磁共振成像 基础入门ppt[业界优制]
合集下载
磁共振成像基本知识PPT课件

波谱成像(Spectroscopic Imaging):通过分析组 织中的化学成分来提供分子层面的信息,有助于肿瘤 和代谢性疾病的诊断。
靶向成像(Targeted Imaging):通过使用特异性 标记的分子探针,对特定分子或细胞进行成像,为个 性化医疗和精准诊断提供了可能。
04 磁共振成像应用
医学诊断
成本与普及
磁共振成像设备成本较高,限制了其 在基层医疗机构的普及。未来需要降 低设备成本,提高可及性。
磁敏感加权成像(Susceptibility Weighted Imaging, SWI):利用组织磁敏感性 的差异进行成像,能够显示脑部微出血、铁沉积等病理变化。
分子成像技术
化学交换饱和转移成像(Chemical Exchange Saturation Transfer, CEST):利用特定频率的射频 脉冲来检测组织中特定化学物质的变化,对肿瘤和炎 症等疾病的诊断具有潜在价值。
。
快速扫描技术
研究更快的扫描序列和算法,缩短 成像时间,提高检查效率,减轻患 者长时间处于扫描腔内的压力。
多模态成像融合
结合磁共振成像与其他影像技术( 如CT、PET等),实现多模态成像 融合,提供更全面的医学影像信息 。
新应用活动和功能连接,深入 了解神经系统和认知科学领域。
磁共振成像的优势与局限性
高软组织分辨率
MRI对软组织结构有高分辨率,能够清晰显示脑、关节、肌 肉等组织的细微结构。
无骨伪影干扰
MRI不受骨骼的影响,能够清晰显示周围软组织的结构。
磁共振成像的优势与局限性
01
02
03
检查时间长
由于MRI需要采集大量数 据,检查时间相对较长。
金属植入物限制
磁共振的基础知识课件

安全、快捷、无须任何造影剂、无药物过敏反应
第七页,共44页幻灯片
功能成像--DWI (diffusion-weighted imaging)
DWI
DWI:弥散(扩散)加权成像 是目前唯一能够检测活体组织内 水分子扩散运动的无创性方法。 是诊断脑梗塞最敏感的序列。
对超急性脑梗塞(<6h,细胞毒性 水肿)可明确诊断。
第八页,共44页幻灯片
神经系统成像
弥散加权成像(DWI)原理
DWI可敏感显示细胞内外水运动的弥散梯度 DWI图自由运动的水越多 = 图象越黑 DWI图受限制的水越多=图象越亮 DWI理论上30分钟即可做出诊断
Tissue Sample A
Tissue Sample B
自由弥散水 = 图象黑
磁共振基本成像序列 MR的图像标记 磁共振的临床应用 磁共振检查的禁忌症
第十五页,共44页幻灯片
图像标记
第十六页,共44页幻灯片
磁共振基本成像序列 MR的图像标记 磁共振的临床应用 磁共振检查的禁忌症
第十七页,共44页幻灯片
临床应用范围
神经
骨关节 体部
心脏
血管 头颈部
精细 扫描
全身
扫描
Anatomical Brain and Spine,
T1WI
T2WI
T2WI
DWI
FLAIR
DWI反映细胞毒性脑水肿,可发现发病30分钟后的超急性脑卒中
第十一页,共44页幻灯片
脑干、小脑梗塞
b=1000
b=2500
b=1000
b=2500
T1WI
T2WI
T2WI FLAIR
DWI
磁共振不受骨伪影干扰,可清晰显脑干及小脑病变
第七页,共44页幻灯片
功能成像--DWI (diffusion-weighted imaging)
DWI
DWI:弥散(扩散)加权成像 是目前唯一能够检测活体组织内 水分子扩散运动的无创性方法。 是诊断脑梗塞最敏感的序列。
对超急性脑梗塞(<6h,细胞毒性 水肿)可明确诊断。
第八页,共44页幻灯片
神经系统成像
弥散加权成像(DWI)原理
DWI可敏感显示细胞内外水运动的弥散梯度 DWI图自由运动的水越多 = 图象越黑 DWI图受限制的水越多=图象越亮 DWI理论上30分钟即可做出诊断
Tissue Sample A
Tissue Sample B
自由弥散水 = 图象黑
磁共振基本成像序列 MR的图像标记 磁共振的临床应用 磁共振检查的禁忌症
第十五页,共44页幻灯片
图像标记
第十六页,共44页幻灯片
磁共振基本成像序列 MR的图像标记 磁共振的临床应用 磁共振检查的禁忌症
第十七页,共44页幻灯片
临床应用范围
神经
骨关节 体部
心脏
血管 头颈部
精细 扫描
全身
扫描
Anatomical Brain and Spine,
T1WI
T2WI
T2WI
DWI
FLAIR
DWI反映细胞毒性脑水肿,可发现发病30分钟后的超急性脑卒中
第十一页,共44页幻灯片
脑干、小脑梗塞
b=1000
b=2500
b=1000
b=2500
T1WI
T2WI
T2WI FLAIR
DWI
磁共振不受骨伪影干扰,可清晰显脑干及小脑病变
磁共振成像基本原理PPT课件

射频脉冲与磁化矢量
射频脉冲
向样品发射特定频率的射频脉冲,使磁化矢量发生旋 转。
磁化矢量旋转
射频脉冲使磁化矢量从一个静息态旋转到另一态,产 生能量变化。
信号的产生
磁化矢量回到静息态时释放能量,被探测器接收并转 换为可测信号。
信号的接收与处理
接收线圈
环绕在样品周围的接收线圈用于接收磁共振信号。
信号处理
超高场强磁共振成像
超高场强磁共振成像技术使用大于或等于7 特斯拉(T)的磁场进行成像。超高场强设 备在图像质量和分辨率方面具有显著优势, 能够提供更深入的生理和病理信息,有助于 疾病的早期诊断和精准治疗。
功能与分子影像学在技术利用磁场变化 来研究大脑和其他器官的功能活动。通过测 量血液氧合状态的变化,fMRI可以揭示大脑 在执行特定任务时的活动模式。此外,fMRI 还可以用于研究其他器官的功能和疾病进程。
射频电磁场安全
射频电磁场是磁共振成像过程中产生的另一种能量形式, 需要确保其强度符合国际和国家安全标准,避免对患者的 健康造成潜在影响。
热安全
在磁共振成像过程中,设备会向人体发射射频脉冲,这些 脉冲会产生热量。因此,需要监测和限制患者的体温升高, 确保热安全。
磁共振成像质量控制
01
图像分辨率
图像分辨率是磁共振成像质量的重要指标之一。为了获得高质量的图像,
参数优化
根据不同的扫描目标和需求,优化扫描序列中的参数,如磁场强度、射频脉冲的频率和持续时间等,以提高图像 质量和分辨率。
04
磁共振成像设备
磁体系统
01
02
03
磁体类型
超导磁体、永磁磁体和常 导磁体等。
磁场强度
磁场强度决定了成像质量, 通常在0.5-3.0特斯拉之间。
磁共振成像(医学影像成像原理)PPT参考课件

•质子含量
•质子含量越高,与主磁场同向的质子总数增加(磁 化率不变)
•65
处于低能状态的质子到底比处于高能 状态的质子多多少???
室温下(300k)
0.2T:1.3 PPM 0.5T:4.1 PPM 1.0T:7.0 PPM 1.5T:9.6 PPM
处于低能状态的氢 质子仅略多于处于 高能状态的质子
??9191无线电波激发后人体内宏观磁场偏转了90度mri可以检测到人体发出的信号氢质子含量高的组织纵向磁化矢量大90度脉冲后磁化矢量偏转产生的旋转的宏观横向矢量越大mr信号强度越此时的mr图像可区分质子密度不同的两种组织??9292??9393??9494??9595无线电波激发使磁场偏转90度关闭无线电波后磁场又慢慢回到平衡状态纵向??9696无线电波激发使磁场偏转90度关闭无线电波后磁场又慢慢回到平衡状态纵向??9797?relaxationrilk?se??n??9898射频脉冲停止后在主磁场的作用下横向宏观磁化矢量逐渐缩小到零纵向宏观磁化矢量从零逐渐回到平衡状态系统由激发态恢复至平衡状态这个过程称核磁弛豫又可分解为两个部分
•51
•人体组织MRI信号的直接来源
•并非所有氢质子均能产生MRI信号
人体组织MRI信号主要来源于水分子中的氢质子 (水质子) 部分组织也能产生MRI信号,像来自脂肪中的质 子(脂质子)
•水分子:自由水、结合水
•结合水是细胞中和其他物质结合在一起的水,细胞中大部分的水以游离 的形式存在,可以自由流动,我们称为自由水。两者可以互相转换,处 于动态平衡之中。
•13
•14
(2)磁场强度的概念 高斯、特斯拉
•15
高斯(gauss, G)。 Gauss (1777-1855)
德国著名数学家,于1832年首次测量了地球的磁场。 1高斯为距离5安培电流的直导线1厘米处检测到的磁场强度
•质子含量越高,与主磁场同向的质子总数增加(磁 化率不变)
•65
处于低能状态的质子到底比处于高能 状态的质子多多少???
室温下(300k)
0.2T:1.3 PPM 0.5T:4.1 PPM 1.0T:7.0 PPM 1.5T:9.6 PPM
处于低能状态的氢 质子仅略多于处于 高能状态的质子
??9191无线电波激发后人体内宏观磁场偏转了90度mri可以检测到人体发出的信号氢质子含量高的组织纵向磁化矢量大90度脉冲后磁化矢量偏转产生的旋转的宏观横向矢量越大mr信号强度越此时的mr图像可区分质子密度不同的两种组织??9292??9393??9494??9595无线电波激发使磁场偏转90度关闭无线电波后磁场又慢慢回到平衡状态纵向??9696无线电波激发使磁场偏转90度关闭无线电波后磁场又慢慢回到平衡状态纵向??9797?relaxationrilk?se??n??9898射频脉冲停止后在主磁场的作用下横向宏观磁化矢量逐渐缩小到零纵向宏观磁化矢量从零逐渐回到平衡状态系统由激发态恢复至平衡状态这个过程称核磁弛豫又可分解为两个部分
•51
•人体组织MRI信号的直接来源
•并非所有氢质子均能产生MRI信号
人体组织MRI信号主要来源于水分子中的氢质子 (水质子) 部分组织也能产生MRI信号,像来自脂肪中的质 子(脂质子)
•水分子:自由水、结合水
•结合水是细胞中和其他物质结合在一起的水,细胞中大部分的水以游离 的形式存在,可以自由流动,我们称为自由水。两者可以互相转换,处 于动态平衡之中。
•13
•14
(2)磁场强度的概念 高斯、特斯拉
•15
高斯(gauss, G)。 Gauss (1777-1855)
德国著名数学家,于1832年首次测量了地球的磁场。 1高斯为距离5安培电流的直导线1厘米处检测到的磁场强度
《磁共振成像》课件

穿着要求
穿着舒适、无金属纽扣或拉链的衣 服进行检查。
检查中的安全问题
保持静止
在检查过程中,需要保持静止不动,以免影 响成像效果。
遵循医生指导
在检查过程中,需要遵循医生的指导,如保 持正常呼吸、不要憋气等。
观察身体反应
在检查过程中,需要观察身体是否有不适反 应,如有异常应及时告知医生。
避免携带电子设备
02
磁共振成像系统
磁体系统
01
磁体类型
磁体系统是磁共振成像的核心 部分,主要分为永磁型、超导
型和脉冲型三种类型。
02
磁场强度
磁场强度是衡量磁体性能的重 要指标,通常在0.5-3.0特斯拉
之间。
03
磁场均匀性
为了获得高质量的图像,磁场 的均匀性必须得到保证,通常
要求在±0.01ppm之内。
梯度系统
• 技术挑战:高场强磁共振成像技术需要更高的技术和资金投入,同时还需要解决磁场均匀性、信噪比和安全性等问题。
快速成像技术
总结词
快速成像技术能够缩短成像时间,提高成像效率 ,减轻患者的痛苦和不适感。
发展趋势
随着快速成像技术的不断改进和完善,其应用范 围也将不断扩大,未来可能会成为磁共振成像技 术的主流之一。
02
详细描述
多模态成像技术是当前研究的 热点之一,它能够综合利用多 种成像模式的信息,如磁共振 成像、超声成像、X射线成像 等,从而提供更加全面和准确
的诊断结果。
03
发展趋势
多模态成像技术的应用范围将 不断扩大,未来可能会成为医
学影像技术的主流之一。
04
技术挑战
多模态成像技术需要解决不同 模态之间的兼容性和同步性问 题,同时还需要进一步提高图
穿着舒适、无金属纽扣或拉链的衣 服进行检查。
检查中的安全问题
保持静止
在检查过程中,需要保持静止不动,以免影 响成像效果。
遵循医生指导
在检查过程中,需要遵循医生的指导,如保 持正常呼吸、不要憋气等。
观察身体反应
在检查过程中,需要观察身体是否有不适反 应,如有异常应及时告知医生。
避免携带电子设备
02
磁共振成像系统
磁体系统
01
磁体类型
磁体系统是磁共振成像的核心 部分,主要分为永磁型、超导
型和脉冲型三种类型。
02
磁场强度
磁场强度是衡量磁体性能的重 要指标,通常在0.5-3.0特斯拉
之间。
03
磁场均匀性
为了获得高质量的图像,磁场 的均匀性必须得到保证,通常
要求在±0.01ppm之内。
梯度系统
• 技术挑战:高场强磁共振成像技术需要更高的技术和资金投入,同时还需要解决磁场均匀性、信噪比和安全性等问题。
快速成像技术
总结词
快速成像技术能够缩短成像时间,提高成像效率 ,减轻患者的痛苦和不适感。
发展趋势
随着快速成像技术的不断改进和完善,其应用范 围也将不断扩大,未来可能会成为磁共振成像技 术的主流之一。
02
详细描述
多模态成像技术是当前研究的 热点之一,它能够综合利用多 种成像模式的信息,如磁共振 成像、超声成像、X射线成像 等,从而提供更加全面和准确
的诊断结果。
03
发展趋势
多模态成像技术的应用范围将 不断扩大,未来可能会成为医
学影像技术的主流之一。
04
技术挑战
多模态成像技术需要解决不同 模态之间的兼容性和同步性问 题,同时还需要进一步提高图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
扶风书屋
4
MR成像技术的发展:四个阶段 20世纪70年代中—80年代初:初步认识、逐步完善成熟阶段。 80年代初—90年代初:广泛应用,但仅限于T1\T2层面成像。
注重于解剖结构及形态的变化。 90年代初—90年代末:快速发展阶段。检查时间缩短、随着
快速或超快速成像技术的应用,扩散加权、灌注加权、MRA、 水成像、功能成像等技术用于研究功能与活动机制。 90年代末—21世纪至今天:上述技术不断成熟的同时,有多 种成像方法进入临床应用,并进入磁共振分子影像学阶段。
x
扶风书屋
16
对Mz施加90度的射频脉冲
z
B0
代
MZ
表
主
磁 场
y
的 方
x
向
z
90度
y
MXY
x
A
B
在 A-B 这一过程中,产生能量
扶风书屋
17
C
B0
射频脉冲激发使磁场偏转90度,关闭脉冲 后,磁场又慢慢回到平衡状态(纵向)
扶风书屋
18
脉冲停止后,发生了一种物理学现象:弛豫
•弛豫
•Relaxation
河北医科大学石油临床学院 影像学教研室 杨景震
扶风书屋
(2014修改版) 2
主要内容
磁共振技术的发展及概况 简要介绍磁共振成像基本原理及概念 磁共振检查方法及临床应用 磁共振成像的主要优点及限度 如何阅读磁共振图像
扶风书屋
3
时间
1946 1971 1973 1974 1976 1977 1980 2003
1 T = 10000G(高斯)
扶风书屋
7
Raymond Damadian与第一台MRI装置(1977)
扶风书屋
8
扶风书屋
9
MRI基本原理
扶风书屋
10
普通CT成像示意图
扶风书屋
11
螺旋CT原理示意图
扶风书屋
12
磁共振没有射线
扶风书屋
13
实现人体磁共振成像的条件:
利用人体内氢原子核作为磁共振中的靶子,它是人体内最 多的物质。 H 核只含一个质子不含中子,最不稳定,最易 受外加磁场的影响而发生磁共振现象。
磁共振发展史
发生事件
作者或公司
发现磁共振现象
Bloch Purcell
发现肿瘤的T1、T2时间长 Damadian
做出两个充水试管MR图像 Lauterbur
活鼠的MR图像
Lauterbur等
人体胸部的MR图像
Damadian
初期的全身MR图像
Mallard
磁共振装置商品化
诺贝尔奖金
Lauterbur Mansfierd
扶风书屋
5
磁共振设备
按照场强分为:低场强、 中场强、 高场强、 超高场强 0.4T以下 0.5-1.0T 1.5-3.0T 7.0T以上
磁体类型:永磁型、超导型
(也有将3.0T列为超高场强)
扶风书屋
6
特斯拉(Tesla,T)
Nikola Tesla (18571943), 奥地利电器工程 师,物理学家,旋转磁 场原理及其应用的先驱 者之一。
•放松、休息
扶风书屋
19
• 射频脉冲停止后,在主磁场的作用下,横向 宏观磁化矢量逐渐缩小到零,纵向宏观磁化 矢量从零逐渐回到平衡状态,这个过程称为
核磁弛豫。
• 核磁弛豫又可分解为两个部分:
• 横向弛豫
• 纵向弛豫
扶风书屋
20
T2弛豫
很容易发现:
不同组织的横、纵向 弛豫时间不同
(T2、 T1值不同)
扶风书屋
15
人体内的H核子可看作是自旋状态下的小星球。
自然状态下, H核进动杂乱无章,磁性相互抵消。
进入静磁场后,H核磁矩发生规律性排列(正负方向),正负方向的磁矢量相互 抵消后,少数正向排列(低能态)的H核合成总磁化矢量M,即为MR信号基础。
z
MZ
按照单一核子进动原理,质子群在静磁
y
场中形成的宏观磁化矢量M。
有一个稳定的静磁场(磁体):永磁型、超导型 0.15- 0.4T、0.5-1.0T、1.5T、3.0T-7.0T或以上。
梯度场和射频场:前者用于空间编码和选层,后者施加特 定频率的射频脉冲,使之形成磁共振现象。
信号接收装置:各种线圈。 计算机系统:完成信号采集、传输、图像重建、后处理等 。
扶风书屋
扶风书屋
T1弛豫
21
90度脉冲
横向弛豫
也称为T2弛豫, 简单地说,T2 弛豫就是横向 磁化矢量减少 的过程。
扶风书屋
Hale Waihona Puke 22扶风书屋横向磁化矢量 的缩短即是相 位散失的过程
23
T2WI两种组织的信号差别——是这样获得的
平
采
衡 状
集 时
态
90
度
激 发
脑
后
采
集
信 号
水
时
刻
扶风书屋
T2WI 24
T2弛豫:减少到37%的时间, 以脑灰质与脑脊液为例。
写在前面
磁共振成像目前已经成为临床常用且依赖性很强的影像学 检查技术之一。医学生或年轻医师通过学习和了解,应该 逐步熟悉或掌握其知识要点,这对于不同专业都非常重要。 本课件分1-7部分,用于临床医学专业本科生选修课教学。
扶风书屋
1
磁共振成像
Magnetic Resonance Imaging
(基础部分)
14
磁共振成像的过程:
H核子自然状态:磁矩和角动量互相抵消,人体不显磁性。 外加磁场中H核子状态:人体处于轻度磁化状态,在顺/逆主磁场方向
的两种排列方式中,顺向者多,磁矢量经正负方向相互抵消后,保留7 /百万的 H 核子用于 M R 信号接收,这些顺向排列(低能态)形成的磁 矢量联合形成总磁矩 M,并与静磁场(B0) 方向相同 。 施加射频(RF)脉冲后H核子状态:外加一个与主磁场成一定角度 (90度)的短暂射频脉冲。该脉冲的频率与质子的进动频率相同, 则 H 核子受到激励,由原来的低能态跃迁到高能态,形成了 H 核子 “ 共 振” 现象。 射频(RF)脉冲停止后H核子状态:射频脉冲停止,接受到能量后的 “高能态”质子以电磁波的形式将所吸收的能量散发出来。其横向磁 化消退,纵向磁化恢复。
脑灰质T2弛豫相对较短,又称短T2——较低信号; 脑脊液T2弛豫长,又称长T2——高信号;
扶风书屋
25
纵向弛豫
也称为T1弛豫,是指90度脉冲关闭后,在 主磁场的作用下,纵向磁化矢量开始恢复, 直至恢复到平衡状态的过程。
90度 脉冲
扶风书屋
26
T1WI两种组织的信号差别——是这样获得的
平 衡 状 态
采 集 时
90
纵 向
脂
弛
豫
90
水
扶风书屋
T1WI 27
T1弛豫:到达63%的时间,以 脂肪与脑脊液为例
脂肪T1弛豫短,又称短T1——高信号; 脑脊液T1弛豫长,又称长T1——低信号;
扶风书屋
28
▲ MR只能采集旋转的横向磁化矢量