码:信道编码和解码是信息传输的核心环节,其中编码方法包括香农编码、哈夫曼编码等,而解码方法则包括维特比算法、前向后向算法等。

3. 误差控制编码:误差控制编码是一种能够在数据传输过程中自动纠错的编码方式,其中最常用的是海明码、卷积码等。

4. 压缩编码:压缩编码是一种能够将数据在保持质量不变的情况下减少数据存储空间的编码方式,其中最常用的是无损压缩算法和有损压缩算法。

5. 信息论在通信系统中的应用:信息论在通信系统中的应用包括调制、多路复用、功率控制、网络协议等方面,它为通信系统的设计和性能优化提供了基础理论支持。

总之,信息论研究的主要内容涵盖了信息的度量、信道编码和解码、误差控制编码、压缩编码以及信息论在通信系统中的应用等方面,为信息传输和处理提供了基础理论支持。

- 1 -。

信息论第2章(2010)

信息论第2章(2010)

ai 后所获得的信息量。
自信息量的性质:
1)非负性。 2) 单调递减性。 3) 可加性。
I xi ,y j log pxi ,y j
若两个符号x i , y j同时出现,可用联合概率px i , y j 来表示 这时的自信息量为 I y j I xi | y j
例题:二元信源,每个符号发生的概率分别为p(x1)=p,p(x2)=1-p. 试计算信源熵,并画出熵函数H(p)和p的曲线图。
① 等概时(p=0.5):随机变量具有最大的不确定性
② p=0或1时:随机变量的不确定性消失。
信息熵的物理意义
1)表示了信源输出前,信源的平均不确定性。 2)表示了信源输出后,每个消息或符号所提供的 平均信息量。 3)信息熵反映了变量X的随机性。
平均自信息量H (X ) 表示信源输出消息中的每个符号所含信息量的统计 平均值,其表达式为 q
H ( X ) EI ( xi ) P( xi ) log P( xi )
i 1
式中, E 表示统计平均,
I ( xi ) 表示符号 x i 包含的自信息量。
平均信息量可以表示为:
任何一个物理量的定义都应当符合客观规律和逻辑上 的合理性,信息的度量也不例外。直观经验告诉我们: ① 消息中的信息量与消息发生的概率密切相关:出现消 息出现的可能性越小,则消息携带的信息量就越大。 ② 如果事件发生是必然的(概率为1),则它含有的信息 量应为零。如果一个几乎不可能事件发生了(概率趋 于0),则它含有巨大的信息量。 ③ 如果我们得到不是由一个事件而是由若干个独立事件 构成的消息,那么我们得到的信息量就是若干个独立 事件的信息量的总和。
② 联合信源中平均每个符号对所包含的信息量?

信息论与编码第二章信息的度量

信息论与编码第二章信息的度量

14
2.1.1 自信息量

(1)直观定义自信息量为:
收到某消息获得的信息量 = 不确定性减少的量
= 收到此消息前关于某事件发生的不确定性 收到此消息后关于某事件发生的不确定性
15
2.1.1 自信息量

举例:一个布袋中装有对人手感觉完全 一样的球,但颜色和数量不同,问下面 三种情况下随意拿出一个球的不确定程 度的大小。

18
2.1.1 自信息量
应用概率空间的概念分析上例,设取红球的状 态为x1,白球为x2,黑球为x3,黄球为x4,则 概率空间为: x2 (1) X x1

P( x) 0.99 0.01

( 2)
( 3)
X x1 P( x) 0.5
一、自信息和互信息
二、平均自信息
2.1.2 互信息
三、平均互信息
2.1.1 自信息量

信源发出的消息常常是随机的,其状态存在某种 程度的不确定性,经过通信将信息传给了收信者, 收信者得到消息后,才消除了不确定性并获得了 信息。
获得信息量的多少与信源的不确定性
的消除有关。
不确定度——惊讶度——信息量
第二章:信息的度量
自信息和互信息 平均自信息 平均互信息
2.1.1 自信息(量) (续9)
例4:设在一正方形棋盘上共有64个方格,如果甲将一 粒棋子随意的放在棋盘中的某方格且让乙猜测棋子所 在位置。 (1) 将方格按顺序编号,令乙猜测棋子所在的顺序 号。问猜测的难易程度。
(2)将方格按行和列编号,甲将棋子所在方格的列编 号告诉乙之后,再令乙猜测棋子所在行的位置。问猜 测的难易程度。

自信息是事件发生前,事件发生的不确定性。

信息论与编码(曹雪虹第三版)第一、二章

信息论与编码(曹雪虹第三版)第一、二章
信道的分类
根据传输介质的不同,信道可分为有线信道和无线信道两大类。有线信道包括 双绞线、同轴电缆、光纤等;无线信道包括微波、卫星、移动通信等。
信道容量的定义与计算
信道容量的定义
信道容量是指在给定条件下,信道能 够传输的最大信息量,通常用比特率 (bit rate)来衡量。
信道容量的计算
信道容量的计算涉及到信道的带宽、 信噪比、调制方式等多个因素。在加 性高斯白噪声(AWGN)信道下,香农 公式给出了信道容量的理论上限。
信道编码分类
根据编码方式的不同,信道编码可分为线性分组码和卷积码 两大类。
线性分组码
线性分组码定义
线性分组码是一种将信息 序列划分为等长的组,然 后对每个组独立进行编码 的信道编码方式。
线性分组码特点
编码和解码过程相对简单 ,适用于各种信道条件, 且易于实现硬件化。
常见的线性分组码
汉明码、BCH码、RS码等 。
将信源消息通过某种数学变换转换到另一个域中,然后对变换 系数进行编码。
将连续的信源消息映射为离散的数字值,然后对数字值进行编 码。这种方法会导致量化噪声,是一种有损的编码方式。
信道编码的定义与分类
信道编码定义
信道编码是为了提高信息传输的可靠性、增加通信系统的抗 干扰能力而在发送端对原始信息进行的一种变换。
信息熵总是非负的,因 为自信息量总是非负的 。
当随机变量为确定值时 ,其信息熵为0。
对于独立随机变量,其 联合信息熵等于各自信 息熵之和。
当随机变量服从均匀分 布时,其信息熵达到最 大值。
03
信道与信道容量
信道的定义与分类
信道的定义
信道是信息传输的媒介,它提供了信号传输的通路,是通信系统中的重要组成 部分。

信息论编码 第二章信息度量1

信息论编码   第二章信息度量1

50个红球,50个黑球
Y
20个红球,其它4种 颜色各20个
Z
问题:能否度量、如何度量??
2.3.2信源熵数学描述
信源熵
• 定义:信源各个离散消息的自信息量的数学期望 (即概率加权的统计平均值)为信源的平均信息 量,一般称为信源的信息熵,也叫信源熵或香农 熵,有时也称为无条件熵或熵函数,简称熵。 • 公式: n 1 H ( X ) = E[ I ( xi )] = E[log2 ] = −∑ p( xi ) log2 p( xi ) p( xi ) i =1 • 熵函数的自变量是X,表示信源整体,实质上是无 记忆信源平均不确定度的度量。也是试验后平均 不确定性=携载的信息 信息量为熵 • 单位:以2为底,比特/符号 • 为什么要用熵这个词,与热熵的区别?
3
( 2)
∑ p ( x ) = 1, ∑ p ( y
i =1 m i j =1
n
m
j
) = 1,∑ p ( xi / y j ) = 1,
i =1 n
n
概 率 复 习
∑ p( y
j =1 n
j
/ xi ) = 1, ∑ ∑ p ( xi y j ) = 1
j =1 i =1 m
m
( 3) ( 4) (5)
1
对天气x1 ,Q p( x1 / y1 ) = 0,∴不必再考虑x1与y1之间 信息量
对天气 x 2 : I ( x 2 : y 1 ) = log
2
p ( x 2 / y1 ) = log p ( x2 )
2
1/ 2 = 1( bit ) 1/ 4
同理 I ( x 3 : y 1 ) = I ( x 4 : y 1 ) = 1( bit ), 这表明从 y 1 分别得到了

信息论基础第2章离散信源及其信息度量[83页]

信息论基础第2章离散信源及其信息度量[83页]
④ 一般情况下,如果以 r 为底 r 1,则
I (ai ) logr P(ai ) (r进制单位)
通常采用“比特”作为信息量的实用单位。在本书中,且为了 书写简洁,底数 2 通常省略不写。
【例】假设有这样一种彩票,中奖概率为 0.0001,不中 奖概率为 0.9999。现有一个人买了一注彩票。 试计算
定义: 设信源的概率空间为
X
P( x)
a1 P(a1
)
a2 P(a2 )
aq
P(aq )
则自信息量的数学期望定义为信源的平均自信息量,即
q
H ( X ) E[I (ai )] P(ai ) log2 P(ai ) (bit/符号) i 1
简记为
H ( X ) P(x) log2 P(x) xX
(1) 事件“彩票中奖”的不确定性; (2) 事件“彩票不中奖”的不确定性; (3) 事件“彩票中奖”和事件“彩票不中奖”相
比较,哪个提供的信息量较大?
【例】 对于 2n 进制的数字序列, 假设每一符号的出现相互 独立且概率相等,求任一符号的自信息量。
解:
根据题意, P(ai ) =1/2n,所以 I (ai ) log P(ai ) log(1/ 2n ) n(bit)
一般的多符号离散信源输出的随机序列的统计特性 比较复杂,分析起来也比较困难。将在第 3 章中详细讨 论。
《信息论基础》
2.3 离散随机变量的信息度量
一、自信息量I(xi)和信息熵H(X)
定义: 随机事件的自信息量定义为该事件发生概率的
对数的负值。设集合 X 中的事件 x ai 发生概率为 P(ai ) ,
按输出符号之间依赖关系分类,多符号离散信源 可分为无记忆信源和有记忆信源。

信息论

信息论

【例1】计算只能输出“1”和“0”两个消息(状态)的 简单二元信源的熵。 解:假设p(1)=p, p(0)=1-p(0≤p≤1)
H ( x ) - p( xi ) log p( xi ) - p log p - (1- p) log(1- p)
i 1 N
(1)当p=1/2时,H(x)=1bit/符号 (2)当p=0或p=1时,H(x)=0
损失了 信息量 p( x2 | y1 ) 3/8 I ( x2 , y1 ) log = log = 0.415bit
p( x 2 | y2 ) 3/ 4 I ( x2 , y2 ) log = log =0.585bit p( x2 ) 1/ 2
2013-10-26 18
p1 p2 pN 1/ N
当 p1 p2 pN 1/ N时,H max ( x) log N
2013-10-26 25
2.3 二元联合信源的共熵与条件熵
2013-10-26
26
2.3.1 二元联合信源的共熵
1.定义 二元联合信源的共熵是指二元联合信源(X,Y)输出 一个组合消息状态所发出的平均信息量,也称为 联合熵,记作H(x,y)。 2.表达式
2013-10-26 24
令: F
p1 F (1 log p2 ) 0 p2

(1 log p1 ) 0
F (1 log pN ) 0 pN
可得 代入到约束方程可得 因此
p1 p2 pN e 1
1 1 H ( x) k log (2.1) H ( x) log -log P log N (2.2) P P 对数可以取2、e、10为底,相应不确定程度的单位 分别为比特(bit)、奈特(nat) 、哈特莱(Hartley) 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两个信源
X 晴 阴 大雨 小雨
P(x) 1/2 1/ 4 1/ 8
1/
8

Y P( y)

晴 7 /8
小雨
1/
8

解:甲地天气预报构成的信源空间为:
X P(x)

晴 1/2
阴 1/ 4
大雨 1/ 8
小雨
1/
8

则其提供的平均信息量即信源的信息熵:
已知8个灯泡等概率损坏,所以先验概率P (x1)=1/8 ,即
I[P( x1 )]

log 2
P
1 ( x1 )
3(bit)
一次测量后,剩4个灯泡,等概率损坏,P (x2)=1/4
I[P(x2 )]

log 2
P
1 (x2 )

2(bit)
第一次测量获得的信息量 = I [P (x1)] - I [P (x2)]=1(bit)
的消息所提供的信息量应等于它们分别提供的信 息量之和。
可以证明,满足以上公理化条件的函数形式是对数 形式。
2.1.1 自信息
定义2.1 随机事件的自信息量定义为该事件发生概率的对数
的负值。设事件xi的概率为p(xi),则它的自信息定义为
def
I (xi ) log
p(xi )

log
1 p(xi )
不同,可以是比特/符号、奈特/符号、哈特莱/符号或者 是r进制单位/符号。通常用比特/符号为单位。 一般情况下,信息熵并不等于收信者平均获得的信息量, 收信者不能全部消除信源的平均不确定性,获得的信息量将 小于信息熵。
熵的计算[例]: 有一布袋内放l00个球,其中80个球是红色的,20个球是白
色的。随便摸出一个球,猜测是什么颜色,那么其概率空间为:
互信息:一个事件所给出关于另一个事件的信息量,比 如今天下雨所给出关于明天下雨的信息量。
平均自信息(信息熵):事件集(用随机变量表示)所 包含的平均信息量,它表示信源的平均不确定性。比如 抛掷一枚硬币的试验所包含的信息量。
平均互信息:一个事件集所给出关于另一个事件集的平 均信息量,比如今天的天气所给出关于明天的天气的信 息量。
结论:在极端情况2下,甲地比乙地提供更多的信息量。 因为,甲地可能出现的消息数比乙地可能出现的消息数多。
2.2.2 熵函数的性质
信息熵H(X)是随机变量X的概率分布的函数,所以 又称为熵函数。如果把概率分布p(xi),i=1,2,…,q,记 为 p1,p2,…,pq , 则 熵 函 数 又 可 以 写 成 概 率 矢 量 P=(p1,p2,…,pq)的函数的形式,记为H(P) 。
经过二次测量后,剩2个灯泡,等概率损坏,P (x3)=1/2
I[P(x3)]
log 2
P
1 ( x3 )
1(bit)
第二次测量获得的信息量 = I [P (x2)] - I [P (x3)]=1(bit)
第三次测量获得的信息量 = I [P (x3)] =1(bit)
至少要获得3个比特的信息量就可确切知道哪个灯泡已坏了。
若取自然对数(对数以e为底),自信息量的单
位为奈特(nat,natural 特=1.443比特
unit)。
1奈特=log2e比
工程上用以10为底较方便。若以10为对数底,则 自信息量的单位为哈特莱(Hartley)。1哈特莱 =log210比特=3.322比特
制如单果位取以1rr进为制底单的位对=数lo(gr2>r比1),特则I(xi)=-logrp(xi)进
2.2 平均自信息
2.2.1 平均自信息(信息熵)的概念
自信息量是信源发出某一具体消息所含有的信息量, 发出的消息不同,所含有的信息量也不同。因此自信 息量不能用来表征整个信源的不确定度。定义平均 自信息量来表征整个信源的不确定度。平均自信息 量又称为信息熵、信源熵,简称熵。
因为信源具有不确定性,所以我们把信源用随机变 量来表示,用随机变量的概率分布来描述信源的不 确定性。通常把一个随机变量的所有可能的取值和 这些取值对应的概率 [X,P(X)] 称为它的概率空间。



1
阴 0
大雨 0
小雨
0

H (X ) 1 log1 0 log 0 0 log 0 0 log 0
lim log 0 H (X ) 0(bit / 符号) 0
极端情况2:各种天气等概率分布
X 晴 阴 大雨 小雨
4
H (X ) P(ai )logP(ai )
i 1
1 log 1 1 log 1 1 log 1 1 log 1 1.75(bit / 符号) 2 24 48 88 8
乙地天气预报的信源空间为:
Y 晴 小雨
P( y) 7 /8
1/
2.1.1 自信息
随函数机,事并件且的应自该信满息足量以I(下xi)公是理该化事条件件发:生概率p(xi)的
I大I((x,x1i))>事,是I(件x2p发)(x,生i)的概以严率后格越所递小包减,含函的事数自件。信发当息生p量的(x1越不)<大确p(。x定2)性时越,
时极,限情I(x况i) 下=0当。p(xi) =0时, I(xi) →∞ ;当p(xi) =1 另外,从直观概念上讲,由两个相对独立的不同
乙地极端情况:
极端情况1:晴天概率=1
Y P( y)



1
小雨
0

H (Y ) 1 log1 0 log 0 0(bit / 符号)
极端情况2:各种天气等概率分布
Y P( y)

晴 1/2
阴 1/2
H (Y ) log 1 1(bit / 符号) 2
2.2.1 平均自信息(信息熵)的概念
定义2.3 随机变量X的每一个可能取值的自信息I(xi)的统计平 均值定义为随机变量X的平均自信息量:
q
H ( X ) E I (xi ) p(xi ) log p(xi ) i 1
这里q为的所有X可能取值的个数。 熵的单位也是与所取的对数底有关,根据所取 a1 0.99
a2 0.01
YP(
y)


a1 0.5
a2 0.5
计算其熵,得:H(X)=0.08( bit /符号)
H(Y)=1(bit / 符号)
H(Y)>H(X),因此信源Y比信源X的平均不确定性要大。
[例] 设甲地的天气预报为:晴(占4/8)、阴(占2/8)、大雨(占 1/8)、小雨(占1/8)。又设乙地的天气预报为:晴 (占7/8), 小雨(占1/8)。试求两地天气预报各自提供的平均信息量。若 甲地天气预报为两极端情况,一种是晴出现概率为1而其余为0。 另一种是晴、阴、小雨、大雨出现的概率都相等为1/4。试求 这两极端情况所提供的平均信息量。又试求乙地出现这两极端 情况所提供的平均信息量。
P(x) 1/4 1/4 1/4
1/4

H (X ) 1 log 1 1 log 1 1 log 1 1 log 1 2(bit / 符号) 4 44 44 44 4
结论:等概率分布时信源的不确定性最大,所 以信息熵(平均信息量)最大。
连续性
lim H
0
( p1,
p2 ,
, pq1 ,pq ) H ( p1, p2,
, pq )
即信源概率空间中概率分量的微小波动,不会 引起熵的变化。
2.2.2 熵函数的性质
递增性
H ( p1, p2,
, pn1, q1, q2 ,
, qm ) H ( p1, p2,
第2章 信息的度量
重庆交通大学信息与工程学院 通信工程系 李益才
2012月
第2章 信息的度量
2.1 自信息和互信息 2.2 平均自信息 2.3 平均互信息
2.1 自信息和互信息
几个重要概念
自信息:一个事件(消息)本身所包含的信息量,它是 由事件的不确定性决定的。比如抛掷一枚硬币的结果是 正面这个消息所包含的信息量。
从图2.1种可以看到上述信 息量的定义正是满足上述 公理性条件的函数形式。 I(xi)代表两种含义:当事 件发生以前, 等于事件发
生的不确定性的大小;当 事件发生以后,表示事件 所含有或所能提供的信息 量。
图2.1 自信息量
2.1.1 自信息
自信息量的单位
常取对数的底为2,信息量的单位为比特(bit, b概in率ar等y 于un1i/t2)的。事当件具p(x有i)=11比/2特时的,自I(信xi)息=1量比。特,即
平均摸取一次所能获得的信息量为 :
H(X)= p(a1) I (a1) + p(a2) I (a2) =0.72(比特/符号)
熵的含义
熵是从整个集合的统计特性来考虑的,它从平均意义上来 表征信源的总体特征。
在信源输出后,信息熵H(X)表示每个消息提供的平均信 息量;
在信源输出前,信息熵H(X) 表示信源的平均不确定性; 信息熵H(X) 表征了变量X的随机性。 例如,有两信源X、Y,其概率空间分别为:

X P(
X
)


a1 0.8
a2 0.2
如果被告知摸出的是红球,那么获得的信息量是:
I (a1) =-log p(a1) =-log0.8= 0.32 (比特)
如被告知摸出来的是白球,所获得的信息量应为:
I (a2) = -log p(a2) = -log0.2 = 2.32 (比特)
q
H ( X ) pi log pi H ( p1, p2, , pq ) H (p) i 1
相关文档
最新文档