2019年辽宁省葫芦岛市中考数学试卷-(解析版)

合集下载

辽宁省葫芦岛市2019年中考数学试卷

辽宁省葫芦岛市2019年中考数学试卷

辽宁省葫芦岛市 2019 年中考数学试卷一、选择题(每小题 3 分,共 30 分,在每小题给出的四个选项中,只有一项是符合题目)1.﹣6 的绝对值是()A.6 B.﹣6 C.16D.﹣162.下列运算正确的是()A.x2•x2=x6 B.x4+x4=2x8C.﹣2(x3)2=4x6 D.xy4÷(﹣xy)=﹣y33.甲、乙、丙、丁四位同学都参加了5 次数学模拟测试,每个人这5 次成绩的平均数都是 125 分,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则这 5 次测试成绩最稳定的是()A.甲B.乙C.丙D.丁4.如图是由 5 个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.5.某校女子排球队 12 名队员的年龄分布如下表所示:则该校女子排球队 12 名队员年龄的众数、中位数分别是()A.13,14 B.14,15 C.15,15 D.15,146.不等式组322113x xxx<+⎧⎪+⎨-≤⎪⎩的解集在数轴上表示正确的是()A.B.C.D.7.某工厂计划生产 300 个零件,由于采用新技术,实际每天生产零件的数量是原计划的2 倍,因此提前 5 天完成任务.设原计划每天生产零件x个,根据题意,所列方程正确的是()A.300x ﹣3002x+=5 B.3002x﹣300x=5C.300x ﹣3002x=5 D.3002x+﹣300x=58.二次函数y=a x2+b x的图象如图所示,则一次函数y=a x+b的图象大致是()A.B. C.D.9.如图,在⊙O中,∠BAC=15°,∠ADC=20°,则∠ABO的度数为()A.70°B.55°C.45°D.35°10.如图,正方形ABCD的对角线AC,BD相交于点O,点E在BD上由点B向点D运动(点E 不与点B重合),连接AE,将线段AE绕点A逆时针旋转 90 得到线段AF,连接BF交 AO于点G.设BE的长为x,OG的长为y,下列图象中大致反映y与x之间的函数关系的是()A.B. C.D.二、填空题(本题共 8 小题,每小题 3 分,共 24 分)11.太阳的半径大约为 696000000,将数据 696000000 用科学记数法表示为.12.分解因式:x3y﹣xy3=.13.若关于x的一元二次方程x2+(2+a)x=0 有两个相等的实数根,则a的值是.14.在一个不透明的袋子中只装有n个白球和2 个红球,这些球除颜色外其他均相同.如果从袋子,那么n的值为.中随机摸出一个球,摸到红球的概率是1315.如图,河的两岸a,b互相平行,点A,B,C是河岸b上的三点,点P是河岸a上的一个建筑物,某人在河岸b上的A处测得∠PAB=30°,在B处测得∠PBC=75°,若AB=80 米,则河两岸之间的距离约为米.( 1.73,结果精确到 0.1 米)16.如图,BD 是▱ABCD 的对角线,按以下步骤作图:①分别以点B 和点 D 为圆心,BD 的长为半径作弧,两弧相交于E,F 两点;②作直线 EF,分别交 AD,BC 于点 M,N,大于12连接 BM,DN.若 BD=8,MN=6,则▱ABCD 的边 BC 上的高为.17.如图,在Rt△ABC的纸片中,∠C=90°,AC=5,AB=13.点D在边BC上,以AD为折痕将△ADB折叠得到△ADB′,AB′与边 BC交于点E.若△DEB′为直角三角形,则 BD的长是.18.如图,点P是正方形ABCD的对角线BD延长线上的一点,连接PA,过点P作PE⊥PA交 BC 的延长线于点E,过点E作EF⊥BP于点F,则下列结论中:BD;④S△PEF=S△ADP①PA=PE;②C E PD;③B F﹣PD=12正确的是(填写所有正确结论的序号)三、解答题(第 19 题 10 分,第 20 题 12 分,共 22 分)19.先化简,再求值:2221a aa a+-+÷(21a-﹣1a),其中a=(13)﹣1﹣(﹣2)0.20.某学校为了解学生“第二课堂“活动的选修情况,对报名参加A.跆拳道,B.声乐,C.足球,D.古典舞这四项选修活动的学生(每人必选且只能选修一项)进行抽样调查.并根据收集的数据绘制了图①和图②两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次调查的学生共有人;在扇形统计图中,B所对应的扇形的圆心角的度数是;(2)将条形统计图补充完整;(3)在被调查选修古典舞的学生中有4 名团员,其中有 1 名男生和 3 名女生,学校想从这 4 人中任选 2 人进行古典舞表演.请用列表或画树状图的方法求被选中的2 人恰好是 1 男 1 女的概率.四、解答题(第 21 题 12 分,第 22 题 12 分,共 24 分)21.在平面直角坐标系中,△A B C的三个顶点坐标分别是A(﹣1,1),B(﹣4,1),C(﹣3,3)(1)将△A BC向下平移5 个单位长度后得到△A1B1C1,请画出△A1B1C1;并判断以O,A1,B 为顶点的三角形的形状(直接写出结果);(2)将△A B C绕原点O顺时针旋转90°后得到△A2B2C2,请画出△A2B2C2,并求出点C旋转到C2 所经过的路径长.22.如图,一次函数y=k1x+b的图象与x轴、y轴分别交于A,B两点,与反比例函数y=2k的x图象分别交于C,D两点,点C(2,4),点B是线段AC的中点.的解析式;(1)求一次函数y=k1x+b与反比例函数y=2kx(2)求△COD的面积;.(3)直接写出当x取什么值时,k1x+b<2kx五、解答题(满分 12 分)23.某公司研发了一款成本为50 元的新型玩具,投放市场进行试销售.其销售单价不低于成本,按照物价部门规定,销售利润率不高于90%,市场调研发现,在一段时间内,每天销售数量y(个)与销售单价x(元)符合一次函数关系,如图所示:(1)根据图象,直接写出y与x的函数关系式;(2)该公司要想每天获得3000 元的销售利润,销售单价应定为多少元(3)销售单价为多少元时,每天获得的利润最大,最大利润是多少元?六、解答题(满分 12 分)24.如图,点 M 是矩形 ABCD 的边 AD 延长线上一点,以 AM 为直径的⊙O交矩形对角线 AC 于点 F,在线段 CD 上取一点 E,连接 EF,使 EC=EF.(1)求证:EF 是⊙O的切线;(2)若cos∠CAD=35,AF=6,MD=2,求F C的长.七、解答题(满分 12 分)25.如图,△ABC是等腰直角三角形,∠ACB=90°,D是射线CB上一点(点D不与点B重合),以AD为斜边作等腰直角三角形 ADE(点E和点C在AB的同侧),连接 CE.(1)如图①,当点 D 与点 C 重合时,直接写出 CE 与 AB 的位置关系;(2)如图②,当点 D 与点 C 不重合时,(1)的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)当∠EAC=15°时,请直接写出CEAB的值.八、解答题(满分 14 分)26.如图,直线y=﹣x+4 与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴另一交点为A.点P以每秒个单位长度的速度在线段BC上由点B向点C运动(点P不与点B和点C重合),设运动时间为t秒,过点P作x轴垂线交x轴于点E,交抛物线于点M.(1)求抛物线的解析式;(2)如图①,过点 P 作 y 轴垂线交 y 轴于点 N,连接 MN 交 BC 于点 Q,当MQNQ =12时,求 t的值;(3)如图②,连接 AM 交 BC 于点 D,当△PDM 是等腰三角形时,直接写出 t 的值.。

辽宁省葫芦岛市2019-2020学年中考第一次质量检测数学试题含解析

辽宁省葫芦岛市2019-2020学年中考第一次质量检测数学试题含解析

辽宁省葫芦岛市2019-2020学年中考第一次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x=12,且经过点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(-2,y1),(52,y2)是抛物线上的两点,则y1<y2.其中说法正确的有( )A.②③④B.①②③C.①④D.①②④2.如图,以两条直线l1,l2的交点坐标为解的方程组是( )A.121x yx y-=⎧⎨-=⎩B.121x yx y-=-⎧⎨-=-⎩C.121x yx y-=-⎧⎨-=⎩D.121x yx y-=⎧⎨-=-⎩3.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是()A.60°B.35°C.30.5°D.30°4.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN 周长的最小值是5cm,则∠AOB的度数是().A.25︒B.30︒C.35︒D.40︒5.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.将半径为5的“等边扇形”围成一个圆锥,则圆锥的侧面积为()A.252B.252πC.50 D.50π6.18的绝对值是()A.8 B.﹣8 C.18D.﹣187.下列各式中计算正确的是A.()222x y x y+=+B.()236x x=C.()2236x x=D.224a a a+= 8.用加减法解方程组437651x yx y+=⎧⎨-=-⎩①②时,若要求消去y,则应()A.32⨯+⨯①②B.3-2⨯⨯①②C.53⨯+⨯①②D.5-3⨯⨯①②9.小华和小红到同一家鲜花店购买百合花与玫瑰花,他们购买的数量如下表所示,小华一共花的钱比小红少8元,下列说法正确的是()百合花玫瑰花小华6支5支小红8支3支A.2支百合花比2支玫瑰花多8元B.2支百合花比2支玫瑰花少8元C.14支百合花比8支玫瑰花多8元D.14支百合花比8支玫瑰花少8元10.如图,将△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.42 B.96 C.84 D.4811.下列几何体中,其三视图都是全等图形的是()A.圆柱B.圆锥C.三棱锥D.球12.一次函数y=2x+1的图像不经过( )A.第一象限B.第二象限C.第三象限D.第四象限二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若顺次连接四边形ABCD 四边中点所得的四边形是矩形,则原四边形的对角线AC 、BD 所满足的条件是_____.14.如图,在矩形ABCD 中,点E 是CD 的中点,点F 是BC 上一点,且FC=2BF ,连接AE ,EF .若AB=2,AD=3,则tan ∠AEF 的值是_____.15.如图,若正五边形和正六边形有一边重合,则∠BAC =_____.16.如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于________.17.函数2y x +=﹣的图象不经过第__________象限.18.如图,在直角坐标系中,⊙A 的圆心A 的坐标为(1,0),半径为1,点P 为直线y=34x+3上的动点,过点P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是______________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:如图,在半径为2的扇形AOB 中,90AOB ︒∠=°,点C 在半径OB 上,AC 的垂直平分线交OA 于点D ,交弧AB 于点E ,联结BE CD 、.(1)若C 是半径OB 中点,求OCD ∠的正弦值; (2)若E 是弧AB 的中点,求证:2•BE BO BC =;(3)联结CE ,当△DCE 是以CD 为腰的等腰三角形时,求CD 的长.20.(6分)定义:在三角形中,把一边的中点到这条边的高线的距离叫做这条边的中垂距.例:如图①,在△ABC 中,D 为边BC 的中点,AE ⊥BC 于E ,则线段DE 的长叫做边BC 的中垂距. (1)设三角形一边的中垂距为d(d≥0).若d=0,则这样的三角形一定是 ,推断的数学依据是 .(2)如图②,在△ABC 中,∠B=15°,AB=32,BC=8,AD 为边BC 的中线,求边BC 的中垂距. (3)如图③,在矩形ABCD 中,AB=6,AD=1.点E 为边CD 的中点,连结AE 并延长交BC 的延长线于点F ,连结AC .求△ACF 中边AF 的中垂距.21.(6分)已知关于x 的方程220x ax a ++-=.当该方程的一个根为1时,求a 的值及该方程的另一根;求证:不论a 取何实数,该方程都有两个不相等的实数根.22.(8分)如图,半圆O 的直径AB =5cm ,点M 在AB 上且AM =1cm ,点P 是半圆O 上的动点,过点B 作BQ ⊥PM 交PM (或PM 的延长线)于点Q .设PM =xcm ,BQ =ycm .(当点P 与点A 或点B 重合时,y 的值为0)小石根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表: x/cm 1 1.5 2 2.5 3 3.5 4 y/cm3.7______3.83.32.5______(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当BQ 与直径AB 所夹的锐角为60°时,PM 的长度约为______cm . 23.(8分)某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?24.(10分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为23.求袋子中白球的个数;(请通过列式或列方程解答)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答) 25.(10分)化简求值:212(1)211x x x x -÷-+++,其中31x =-.26.(12分)重百江津商场销售AB 两种商品,售出1件A 种商品和4件B 种商品所得利润为600元,售出3件A 商品和5件B 种商品所得利润为1100元.求每件A 种商品和每件B 种商品售出后所得利润分别为多少元?由于需求量大A 、B 两种商品很快售完,重百商场决定再次购进A 、B 两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A 种商品? 27.(12分)已知,如图直线l 1的解析式为y=x+1,直线l 2的解析式为y=ax+b (a≠0);这两个图象交于y 轴上一点C ,直线l 2与x 轴的交点B (2,0) (1)求a 、b 的值;(2)过动点Q (n ,0)且垂直于x 轴的直线与l 1、l 2分别交于点M 、N 都位于x 轴上方时,求n 的取值范围;(3)动点P 从点B 出发沿x 轴以每秒1个单位长的速度向左移动,设移动时间为t 秒,当△PAC 为等腰三角形时,直接写出t 的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】 【分析】根据图象得出a<0, a+b=0,c>0,即可判断①②;把x=2代入抛物线的解析式即可判断③,根据(-2,y 1),(52,y 2)到对称轴的距离即可判断④. 【详解】∵二次函数的图象的开口向下, ∴a<0,∵二次函数的图象y 轴的交点在y 轴的正半轴上, ∴c>0,∵二次函数图象的对称轴是直线x=12, ∴a=-b, ∴b>0,∴abc<0,故①正确; ∵a=-b, ∴a+b=0,故②正确; 把x=2代入抛物线的解析式得, 4a+2b+c=0,故③错误; ∵()151-2222->- , 12,y y <∴故④正确; 故选D.. 【点睛】本题考查了二次函数的图象与系数的关系的应用,题目比较典型,主要考查学生的理解能力和辨析能力. 2.C 【解析】 【分析】两条直线的交点坐标应该是联立两个一次函数解析式所组成的方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.【详解】直线l1经过(2,3)、(0,-1),易知其函数解析式为y=2x-1;直线l2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l1,l2的交点坐标为解的方程组是:1 21 x yx y-=-⎧⎨-=⎩.故选C.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.3.D【解析】【分析】根据圆心角、弧、弦的关系定理得到∠AOB=12∠AOC,再根据圆周角定理即可解答.【详解】连接OB,∵点B是弧AC的中点,∴∠AOB=12∠AOC=60°,由圆周角定理得,∠D=12∠AOB=30°,故选D.【点睛】此题考查了圆心角、弧、弦的关系定理,解题关键在于利用好圆周角定理.4.B【解析】试题分析:作点P关于OA对称的点P3,作点P关于OB对称的点P3,连接P3P3,与OA交于点M,与OB交于点N,此时△PMN的周长最小.由线段垂直平分线性质可得出△PMN的周长就是P3P3的长,∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等边三角形, ∴∠P3OP3=60°,即3(∠AOP+∠BOP )=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故选B . 考点:3.线段垂直平分线性质;3.轴对称作图. 5.A 【解析】 【分析】根据新定义得到扇形的弧长为5,然后根据扇形的面积公式求解. 【详解】解:圆锥的侧面积=12•5•5=252. 故选A . 【点睛】本题考查圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 6.C 【解析】 【分析】根据绝对值的计算法则解答.如果用字母a 表示有理数,则数a 绝对值要由字母a 本身的取值来确定: ①当a 是正有理数时,a 的绝对值是它本身a ; ②当a 是负有理数时,a 的绝对值是它的相反数﹣a ; ③当a 是零时,a 的绝对值是零. 【详解】 解:1188=. 故选C . 【点睛】此题重点考查学生对绝对值的理解,熟练掌握绝对值的计算方法是解题的关键. 7.B 【解析】 【分析】根据完全平方公式对A 进行判断;根据幂的乘方与积的乘方对B 、C 进行判断;根据合并同类项对D 进行判断. 【详解】A. ()2222x y x xy y +=++,故错误.B. ()236x x =,正确.C. ()2239x x =,故错误. D. 2222a a a +=, 故错误. 故选B. 【点睛】考查完全平方公式,合并同类项,幂的乘方与积的乘方,熟练掌握它们的运算法则是解题的关键. 8.C 【解析】 【分析】利用加减消元法53⨯+⨯①②消去y 即可. 【详解】用加减法解方程组437651x y x y +=⎧⎨-=-⎩①②时,若要求消去y ,则应①×5+②×3, 故选C 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 9.A 【解析】 【分析】设每支百合花x 元,每支玫瑰花y 元,根据总价=单价×购买数量结合小华一共花的钱比小红少8元,即可得出关于x 、y 的二元一次方程,整理后即可得出结论. 【详解】设每支百合花x 元,每支玫瑰花y 元,根据题意得: 8x+3y ﹣(6x+5y )=8,整理得:2x ﹣2y =8, ∴2支百合花比2支玫瑰花多8元. 故选:A . 【点睛】考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键. 10.D 【解析】 【分析】 【详解】由平移的性质知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S四边形ODFC=S梯形ABEO=12(AB+OE)•BE=12(10+6)×6=1.故选D.【点睛】本题考查平移的性质,平移前后两个图形大小,形状完全相同,图形上的每个点都平移了相同的距离,对应点之间的距离就是平移的距离.11.D【解析】分析: 任意方向上的视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,其他的几何体的视图都有不同的.详解:圆柱,圆锥,三棱锥,球中,三视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,故选D.点睛: 本题考查简单几何体的三视图,本题解题的关键是看出各个图形的在任意方向上的视图.12.D【解析】【分析】根据一次函数的系数判断出函数图象所经过的象限,由k=2>0,b=1>0可知,一次函数y=2x+1的图象过一、二、三象限.另外此题还可以通过直接画函数图象来解答.【详解】∵k=2>0,b=1>0,∴根据一次函数图象的性质即可判断该函数图象经过一、二、三象限,不经过第四象限.故选D.【点睛】本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k、b的正负.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.AC⊥BD【解析】【分析】根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH=90°,又EF为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EH与AC平行,再根据两直线平行,同旁内角互补得到。

辽宁省葫芦岛市2019-2020学年中考第五次质量检测数学试题含解析

辽宁省葫芦岛市2019-2020学年中考第五次质量检测数学试题含解析

辽宁省葫芦岛市2019-2020学年中考第五次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22ky (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC V 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-2.下列计算正确的是( ) A .a 2+a 2=2a 4B .(﹣a 2b )3=﹣a 6b 3C .a 2•a 3=a 6D .a 8÷a 2=a 43.在平面直角坐标系中,点A 的坐标是(﹣1,0),点B 的坐标是(3,0),在y 轴的正半轴上取一点C ,使A 、B 、C 三点确定一个圆,且使AB 为圆的直径,则点C 的坐标是( ) A .(0,3)B .(3,0)C .(0,2)D .(2,0)4.若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的图象可能是:A .B .C .D .5.计算--|-3|的结果是( )A .-1B .-5C .1D .56.如图,将△ABC 绕点C 旋转60°得到△A′B′C′,已知AC=6,BC=4,则线段AB 扫过的图形面积为( )A .32π B .83π C .6π D .以上答案都不对7.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E 为矩形ABCD 边AD 的中点,在矩形ABCD 的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P 从点B 出发,沿着B ﹣E ﹣D 的路线匀速行进,到达点D .设运动员P 的运动时间为t ,到监测点的距离为y .现有y 与t 的函数关系的图象大致如图2所示,则这一信息的来源是( )A .监测点AB .监测点BC .监测点CD .监测点D8.工信部发布《中国数字经济发展与就业白皮书(2018)》)显示,2017年湖北数字经济总量1.21万亿元,列全国第七位、中部第一位.“1.21万”用科学记数法表示为( ) A .1.21×103 B .12.1×103 C .1.21×104 D .0.121×1059.规定:如果关于x 的一元二次方程ax 2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论: ①方程x 2+2x ﹣8=0是倍根方程; ②若关于x 的方程x 2+ax+2=0是倍根方程,则a=±3; ③若关于x 的方程ax 2﹣6ax+c=0(a≠0)是倍根方程,则抛物线y=ax 2﹣6ax+c 与x 轴的公共点的坐标是(2,0)和(4,0); ④若点(m ,n )在反比例函数y=4x的图象上,则关于x 的方程mx 2+5x+n=0是倍根方程. 上述结论中正确的有( ) A .①②B .③④C .②③D .②④10. 如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A .20°B .30°C .40°D .50°11.在一张考卷上,小华写下如下结论,记正确的个数是m ,错误的个数是n ,你认为m n (-= )①有公共顶点且相等的两个角是对顶角 40.00041 4.110--=-⨯② 2525=③④若12390∠∠∠++=o ,则它们互余 A .4B .14C .3-D .1312.已知m =12n =12223m n mn +-的值为 ( ) A .±3B .3C .5D .9二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:3a r ﹣(a r ﹣2b r)=____.14.用正三角形、正四边形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,则第n 个图案中正三角形的个数为 (用含n 的代数式表示).15.化简:4= .16.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下: 种子粒数 100 400 800 1 000 2 000 5 000 发芽种子粒数 85 318 652 793 1 604 4 005 发芽频率0.8500.7950.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率为___________(精确到0.1).17.正多边形的一个外角是72o ,则这个多边形的内角和的度数是___________________.18.如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去….若点A (53,0),B (0,4),则点B 4的坐标为_____,点B 2017的坐标为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,小明在一块平地上测山高,先在B 处测得山顶A 的仰角为30°,然后向山脚直行60米到达C 处,再测得山顶A 的仰角为45°,求山高AD 的长度.(测角仪高度忽略不计)20.(6分)阅读下面材料,并解答问题.材料:将分式42231x x x --+-+拆分成一个整式与一个分式(分子为整数)的和的形式. 解:由分母为﹣x 2+1,可设﹣x 4﹣x 2+3=(﹣x 2+1)(x 2+a )+b 则﹣x 4﹣x 2+3=(﹣x 2+1)(x 2+a )+b=﹣x 4﹣ax 2+x 2+a+b=﹣x 4﹣(a ﹣1)x 2+(a+b ) ∵对应任意x ,上述等式均成立,∴113a ab -=⎧⎨+=⎩,∴a=2,b=1∴42231x x x --+-+=222(1)(2)11x x x -+++-+=222(1)(2)1x x x -++-++211x -+=x 2+2+211x -+这样,分式42231x x x --+-+被拆分成了一个整式x 2+2与一个分式211x -+的和. 解答:将分式422681x x x --+-+ 拆分成一个整式与一个分式(分子为整数)的和的形式.试说明422681x x x --+-+的最小值为1.21.(6分)如图(1),已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F . (1)证明与推断:①求证:四边形CEGF 是正方形; ②推断:AGBE的值为 : (2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG 与BE 之间的数量关系,并说明理由: (3)拓展与运用:正方形CEGF 在旋转过程中,当B ,E ,F 三点在一条直线上时,如图(3)所示,延长CG 交AD 于点H .若AG=6,GH=22,则BC= .22.(8分)数学兴趣小组为了研究中小学男生身高y (cm )和年龄x (岁)的关系,从某市官网上得到了该市2017年统计的中小学男生各年龄组的平均身高,见下表:如图已经在直角坐标系中描出了表中数据对应的点,并发现前5个点大致位于直线AB 上,后7个点大致位于直线CD 上.年龄组x7 8 9 10 11 12 13 14 15 1617男生平均身高y115.2 118.3 122.2 126.5 129.6 135.6 140.4 146.1 154.8 162.9 168.2(1)该市男学生的平均身高从岁开始增加特别迅速.(2)求直线AB所对应的函数表达式.(3)直接写出直线CD所对应的函数表达式,假设17岁后该市男生身高增长速度大致符合直线CD所对应的函数关系,请你预测该市18岁男生年龄组的平均身高大约是多少?23.(8分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)调查了________名学生;(2)补全条形统计图;(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为________;(4)学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学(,,)A B C和2位女同学(,)D E,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.24.(10分)有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.随机抽取一张卡片,求抽到数字“﹣1”的概率;随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.25.(10分)如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 与BC 交于点D ,过点D 作∠ABD=∠ADE ,交AC 于点E .(1)求证:DE 为⊙O 的切线. (2)若⊙O 的半径为256,AD=203,求CE 的长.26.(12分)如图所示,在Rt ABC △中,90ACB ∠=︒,(1)用尺规在边BC 上求作一点P ,使PA PB =;(不写作法,保留作图痕迹) (2)连接AP 当B Ð为多少度时,AP 平分CAB ∠.27.(12分)甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原价为x (x >0)元,让利后的购物金额为y 元. (1)分别就甲、乙两家商场写出y 关于x 的函数解析式; (2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 【解析】【分析】设()A a,h ,()B b,h ,根据反比例函数图象上点的坐标特征得出1ah k =,2bh k .=根据三角形的面积公式得到()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V ,即可求出12k k 8-=. 【详解】AB//x Q 轴,A ∴,B 两点纵坐标相同,设()A a,h ,()B b,h ,则1ah k =,2bh k =,()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V Q , 12k k 8∴-=,故选A .【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.2.B 【解析】 【分析】 【详解】解:A .a 2+a 2=2a 2,故A 错误; C 、a 2a 3=a 5,故C 错误; D 、a 8÷a 2=a 6,故D 错误; 本题选B.考点:合同类型、同底数幂的乘法、同底数幂的除法、积的乘方 3.A 【解析】 【分析】直接根据△AOC ∽△COB 得出OC 2=OA•OB ,即可求出OC 的长,即可得出C 点坐标. 【详解】如图,连结AC ,CB.依△AOC ∽△COB 的结论可得:OC 2=OA ⋅OB , 即OC 2=1×3=3, 解得:3或3(负数舍去), 故C 点的坐标为(0, 3).故答案选:A. 【点睛】本题考查了坐标与图形性质,解题的关键是熟练的掌握坐标与图形的性质. 4.B 【解析】 【分析】 【详解】由方程2210x x kb ++=-有两个不相等的实数根,可得()4410kb =-+V>, 解得0kb <,即k b 、异号,当00k b >,<时,一次函数y kx b =+的图象过一三四象限,当00k b <,>时,一次函数y kx b =+的图象过一二四象限,故答案选B. 5.B 【解析】 【分析】原式利用算术平方根定义,以及绝对值的代数意义计算即可求出值. 【详解】 原式故选:B . 【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 6.D 【解析】 【分析】从图中可以看出,线段AB 扫过的图形面积为一个环形,环形中的大圆半径是AC ,小圆半径是BC ,圆心角是60度,所以阴影面积=大扇形面积-小扇形面积. 【详解】 阴影面积=()603616103603π⨯-=π. 故选D . 【点睛】本题的关键是理解出,线段AB 扫过的图形面积为一个环形. 7.C 【解析】试题解析:A 、由监测点A 监测P 时,函数值y 随t 的增大先减少再增大.故选项A 错误;B 、由监测点B 监测P 时,函数值y 随t 的增大而增大,故选项B 错误;C 、由监测点C 监测P 时,函数值y 随t 的增大先减小再增大,然后再减小,选项C 正确;D 、由监测点D 监测P 时,函数值y 随t 的增大而减小,选项D 错误.故选C . 8.C【解析】分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 详解:1.21万=1.21×104, 故选:C .点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 9.C 【解析】分析:①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设2x =21x ,得到1x •2x =221x =2,得到当1x =1时,2x =2,当1x =-1时,2x =-2,于是得到结论;③根据“倍根方程”的定义即可得到结论;④若点(m ,n )在反比例函数y=4x的图象上,得到mn=4,然后解方程m 2x +5x+n=0即可得到正确的结论;详解:①由2x -2x-8=0,得:(x-4)(x+2)=0, 解得1x =4,2x =-2, ∵1x ≠22x ,或2x ≠21x , ∴方程2x -2x-8=0不是倍根方程;故①错误;②关于x 的方程2x +ax+2=0是倍根方程, ∴设2x =21x , ∴1x •2x =221x =2, ∴1x =±1, 当1x =1时,2x =2, 当1x =-1时,2x =-2, ∴1x +2x =-a=±3, ∴a=±3,故②正确; ③关于x 的方程a 2x -6ax+c=0(a≠0)是倍根方程, ∴2x =21x ,∵抛物线y=a 2x -6ax+c 的对称轴是直线x=3, ∴抛物线y=a 2x -6ax+c 与x 轴的交点的坐标是(2,0)和(4,0), 故③正确; ④∵点(m ,n )在反比例函数y=4x的图象上, ∴mn=4, 解m 2x +5x+n=0得 1x =2m -,2x =8m-, ∴2x =41x , ∴关于x 的方程m 2x +5x+n=0不是倍根方程; 故选C .点睛:本题考查了反比例函数图象上点的坐标特征,根与系数的关系,正确的理解倍根方程的定义是解题的关键. 10.C 【解析】 【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数. 【详解】∵∠1=50°, ∴∠3=∠1=50°, ∴∠2=90°−50°=40°. 故选C. 【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键. 11.D 【解析】 【分析】首先判断出四个结论的错误个数和正确个数,进而可得m 、n 的值,再计算出m n -即可. 【详解】解:①有公共顶点且相等的两个角是对顶角,错误;40.00041 4.110--=-⨯②,正确;2525=③④若12390∠∠∠++=o ,则它们互余,错误;则m 1=,n 3=,m 1n 3-=,故选D . 【点睛】此题主要考查了二次根式的乘除、对顶角、科学记数法、余角和负整数指数幂,关键是正确确定m 、n 的值. 12.B【解析】【分析】由已知可得:2,(11m n mn +==+-=-【详解】由已知可得:2,(11m n mn +==+-=-,原式3=== 故选:B【点睛】考核知识点:二次根式运算.配方是关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2a r +2b r【解析】【分析】根据平面向量的加法法则计算即可.【详解】3a v ﹣(a v ﹣2b v )=3a v ﹣a v +2b v=2a v +2b v ,故答案为:2a v +2b v,【点睛】本题考查平面向量,熟练掌握平面向量的加法法则是解题的关键.14.4n+1【解析】【分析】分析可知规律是每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.【详解】解:第一个图案正三角形个数为6=1+4;第二个图案正三角形个数为1+4+4=1+1×4; 第三个图案正三角形个数为1+1×4+4=1+3×4; …;第n 个图案正三角形个数为1+(n ﹣1)×4+4=1+4n=4n+1.故答案为4n+1.考点:规律型:图形的变化类.15.2【解析】【分析】根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x就是a的算术平方根,特别地,规定0的算术平方根是0.【详解】∵22=4=2.【点睛】本题考查求算术平方根,熟记定义是关键.16.1.2【解析】【分析】仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,从而得到结论.【详解】∵观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,∴该玉米种子发芽的概率为1.2,故答案为1.2.【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.17.540°【解析】【详解】根据多边形的外角和为360°,因此可以求出多边形的边数为360°÷72°=5,根据多边形的内角和公式(n-2)·180°,可得(5-2)×180°=540°.考点:多边形的内角和与外角和18.(20,4)(10086,0)【解析】【分析】首先利用勾股定理得出AB的长,进而得出三角形的周长,进而求出B2,B4的横坐标,进而得出变化规律,即可得出答案.【详解】解:由题意可得:∵AO=53,BO=4,∴AB=133,∴OA+AB 1+B 1C 2=53+133+4=6+4=10,∴B 2的横坐标为:10,B 4的横坐标为:2×10=20,B 2016的横坐标为:20162×10=1. ∵B 2C 2=B 4C 4=OB=4,∴点B 4的坐标为(20,4),∴B 2017的横坐标为1+53+133=10086,纵坐标为0,∴点B 2017的坐标为:(10086,0).故答案为(20,4)、(10086,0).【点睛】本题主要考查了点的坐标以及图形变化类,根据题意得出B 点横坐标变化规律是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.301)米【解析】【分析】设AD =xm ,在Rt △ACD 中,根据正切的概念用x 表示出CD ,在Rt △ABD 中,根据正切的概念列出方程求出x 的值即可.【详解】由题意得,∠ABD =30°,∠ACD =45°,BC =60m ,设AD =xm ,在Rt △ACD 中,∵tan ∠ACD =AD CD, ∴CD =AD =x ,∴BD =BC+CD =x+60,在Rt △ABD 中,∵tan ∠ABD =AD BD,∴60)x x =+,∴1)x =米,答:山高AD 为301)米.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.20. (1) =x 2+7+211x -+ (2) 见解析 【解析】【分析】(1)根据阅读材料中的方法将分式拆分成一个整式与一个分式(分子为整数)的和的形式即可; (2)原式分子变形后,利用不等式的性质求出最小值即可.【详解】(1)设﹣x 4﹣6x+1=(﹣x 2+1)(x 2+a )+b=﹣x 4+(1﹣a )x 2+a+b ,可得168a a b -=-⎧⎨+=⎩, 解得:a=7,b=1, 则原式=x 2+7+211x -+;(2)由(1)可知,422681x x x --+-+=x 2+7+211x -+ . ∵x 2≥0,∴x 2+7≥7;当x=0时,取得最小值0,∴当x=0时,x 2+7+211x -+最小值为1,即原式的最小值为1.21.(1)①四边形CEGF ;(2)线段AG 与BE 之间的数量关系为BE ;(3)【解析】【分析】(1)①由GE BC ⊥、GF CD ⊥结合BCD 90∠=o 可得四边形CEGF 是矩形,再由ECG 45∠=o 即可得证;②由正方形性质知CEG B 90∠∠==o 、ECG 45∠=o ,据此可得CG CE =、GE //AB ,利用平行线分线段成比例定理可得;(2)连接CG ,只需证ACG V ∽△BCE 即可得;(3)证AHG V ∽CHA V 得AG GH AH AC AH CH==,设BC CD AD a ===,知AC =,由AG GH AC AH =得2AH a 3=、1DH a 3=、CH =,由AG AH AC CH =可得a 的值.【详解】(1)①∵四边形ABCD 是正方形,∴∠BCD=90°,∠BCA=45°,∵GE ⊥BC 、GF ⊥CD ,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF 是矩形,∠CGE=∠ECG=45°,∴EG=EC ,∴四边形CEGF 是正方形;②由①知四边形CEGF 是正方形,∴∠CEG=∠B=90°,∠ECG=45°, ∴2CG CE =,GE ∥AB , ∴2AG CG BE CE ==, 故答案为2; (2)连接CG ,由旋转性质知∠BCE=∠ACG=α,在Rt △CEG 和Rt △CBA 中,CE CG 2、CB CA 2, ∴CG CE =2CA CB= ∴△ACG ∽△BCE , ∴2AG CA BE CB == ∴线段AG 与BE 之间的数量关系为2BE ;(3)∵∠CEF=45°,点B 、E 、F 三点共线,∴∠BEC=135°,∵△ACG ∽△BCE ,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG ,∴△AHG ∽△CHA , ∴AG GH AH AC AH CH==, 设BC=CD=AD=a ,则a , 则由AG GH AC AH =AH=, ∴AH=23a , 则DH=AD ﹣AH=13a ,=3a , ∴由AG AH AC CH =2a =, 解得:故答案为【点睛】本题考查了正方形的性质与判定,相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握正方形的判定与性质、相似三角形的判定与性质是解题的关键.22.(1)11;(2)y =3.6x+90;(3)该市18岁男生年龄组的平均身高大约是174cm 左右.【解析】【分析】(1)根据统计图仔细观察即可得出结果(2)先设函数表达式,选取两个点带入求值即可(3)先设函数表达式,选取两个点带入求值,把x 18=带入预测即可.【详解】解:(1)由统计图可得,该市男学生的平均身高从 11 岁开始增加特别迅速,故答案为:11;(2)设直线AB 所对应的函数表达式y kx b =,+ ∵图象经过点7115.211129.6(,)、(,),则115.27129.611k b k b =+⎧⎨=+⎩,解得k 3.6b 90=⎧⎨=⎩. 即直线AB 所对应的函数表达式:y 3.6x 90+=;(3)设直线CD 所对应的函数表达式为:y mx n +=,135.612154.815m+n m n =+⎧⎨=⎩,得 6.458.8m n =⎧⎨=⎩, 即直线CD 所对应的函数表达式为:y 6.4x 58.8=,+ 把x 18=代入y 6.4x 58.8+=得y 174=, 即该市18岁男生年龄组的平均身高大约是174cm 左右.【点睛】此题重点考察学生对统计图和一次函数的应用,熟练掌握一次函数表达式的求法是解题的关键. 23.50 见解析(3)115.2° (4)35【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角的度数=360 º×它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=15÷30%=50(名) 故答案为50;(2)足球项目所占的人数=50×18%=9(名),所以其它项目所占人数=50﹣15﹣9﹣16=10(名)补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360°×=115.2°,故答案为115.2°;(4)画树状图如图.由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P(恰好选出一男一女)==.点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.24.(1)14;(2)112.【解析】试题分析:(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,∴抽到数字“﹣1”的概率为14;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,∴第一次抽到数字“2”且第二次抽到数字“0”的概率为1 12.25.(1)证明见解析;(2)CE=1.【解析】【分析】(1)求出∠ADO+∠ADE=90°,推DE⊥OD,根据切线的判定推出即可;(2)求出CD,AC的长,证△CDE∽△CAD,得出比例式,求出结果即可.【详解】(1)连接OD,∵AB是直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,∵OB=OD,∴∠BDO=∠ABD,∵∠ABD=∠ADE,∴∠ADO+∠ADE=90°,即,OD⊥DE,∵OD为半径,∴DE为⊙O的切线;(2)∵⊙O的半径为,∴AB=2OA==AC,∵∠ADB=90°,∴∠ADC=90°,在Rt△ADC中,由勾股定理得:DC===5,∵∠ODE=∠ADC=90°,∠ODB=∠ABD=∠ADE,∴∠EDC=∠ADO,∵OA=OD,∴∠ADO=∠OAD,∵AB=AC,AD⊥BC,∴∠OAD=∠CAD,∴∠EDC=∠CAD,∵∠C=∠C,∴△CDE∽△CAD,∴=,∴=,解得:CE=1.【点睛】本题考查了等腰三角形的性质与切线的判定,解题的关键是熟练的掌握等腰三角形的性质与切线的判定. 26.(1)详见解析;(2)30°.【解析】【分析】(1)根据线段垂直平分线的作法作出AB的垂直平分线即可;(2)连接PA ,根据等腰三角形的性质可得PAB B ∠=∠,由角平分线的定义可得PAB PAC ∠=∠,根据直角三角形两锐角互余的性质即可得∠B 的度数,可得答案.【详解】(1)如图所示:分别以A 、B 为圆心,大于12AB 长为半径画弧,两弧相交于点E 、F ,作直线EF ,交BC 于点P ,∵EF 为AB 的垂直平分线,∴PA=PB ,∴点P 即为所求.(2)如图,连接AP ,∵PA PB =,∴PAB B ∠=∠,∵AP 是角平分线,∴PAB PAC ∠=∠,∴PAB PAC B ∠=∠=∠,∵90ACB ∠=︒,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴当30B ∠=︒时,AP 平分CAB ∠.【点睛】本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键.27.(1)y 1=0.85x ,y 2=0.75x+50 (x >200),y 2=x (0≤x≤200);(2)x >500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x <500时,到甲商场购物会更省钱.【解析】【分析】(1)根据单价乘以数量,可得函数解析式;(2)分类讨论,根据消费的多少,可得不等式,根据解不等式,可得答案.【详解】(1)甲商场写出y关于x的函数解析式y1=0.85x,乙商场写出y关于x的函数解析式y2=200+(x﹣200)×0.75=0.75x+50(x>200),即y2=x(0≤x≤200);(2)由y1>y2,得0.85x>0.75x+50,解得x>500,即当x>500时,到乙商场购物会更省钱;由y1=y2得0.85x=0.75x+50,即x=500时,到两家商场去购物花费一样;由y1<y2,得0.85x<0.75x+500,解得x<500,即当x<500时,到甲商场购物会更省钱;综上所述:x>500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x<500时,到甲商场购物会更省钱.【点睛】本题考查了一次函数的应用,分类讨论是解题关键.。

辽宁省葫芦岛市2019-2020学年中考数学第二次调研试卷含解析

辽宁省葫芦岛市2019-2020学年中考数学第二次调研试卷含解析

辽宁省葫芦岛市2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知x=2﹣,则代数式(7+4)x2+(2+)x+ 的值是()A.0 B.C.2+D.2﹣2.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球3.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于12BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为()A.5 B.6 C.7 D.84.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E,F分别是AC,BC的中点,直线EF与⊙O交于G,H两点,若⊙O的半径为6,则GE+FH的最大值为()A.6 B.9 C.10 D.125.计算tan30°的值等于()A.B.C.D.6.下列四个不等式组中,解集在数轴上表示如图所示的是()A .23x x ≥⎧⎨>-⎩B .23x x ≤⎧⎨<-⎩C .23x x ≥⎧⎨<-⎩D .23x x ≤⎧⎨>-⎩ 7.如图,AB 是O e 的直径,弦CD AB ⊥,CDB 30∠=o ,CD 23=,则阴影部分的面积为( )A .2πB .πC .π3 D .2π38.下列计算中,错误的是( )A .020181=;B .224-=;C .1242=; D .1133-=. 9.如果向北走6km 记作+6km ,那么向南走8km 记作( )A .+8kmB .﹣8kmC .+14kmD .﹣2km10.在Rt △ABC 中,∠C=90°,如果AC=2,cosA=23,那么AB 的长是( ) A .3 B .43 C .5D .13 11.如图,与∠1是内错角的是( )A .∠2B .∠3C .∠4D .∠512.下列命题是真命题的是( )A .过一点有且只有一条直线与已知直线平行B .对角线相等且互相垂直的四边形是正方形C .平分弦的直径垂直于弦,并且平分弦所对的弧D .若三角形的三边a ,b ,c 满足a 2+b 2+c 2=ac +bc +ab ,则该三角形是正三角形二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若式子x 1x+有意义,则x 的取值范围是 . 14.若式子21x +在实数范围内有意义,则x 的取值范围是_______. 15.如图,AD=DF=FB,DE ∥FG ∥BC,则S Ⅰ:S Ⅱ:S Ⅲ=________.16.(﹣)﹣2﹣(3.14﹣π)0=_____.17.如图,在平行四边ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是(把所有正确结论的序号都填在横线上)∠DCF=∠BCD,(2)EF=CF;(3)SΔBEC=2SΔCEF;(4)∠DFE=3∠AEF18.某地区的居民用电,按照高峰时段和空闲时段规定了不同的单价.某户5月份高峰时段用电量是空闲时段用电量2倍,6月份高峰时段用电量比5月份高峰时段用电量少50%,结果6月份的用电量和5月份的用电量相等,但6月份的电费却比5月份的电费少25%,求该地区空闲时段民用电的单价比高峰时段的用电单价低的百分率是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)黄石市在创建国家级文明卫生城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元;(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.20.(6分)如图,抛物线y=ax2+bx+c与x轴的交点分别为A(﹣6,0)和点B(4,0),与y轴的交点为C(0,3).(1)求抛物线的解析式;(2)点P是线段OA上一动点(不与点A重合),过P作平行于y轴的直线与AC交于点Q,点D、M 在线段AB上,点N在线段AC上.①是否同时存在点D和点P,使得△APQ和△CDO全等,若存在,求点D的坐标,若不存在,请说明理由;②若∠DCB=∠CDB,CD是MN的垂直平分线,求点M的坐标.21.(6分)如图,在ABC ∆中,点F 是BC 的中点,点E 是线段AB 的延长线上的一动点,连接EF ,过点C 作AB 的平行线CD ,与线段EF 的延长线交于点D ,连接CE 、BD .求证:四边形DBEC 是平行四边形.若120ABC ∠=︒,4AB BC ==,则在点E的运动过程中:①当BE =______时,四边形BECD 是矩形;②当BE =______时,四边形BECD 是菱形.22.(8分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).求此抛物线的表达式;如果点A 关于该抛物线对称轴的对称点是B 点,且抛物线与y 轴的交点是C 点,求△ABC 的面积.23.(8分)如图,某次中俄“海上联合”反潜演习中,我军舰A 测得潜艇C 的俯角为30°.位于军舰A 正上方1000米的反潜直升机B 侧得潜艇C 的俯角为68°.试根据以上数据求出潜艇C 离开海平面的下潜深度.(结果保留整数.参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5, 3≈1.7)24.(10分)如图,一次函数y=﹣x+的图象与反比例函数y=(k >0)的图象交于A ,B 两点,过A 点作x 轴的垂线,垂足为M ,△AOM 面积为1.(1)求反比例函数的解析式;(2)在y 轴上求一点P ,使PA+PB 的值最小,并求出其最小值和P 点坐标.25.(10分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.26.(12分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.小礼诵读《论语》的概率是;(直接写出答案)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.27.(12分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】把x的值代入代数式,运用完全平方公式和平方差公式计算即可【详解】解:当x=2﹣时,(7+4)x2+(2+)x+=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7-4)+1+=49-48+1+=2+故选:C.【点睛】此题考查二次根式的化简求值,关键是代入后利用完全平方公式和平方差公式进行计算.2.A【解析】【分析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选A.3.B【解析】试题分析:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=1.∵作法可知BC=CD=4,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=2.故选B.考点:作图—基本作图;含30度角的直角三角形.4.B【解析】【分析】首先连接OA、OB,根据圆周角定理,求出∠AOB=2∠ACB=60°,进而判断出△AOB为等边三角形;然后根据⊙O的半径为6,可得AB=OA=OB=6,再根据三角形的中位线定理,求出EF的长度;最后判断出当弦GH是圆的直径时,它的值最大,进而求出GE+FH的最大值是多少即可.【详解】解:如图,连接OA、OB,,∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∵OA=OB,∴△AOB为等边三角形,∵⊙O的半径为6,∴AB=OA=OB=6,∵点E,F分别是AC、BC的中点,∴EF=12AB=3,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,∵当弦GH是圆的直径时,它的最大值为:6×2=12,∴GE+FH的最大值为:12﹣3=1.故选:B.【点睛】本题结合动点考查了圆周角定理,三角形中位线定理,有一定难度.确定GH的位置是解题的关键. 5.C【解析】tan30°= .故选C .6.D【解析】【分析】此题涉及的知识点是不等式组的表示方法,根据规律可得答案.【详解】由解集在数轴上的表示可知,该不等式组为23x x ≤⎧⎨-⎩f , 故选D .【点睛】本题重点考查学生对于在数轴上表示不等式的解集的掌握程度,不等式组的解集的表示方法:大小小大取中间是解题关键.7.D【解析】分析:连接OD ,则根据垂径定理可得出CE=DE ,继而将阴影部分的面积转化为扇形OBD 的面积,代入扇形的面积公式求解即可.详解:连接OD,∵CD ⊥AB , ∴13,2CE DE CD === (垂径定理), 故OCE ODE S S V V ,= 即可得阴影部分的面积等于扇形OBD 的面积,又∵30CDB ∠=︒,∴60COB ∠=o (圆周角定理),∴OC=2,故S 扇形OBD=260π22π3603⨯=, 即阴影部分的面积为2π3. 故选D.点睛:考查圆周角定理,垂径定理,扇形面积的计算,熟记扇形的面积公式是解题的关键.8.B【解析】分析:根据零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义作答即可.详解:A .020181=,故A 正确;B .224-=-,故B 错误;C .1242=.故C 正确;D .1133-=,故D 正确; 故选B .点睛:本题考查了零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义,需熟练掌握且区分清楚,才不容易出错.9.B【解析】【分析】正负数的应用,先判断向北、向南是不是具有相反意义的量,再用正负数表示出来【详解】解:向北和向南互为相反意义的量.若向北走6km 记作+6km ,那么向南走8km 记作﹣8km .故选:B .【点睛】本题考查正负数在生活中的应用.注意用正负数表示的量必须是具有相反意义的量.10.A【解析】根据锐角三角函数的性质,可知cosA=AC AB =23,然后根据AC=2,解方程可求得AB=3. 故选A.点睛:此题主要考查了解直角三角形,解题关键是明确直角三角形中,余弦值cosA=A ∠的邻边斜边,然后带入数值即可求解.11.B【解析】由内错角定义选B.12.D【解析】【分析】根据真假命题的定义及有关性质逐项判断即可.【详解】A 、真命题为:过直线外一点有且只有一条直线与已知直线平行,故本选项错误;B 、真命题为:对角线相等且互相垂直的四边形是正方形或等腰梯形,故本选项错误;C 、真命题为:平分弦的直径垂直于弦(非直径),并且平分弦所对的弧,故本选项错误;D 、∵a 2+b 2+c 2=ac +bc +ab ,∴2a 2+2b 2+2c 2-2ac-2bc-2ab=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴a=b=c ,故本选项正确.故选D.【点睛】本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.熟练掌握所学性质是解答本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x 1≥-且x 0≠【解析】【详解】∵式子x在实数范围内有意义, ∴x+1≥0,且x≠0,解得:x≥-1且x≠0.故答案为x≥-1且x≠0.14.x≠﹣1【解析】【分析】分式有意义的条件是分母不等于零.【详解】 ∵式子21x 在实数范围内有意义, ∴x+1≠0,解得:x≠-1.故答案是:x≠-1.【点睛】考查的是分式有意义的条件,掌握分式有意义的条件是解题的关键.15.1:3:5【解析】∵DE ∥FG ∥BC ,∴△ADE ∽△AFG ∽△ABC ,∵AD=DF=FB ,∴AD:AF:AB=1:2:3,∴::ADE AFG ABC S S S V V V =1:4:9, ∴S Ⅰ:S Ⅱ:S Ⅲ=1:3:5.故答案为1:3:5.点睛: 本题考查了平行线的性质及相似三角形的性质.相似三角形的面积比等于相似比的平方. 16.3.【解析】试题分析:分别根据零指数幂,负指数幂的运算法则计算,然后根据实数的运算法则求得计算结果. 原式=4-1=3.考点:负整数指数幂;零指数幂.17.①②④【解析】试题解析:①∵F 是AD 的中点,∴AF=FD ,∵在▱ABCD 中,AD=2AB ,∴AF=FD=CD ,∴∠DFC=∠DCF ,∵AD ∥BC ,∴∠DFC=∠FCB ,∴∠DCF=∠BCF ,∴∠DCF=1∠BCD ,故此选项正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,{A FDM AF DFAFE DFM∠=∠=∠=∠,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°-x,∴∠EFC=180°-2x,∴∠EFD=90°-x+180°-2x=270°-3x,∵∠AEF=90°-x,∴∠DFE=3∠AEF,故此选项正确.考点:1.平行四边形的性质;2.全等三角形的判定与性质;3.直角三角形斜边上的中线.【解析】【分析】设空闲时段民用电的单价为x 元/千瓦时,高峰时段民用电的单价为y 元/千瓦时,该用户5月份空闲时段用电量为a 千瓦时,则5月份高峰时段用电量为2a 千瓦时,6月份空闲时段用电量为2a 千瓦时,6月份高峰时段用电量为a 千瓦时,根据总价=单价×数量结合6月份的电费却比5月份的电费少25%,即可得出关于x ,y 的二元一次方程,解之即可得出x ,y 之间的关系,进而即可得出结论.【详解】设空闲时段民用电的单价为x 元/千瓦时,高峰时段民用电的单价为y 元/千瓦时,该用户5月份空闲时段用电量为a 千瓦时,则5月份高峰时段用电量为2a 千瓦时,6月份空闲时段用电量为2a 千瓦时,6月份高峰时段用电量为a 千瓦时,依题意,得:(1﹣25%)(ax+2ay )=2ax+ay ,解得:x =0.4y , ∴该地区空闲时段民用电的单价比高峰时段的用电单价低y x y-×100%=60%. 故答案为60%.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1) A 种树每棵2元,B 种树每棵80元;(2) 当购买A 种树木1棵,B 种树木25棵时,所需费用最少,最少为8550元.【解析】【分析】(1)设A 种树每棵x 元,B 种树每棵y 元,根据“购买A 种树木2棵,B 种树木5棵,共需600元;购买A 种树木3棵,B 种树木1棵,共需380元”列出方程组并解答;(2)设购买A 种树木为x 棵,则购买B 种树木为(2-x )棵,根据“购买A 种树木的数量不少于B 种树木数量的3倍”列出不等式并求得x 的取值范围,结合实际付款总金额=0.9(A 种树的金额+B 种树的金额)进行解答.【详解】解:(1)设A 种树木每棵x 元,B 种树木每棵y 元,根据题意,得256003380x y x y +=⎧⎨+=⎩ ,解得10080x y =⎧⎨=⎩, 答:A 种树木每棵2元,B 种树木每棵80元.(2)设购买A 种树木x 棵,则B 种树木(2-x )棵,则x≥3(2-x ).解得x≥1.设实际付款总额是y 元,则y =0.9[2x +80(2-x )].即y =18x +7 3.∵18>0,y 随x 增大而增大,∴当x =1时,y 最小为18×1+7 3=8 550(元).答:当购买A 种树木1棵,B 种树木25棵时,所需费用最少,为8 550元.20.(1)y=﹣18x 2﹣14x+3;(2)①点D 坐标为(﹣32,0);②点M (32,0). 【解析】【分析】(1)应用待定系数法问题可解;(2)①通过分类讨论研究△APQ 和△CDO 全等②由已知求点D 坐标,证明DN ∥BC ,从而得到DN 为中线,问题可解.【详解】(1)将点(-6,0),C (0,3),B (4,0)代入y=ax 2+bx+c ,得 366016400a b c a b c c -+⎧⎪++⎨⎪⎩===, 解得:18143a b c ⎧-⎪⎪⎪-⎨⎪⎪⎪⎩=== , ∴抛物线解析式为:y=-18x 2-14x+3; (2)①存在点D ,使得△APQ 和△CDO 全等,当D 在线段OA 上,∠QAP=∠DCO ,AP=OC=3时,△APQ 和△CDO 全等,∴tan ∠QAP=tan ∠DCO ,OC OD OA OC=, ∴3 63OD =, ∴OD=32, ∴点D 坐标为(-32,0). 由对称性,当点D 坐标为(32,0)时, 由点B 坐标为(4,0),此时点D (3,0)在线段OB 上满足条件.②∵OC=3,OB=4,∴BC=5,∵∠DCB=∠CDB ,∴BD=BC=5,∴OD=BD-OB=1,则点D 坐标为(-1,0)且AD=BD=5,连DN ,CM ,则DN=DM ,∠NDC=∠MDC ,∴∠NDC=∠DCB ,∴DN ∥BC , ∴1AN AD NC DB==, 则点N 为AC 中点.∴DN 时△ABC 的中位线,∵DN=DM=12BC=52, ∴OM=DM-OD=32 ∴点M (32,0) 【点睛】 本题是二次函数综合题,考查了二次函数待定系数法、三角形全等的判定、锐角三角形函数的相关知识.解答时,注意数形结合.21. (1)、证明过程见解析;(2)、①、2;②、1.【解析】【分析】(1)、首先证明△BEF 和△DCF 全等,从而得出DC=BE ,结合DC 和AB 平行得出平行四边形;(2)、①、根据矩形得出∠CEB=90°,结合∠ABC=120°得出∠CBE=60°,根据直角三角形的性质得出答案;②、根据菱形的性质以及∠ABC=120°得出△CBE 是等边三角形,从而得出答案.【详解】(1)、证明:∵AB ∥CD ,∴∠CDF=∠FEB ,∠DCF=∠EBF ,∵点F 是BC 的中点,∴BF=CF ,在△DCF 和△EBF 中,∠CDF=∠FEB ,∠DCF=∠EBF ,FC=BF ,∴△EBF ≌△DCF (AAS ), ∴DC=BE , ∴四边形BECD 是平行四边形;(2)、①BE=2;∵当四边形BECD 是矩形时,∠CEB=90°,∵∠ABC=120°,∴∠CBE=60°;∴∠ECB=30°,∴BE=12BC=2, ②BE=1,∵四边形BECD 是菱形时,BE=EC ,∵∠ABC=120°,∴∠CBE=60°,∴△CBE 是等边三角形,∴BE=BC=1.【点睛】本题主要考查的是平行四边形的性质以及矩形、菱形的判定定理,属于中等难度的题型.理解平行四边形的判定定理以及矩形和菱形的性质是解决这个问题的关键.22.(1)y =-12(x -3)2+5(2)5 【解析】【分析】(1)设顶点式y=a (x-3)2+5,然后把A 点坐标代入求出a 即可得到抛物线的解析式;(2)利用抛物线的对称性得到B (5,3),再确定出C 点坐标,然后根据三角形面积公式求解.【详解】(1)设此抛物线的表达式为y =a(x -3)2+5,将点A(1,3)的坐标代入上式,得3=a(1-3)2+5,解得12a =-,∴此抛物线的表达式为21(3) 5.2y x =--+ (2)∵A(1,3),抛物线的对称轴为直线x =3,∴B(5,3).令x =0,211(3)522y x =--+=,则1(0)2C ,, ∴△ABC 的面积11(51)3 5.22⎛⎫=⨯-⨯-= ⎪⎝⎭ 【点睛】考查待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,掌握待定系数法求二次函数的解析式是解题的关键.23.潜艇C 离开海平面的下潜深度约为308米【解析】试题分析:过点C 作CD ⊥AB ,交BA 的延长线于点D ,则AD 即为潜艇C 的下潜深度,用锐系列出方程求解.试题解析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,根据题意得:∠ACD=30°,∠BCD=68°,设AD=x,则BD=BA+AD=1000+x,在Rt△ACD中,CD=tan AD ACD=tan30x= 3x在Rt△BCD中,BD=CD•tan68°,∴325+x= 3x•tan68°解得:x≈100米,∴潜艇C离开海平面的下潜深度为100米.点睛:本题考查了解直角三角形的应用,解题的关键是作出辅助线,从题目中找出直角三角形并选择合适的边角关系求解.视频24.(1)(2)(0,)【解析】【分析】(1)根据反比例函数比例系数k的几何意义得出|k|=1,进而得到反比例函数的解析式;(2)作点A关于y轴的对称点A′,连接A′B,交y轴于点P,得到PA+PB最小时,点P的位置,根据两点间的距离公式求出最小值A′B的长;利用待定系数法求出直线A′B的解析式,得到它与y轴的交点,即点P的坐标.【详解】(1)∵反比例函数y= =(k>0)的图象过点A,过 A 点作x 轴的垂线,垂足为M,∴|k|=1,∵k>0,∴k=2,故反比例函数的解析式为:y=;(2)作点A 关于y 轴的对称点A′,连接A′B,交y 轴于点P,则PA+PB 最小.由,解得,或,∴A(1,2),B(4,),∴A′(﹣1,2),最小值A′B==,设直线A′B 的解析式为y=mx+n,则,解得,∴直线A′B 的解析式为y=,∴x=0 时,y=,∴P 点坐标为(0,).【点睛】本题考查的是反比例函数图象与一次函数图象的交点问题以及最短路线问题,解题的关键是确定PA+PB最小时,点P的位置,灵活运用数形结合思想求出有关点的坐标和图象的解析式是解题的关键.25.(1)证明见解析;(2)CE=1.【解析】(1)根据等角对等边得∠OBE=∠OEB,由角平分线的定义可得∠OBE=∠EBC,从而可得∠OEB=∠EBC,根据内错角相等,两直线平行可得OE∥BC,根据两直线平行,同位角相等可得∠OEA=90°,从而可证AC是⊙O的切线.(2)根据垂径定理可求BH=12BF=3,根据三个角是直角的四边形是矩形,可得四边形OHCE是矩形,由矩形的对边相等可得CE=OH,在Rt△OBH中,利用勾股定理可求出OH的长,从而求出CE的长. 【详解】(1)证明:如图,连接OE,∵OB=OE,∴∠OBE=∠OEB,∵ BE平分∠ABC.∴∠OBE=∠EBC,∴∠OEB=∠EBC,∴OE∥BC,∵∠ACB=90°,∴∠OEA=∠ACB=90°,∴ AC是⊙O的切线.(2)解:过O作OH⊥BF,∴BH=12BF=3,四边形OHCE是矩形,∴CE=OH,在Rt△OBH中,BH=3,OB=5,∴22OB OH,【点睛】本题考查切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线和垂径定理以及勾股定理的运用,具有一定的综合性.26.(1)13;(2)23.【解析】【分析】(1)利用概率公式直接计算即可;(2)列举出所有情况,看小明和小亮诵读两个不同材料的情况数占总情况数的多少即可.【详解】(1)∵诵读材料有《论语》,《三字经》,《弟子规》三种,∴小明诵读《论语》的概率=1 3 ,(2)列表得:由表格可知,共有9种等可能性结果,其中小明和小亮诵读两个不同材料结果有6种.所以小明和小亮诵读两个不同材料的概率=62=93.【点睛】本题考查了用列表法或画树形图发球随机事件的概率,用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的易错点.27.(1)详见解析;(2)详见解析;(3)图见解析,点P坐标为(2,0).【解析】【分析】(1)根据网格结构找出点A、B、C平移后的对应点的位置,然后顺次连接即可;(2))找出点A、B、C关于原点O的对称点的位置,然后顺次连接即可;(3)找出A的对称点A′,连接BA′,与x轴交点即为P.【详解】(1)如图1所示,△A1B1C1,即为所求:(2)如图2所示,△A2B2C2,即为所求:(3)找出A的对称点A′(1,﹣1),连接BA′,与x轴交点即为P;如图3所示,点P即为所求,点P坐标为(2,0).【点睛】本题考查作图-旋转变换,平移变换,轴对称最短问题等知识,得出对应点位置是解题关键.。

2019年辽宁省葫芦岛市中考数学真题(解析版)

2019年辽宁省葫芦岛市中考数学真题(解析版)

2019年辽宁省葫芦岛市中考数学真题(解析版)学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共10小题)1.﹣6的绝对值是()A.6 B.﹣6 C.D.2.下列运算正确的是()A.x2•x2=x6B.x4+x4=2x8C.﹣2(x3)2=4x6D.xy4÷(﹣xy)=﹣y33.甲、乙、丙、丁四位同学都参加了5次数学模拟测试,每个人这5次成绩的平均数都是125分,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则这5次测试成绩最稳定的是()A.甲B.乙C.丙D.丁4.如图是由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.5.某校女子排球队12名队员的年龄分布如下表所示:则该校女子排球队12名队员年龄的众数、中位数分别是()A.13,14 B.14,15 C.15,15 D.15,146.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.某工厂计划生产300个零件,由于采用新技术,实际每天生产零件的数量是原计划的2倍,因此提前5天完成任务.设原计划每天生产零件x个,根据题意,所列方程正确的是()A.﹣=5 B.﹣=5C.﹣=5 D.﹣=58.二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象大致是()A.B.C.D.9.如图,在⊙O中,∠BAC=15°,∠ADC=20°,则∠ABO的度数为()A.70°B.55°C.45°D.35°10.如图,正方形ABCD的对角线AC,BD相交于点O,点E在BD上由点B向点D运动(点E不与点B重合),连接AE,将线段AE绕点A逆时针旋转90得到线段AF,连接BF交AO于点G.设BE的长为x,OG的长为y,下列图象中大致反映y与x之间的函数关系的是()A.B.C.D.二、填空题(共8小题)11.太阳的半径大约为696000000,将数据696000000用科学记数法表示为.12.分解因式:x3y﹣xy3=﹣.13.若关于x的一元二次方程x2+(2+a)x=0有两个相等的实数根,则a的值是﹣.14.在一个不透明的袋子中只装有n个白球和2个红球,这些球除颜色外其他均相同.如果从袋子中随机摸出一个球,摸到红球的概率是,那么n的值为.15.如图,河的两岸a,b互相平行,点A,B,C是河岸b上的三点,点P是河岸a上的一个建筑物,某人在河岸b上的A处测得∠P AB=30°,在B处测得∠PBC=75°,若AB=80米,则河两岸之间的距离约为米.(≈1.73,结果精确到0.1米)16.如图,BD是▱ABCD的对角线,按以下步骤作图:①分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于E,F两点;②作直线EF,分别交AD,BC于点M,N,连接BM,DN.若BD=8,MN=6,则▱ABCD的边BC上的高为.17.如图,在Rt△ABC的纸片中,∠C=90°,AC=5,AB=13.点D在边BC上,以AD为折痕将△ADB折叠得到△ADB′,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是.18.如图,点P是正方形ABCD的对角线BD延长线上的一点,连接P A,过点P作PE⊥P A交BC的延长线于点E,过点E作EF⊥BP于点F,则下列结论中:①P A=PE;②CE=PD;③BF﹣PD=BD;④S△PEF=S△ADP正确的是(填写所有正确结论的序号)三、解答题(共8小题)19.先化简,再求值:÷(﹣),其中a=()﹣1﹣(﹣2)0.20.某学校为了解学生“第二课堂“活动的选修情况,对报名参加A.跆拳道,B.声乐,C.足球,D.古典舞这四项选修活动的学生(每人必选且只能选修一项)进行抽样调查.并根据收集的数据绘制了图①和图②两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次调查的学生共有人;在扇形统计图中,B所对应的扇形的圆心角的度数是;(2)将条形统计图补充完整;(3)在被调查选修古典舞的学生中有4名团员,其中有1名男生和3名女生,学校想从这4人中任选2人进行古典舞表演.请用列表或画树状图的方法求被选中的2人恰好是1男1女的概率.21.在平面直角坐标系中,△ABC的三个顶点坐标分别是A(﹣1,1),B(﹣4,1),C(﹣3,3)(1)将△ABC向下平移5个单位长度后得到△A1B1C1,请画出△A1B1C1;并判断以O,A1,B为顶点的三角形的形状(直接写出结果);(2)将△ABC绕原点O顺时针旋转90°后得到△A2B2C2,请画出△A2B2C2,并求出点C旋转到C2所经过的路径长.22.如图,一次函数y=k1x+b的图象与x轴、y轴分别交于A,B两点,与反比例函数y=的图象分别交于C,D两点,点C(2,4),点B是线段AC的中点.(1)求一次函数y=k1x+b与反比例函数y=的解析式;(2)求△COD的面积;(3)直接写出当x取什么值时,k1x+b<.23.某公司研发了一款成本为50元的新型玩具,投放市场进行试销售.其销售单价不低于成本,按照物价部门规定,销售利润率不高于90%,市场调研发现,在一段时间内,每天销售数量y(个)与销售单价x(元)符合一次函数关系,如图所示:(1)根据图象,直接写出y与x的函数关系式;(2)该公司要想每天获得3000元的销售利润,销售单价应定为多少元(3)销售单价为多少元时,每天获得的利润最大,最大利润是多少元?24.如图,点M是矩形ABCD的边AD延长线上一点,以AM为直径的⊙O交矩形对角线AC于点F,在线段CD上取一点E,连接EF,使EC=EF.(1)求证:EF是⊙O的切线;(2)若cos∠CAD=,AF=6,MD=2,求FC的长.25.如图,△ABC是等腰直角三角形,∠ACB=90°,D是射线CB上一点(点D不与点B重合),以AD为斜边作等腰直角三角形ADE(点E和点C在AB的同侧),连接CE.(1)如图①,当点D与点C重合时,直接写出CE与AB的位置关系;(2)如图②,当点D与点C不重合时,(1)的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)当∠EAC=15°时,请直接写出的值.26.如图,直线y=﹣x+4与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴另一交点为A.点P以每秒个单位长度的速度在线段BC上由点B向点C运动(点P不与点B和点C重合),设运动时间为t秒,过点P作x轴垂线交x轴于点E,交抛物线于点M.(1)求抛物线的解析式;(2)如图①,过点P作y轴垂线交y轴于点N,连接MN交BC于点Q,当=时,求t的值;(3)如图②,连接AM交BC于点D,当△PDM是等腰三角形时,直接写出t的值.2019年辽宁省葫芦岛市中考数学真题(解析版)参考答案一、单选题(共10小题)1.【分析】根据负数的绝对值是它的相反数,可得负数的绝对值.【解答】解:|﹣6|=6,故选:A.【知识点】绝对值2.【分析】根据同底数幂的乘除法的运算方法,幂的乘方与积的乘方的运算方法,以及合并同类项的方法,逐项判断即可.【解答】解:∵x2•x2=x4,∴选项A不符合题意;∵x4+x4=2x4,∴选项B不符合题意;∵﹣2(x3)2=﹣2x6,∴选项C不符合题意;∵xy4÷(﹣xy)=﹣y3,∴选项D符合题意.故选:D.【知识点】同底数幂的乘法、合并同类项、幂的乘方与积的乘方、同底数幂的除法3.【分析】直接利用方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可.【解答】解:∵S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,∴S丁2<S丙2<S乙2<S甲2,∴成绩最稳定的是丁.故选:D.【知识点】算术平均数、方差4.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看是四个小正方形,如图所示:故选:B.【知识点】简单组合体的三视图5.【分析】根据众数和中位数的定义求解可得.【解答】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,∴中位数为=15岁,故选:C.【知识点】众数、中位数6.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x<2x+2,得:x<2,解不等式﹣x≤1,得:x≥﹣1,则不等式组的解集为﹣1≤x<2,故选:A.【知识点】解一元一次不等式组、在数轴上表示不等式的解集7.【分析】根据实际每天生产零件的数量是原计划的2倍,可以提前5天完成任务可以列出相应的分式方程,本题得以解决.【解答】解:由题意可得,,故选:C.【知识点】由实际问题抽象出分式方程8.【分析】可先根据二次函数的图象判断a、b的符号,再判断一次函数图象与实际是否相符,判断正误.【解答】解:由二次函数图象,得出a<0,﹣<0,b<0,A、一次函数图象,得a>0,b>0,故A错误;B、一次函数图象,得a<0,b>0,故B错误;C、一次函数图象,得a>0,b<0,故C错误;D、一次函数图象,得a<0,b<0,故D正确;故选:D.【知识点】二次函数的图象、一次函数的图象9.【分析】根据圆周角定理可得出∠AOB的度数,再由OA=OB,可求出∠ABO的度数【解答】解:连接OA、OC,∵∠BAC=15°,∠ADC=20°,∴∠AOB=2(∠ADC+∠BAC)=70°,∵OA=OB(都是半径),∴∠ABO=∠OAB=(180°﹣∠AOB)=55°.故选:B.【知识点】圆心角、弧、弦的关系10.【分析】连接FD,证明△BAE≌△DAF,得到∠ADF=∠ABE=45°,FD=BE,再说明GO为△BDF的中位线OG=FD,则y=x,且x>0,是在第一象限的一次函数图象.【解答】解:连接FD,∵∠BAE+∠EAD=90°,∠F AD+∠EAD=90°,∴∠BAE=∠F AD.又BA=DA,EA=F A,∴△BAE≌△DAF(SAS).∴∠ADF=∠ABE=45°,FD=BE.∴∠FDO=45°+45°=90°.∵GO⊥BD,FD⊥BD,∴GO∥FD.∵O为BD中点,∴GO为△BDF的中位线.∴OG=FD.∴y=x,且x>0,是在第一象限的一次函数图象.故选:A.【知识点】动点问题的函数图象二、填空题(共8小题)11.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将数据6 9600 0000用科学记数法表示为6.96×108.故答案为:6.96×108.【知识点】科学记数法—表示较大的数12.【分析】首先提取公因式xy,再对余下的多项式运用平方差公式继续分解.【解答】解:x3y﹣xy3,=xy(x2﹣y2),=xy(x+y)(x﹣y).【知识点】提公因式法与公式法的综合运用13.【分析】根据根的判别式得出△=(2+a)2﹣4×1×0=0,求出即可.【解答】解:∵关于x的一元二次方程x2+(2+a)x=0有两个相等的实数根,∴△=(2+a)2﹣4×1×0=0,解得:a=﹣2,故答案为:﹣2.【知识点】根的判别式14.【分析】根据概率公式得到=,然后利用比例性质求出n即可.【解答】解:根据题意得=,解得n=4,经检验:n=4是分式方程的解,故答案为:4.【知识点】概率公式15.【分析】过点A作AE⊥a于点E,过点B作BD⊥P A于点D,然后锐角三角函数的定义分别求出AD、PD后即可求出两岸之间的距离.【解答】解:过点A作AE⊥a于点E,过点B作BD⊥P A于点D,∵∠PBC=75°,∠P AB=30°,∴∠DPB=45°,∵AB=80,∴BD=40,AD=40,∴PD=DB=40,∴AP=AD+PD=40+40,∵a∥b,∴∠EP A=∠P AB=30°,∴AE=AP=20+20≈54.6,故答案为:54.6【知识点】解直角三角形的应用16.【分析】由作法得MN垂直平分BD,则MB=MD,NB=ND,再证明△BMN为等腰三角形得到BM=BN,则可判断四边形BMDN为菱形,利用菱形的性质和勾股定理计算出BN=5,然后利用面积法计算▱ABCD的边BC上的高.【解答】解:由作法得MN垂直平分BD,∴MB=MD,NB=ND,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠MDB=∠NBD,而MB=MD,∴∠MBD=∠MDB,∴∠MBD=∠NBD,而BD⊥MN,∴△BMN为等腰三角形,∴BM=BN,∴BM=BN=ND=MD,∴四边形BMDN为菱形,∴BN==5,设▱ABCD的边BC上的高为h,∵MN•BD=2BN•h,∴h==,即▱ABCD的边BC上的高为.故答案为.【知识点】平行四边形的性质、作图—基本作图、线段垂直平分线的性质17.【分析】由勾股定理可以求出BC的长,由折叠可知对应边相等,对应角相等,当△DEB′为直角三角形时,可以分为两种情况进行考虑,分别利用勾股定理可求出BD的长.【解答】解:在Rt△ABC中,BC===12,(1)当∠EDB′=90°时,如图1,过点B′作B′F⊥AC,交AC的延长线于点F,由折叠得:AB=AB′=13,BD=B′D=CF,设BD=x,则B′D=CF=x,B′F=CD=12﹣x,在Rt△AFB′中,由勾股定理得:(5+x)2+(12﹣x)2=132,即:x2﹣7x=0,解得:x1=0(舍去),x2=7,因此,BD=7.(2)当∠DEB′=90°时,如图2,此时点E与点C重合,由折叠得:AB=AB′=13,则B′C=13﹣5=8,设BD=x,则B′D=x,CD=12﹣x,在Rt△B′CD中,由勾股定理得:(12﹣x)2+82=x2,解得:x=,因此BD=.故答案为:7或.【知识点】翻折变换(折叠问题)18.【分析】①解法一:如图1,作辅助线,构建三角形全等和平行四边形,证明△BFG≌△EFP(SAS),得BG=PE,再证明四边形ABGP是平行四边形,可得结论;解法二:如图2,连接AE,利用四点共圆证明△APE是等腰直角三角形,可得结论;②如图3,作辅助线,证明四边形DCGP是平行四边形,可得结论;③证明四边形OCGF是矩形,可作判断;④证明△AOP≌△PFE(AAS),则S△AOP=S△PEF,可作判断.【解答】解:①解法一:如图1,在EF上取一点G,使FG=FP,连接BG、PG,∵EF⊥BP,∴∠BFE=90°,∵四边形ABCD是正方形,∴∠FBC=∠ABD=45°,∴BF=EF,在△BFG和△EFP中,∵,∴△BFG≌△EFP(SAS),∴BG=PE,∠PEF=∠GBF,∵∠ABD=∠FPG=45°,∴AB∥PG,∵AP⊥PE,∴∠APE=∠APF+∠FPE=∠FPE+∠PEF=90°,∴∠APF=∠PEF=∠GBF,∴AP∥BG,∴四边形ABGP是平行四边形,∴AP=BG,∴AP=PE;解法二:如图2,连接AE,∵∠ABC=∠APE=90°,∴A、B、E、P四点共圆,∴∠EAP=∠PBC=45°,∵AP⊥PE,∴∠APE=90°,∴△APE是等腰直角三角形,∴AP=PE,故①正确;②如图3,连接CG,由①知:PG∥AB,PG=AB,∵AB=CD,AB∥CD,∴PG∥CD,PG=CD,∴四边形DCGP是平行四边形,∴CG=PD,CG∥PD,∵PD⊥EF,∴CG⊥EF,即∠CGE=90°,∵∠CEG=45°,∴CE=CG=PD;故②正确;③如图4,连接AC交BD于O,由②知:∠CGF=∠GFD=90°,∵四边形ABCD是正方形,∴AC⊥BD,∴∠COF=90°,∴四边形OCGF是矩形,∴CG=OF=PD,∴BD=OB=BF﹣OF=BF﹣PD,故③正确;④如图4中,在△AOP和△PFE中,∵,∴△AOP≌△PFE(AAS),∴S△AOP=S△PEF,∴S△ADP<S△AOP=S△PEF,故④不正确;本题结论正确的有:①②③,故答案为:①②③.【知识点】正方形的性质、全等三角形的判定与性质三、解答题(共8小题)19.【分析】根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:÷(﹣)====,当a=()﹣1﹣(﹣2)0=3﹣1=2时,原式=.【知识点】零指数幂、分式的化简求值、负整数指数幂20.【分析】(1)由A活动的人数及其所占百分比可得总人数,用360°乘以B活动人数所占比例即可得;(2)用总人数减去其它活动人数求出C的人数,从而补全图形;(3)列表得出所有等可能的情况数,找出刚好抽到一男一女的情况数,即可求出所求的概率.【解答】解:(1)本次调查的学生共有30÷15%=200(人),扇形统计图中,B所对应的扇形的圆心角的度数是360°×=144°,故答案为:200、144;(2)C活动人数为200﹣(30+80+20)=70(人),补全图形如下:(3)画树状图为:∴被选中的2人恰好是1男1女的概率=.【知识点】扇形统计图、条形统计图、列表法与树状图法21.【分析】(1)利用点平移的坐标变换规律写出A1、B1、C1的坐标,则描点即可得到△A1B1C1;然后利用勾股定理的逆定理判断以O,A1,B为顶点的三角形的形状;(2)利用网格特点和旋转的性质画出A、B、C的对应点A2、B2、C2,从而描点得到△A2B2C2,然后利用弧长公式计算出点C旋转到C2所经过的路径长.【解答】解:(1)如图,△A1B1C1为所作,∵OB==,OA1==,BA1==,∴OB2+OA12=BA12,∴以O,A1,B为顶点的三角形为等腰直角三角形;(2)如图,△A2B2C2为所作,点C旋转到C2所经过的路径长==π.【知识点】作图-旋转变换、作图-平移变换、轨迹22.【分析】(1)把点C的坐标代入反比例函数,利用待定系数法即可求得反比例函数的解析式,作CE⊥x轴于E,根据题意求得B的坐标,然后利用待定系数法求得一次函数的解析式;(2)联立方程求得D的坐标,然后根据S△COD=S△BOC+S△BOD即可求得△COD的面积;(3)根据图象即可求得k1x+b<时,自变量x的取值范围.【解答】解:(1)∵点C(2,4)在反比例函数y=的图象上,∴k2=2×4=8,∴y2=;如图,作CE⊥x轴于E,∵C(2,4),点B是线段AC的中点,∴B(0,2),∵B、C在y1=k1x+b的图象上,∴,解得k1=1,b=2,∴一次函数为y1=x+2;(2)由,解得或,∴D(﹣4,﹣2),∴S△COD=S△BOC+S△BOD=×2×2+×2×4=6;(3)由图可得,当0<x<2或x<﹣4时,k1x+b<.【知识点】反比例函数与一次函数的交点问题23.【分析】(1)由待定系数法可得函数的解析式;(2)根据利润等于每件的利润乘以销售量,列方程可解;(3)设每天获得的利润为w元,由题意得二次函数,写成顶点式,可求得答案.【解答】解:(1)设y=kx+b(k≠0,b为常数)将点(50,160),(80,100)代入得解得∴y与x的函数关系式为:y=﹣2x+260(2)由题意得:(x﹣50)(﹣2x+260)=3000化简得:x2﹣180x+8000=0解得:x1=80,x2=100∵x≤50×(1+90%)=95∴x2=100>95(不符合题意,舍去)答:销售单价为80元.(3)设每天获得的利润为w元,由题意得w=(x﹣50)(﹣2x+260)=﹣2x2+360x﹣13000=﹣2(x﹣90)2+3200∵a=﹣2<0,抛物线开口向下∴w有最大值,当x=90时,w最大值=3200答:销售单价为90元时,每天获得的利润最大,最大利润是3200元.【知识点】一元二次方程的应用、二次函数的应用24.【分析】(1)根据等腰三角形的性质和直角三角形两锐角互余证得∠EFC+∠OF A=90°,即可证得∠EFO=90°,即EF⊥OF,从而证得结论;(2)根据圆周角定理得出∠AFM=90°,通过解直角三角形求得AM=10,得出AD=8,进而求得AC=,即可求得FC=﹣6=.【解答】(1)证明:连接OF,∵四边形ACD是矩形,∴∠ADC=90°,∴∠CAD+∠DCA=90°,∵EC=EF,∴∠DCA=∠EFC,∵OA=OF,∴∠CAD=∠OF A,∴∠EFC+∠OF A=90°,∴∠EFO=90°,∴EF⊥OF,∵OF是半径,∴EF是⊙O的切线;(2)连接MF,∵AM是直径,∴∠AFM=90°,在Rt△AFM中,cos∠CAD==,∵AF=6,∴=,∴AM=10,∵MD=2,∴AD=8,在Rt△ADC中,cos∠CAD==,∴=,∴AC=,∴FC=﹣6=【知识点】解直角三角形、圆周角定理、矩形的性质、切线的判定与性质25.【分析】(1)根据等腰直角三角形的性质、平行线的判定定理解答;(2)在AF上截取AF=CD,连接EF,证明△EAF≌△EDC,根据全等三角形的性质得到EF=EC,∠AEF=∠DEC,根据平行线的判定定理证明;(3)分图②、图③两种情况,根据全等三角形的性质、等腰直角三角形的性质计算,得到答案.【解答】解:(1)当点D与点C重合时,CE∥AB,理由如下:∵△ABC是等腰直角三角形,∴∠CAB=45°,∵△ADE是等腰直角三角形,∴∠ADE=45°,∴∠CAB=∠ADE,∴CE∥AB;(2)当点D与点C不重合时,(1)的结论仍然成立,理由如下:在AC上截取AF=CD,连接EF,∵∠AED=∠ACB=90°,∴∠EAF=∠EDC,在△EAF和△EDC中,,∴△EAF≌△EDC(SAS),∴EF=EC,∠AEF=∠DEC,∵∠AED=90°,∴∠FEC=90°,∴∠ECA=45°,∴∠ECA=∠CAB,∴CE∥AB;(3)如图②,∠EAC=15°,∴∠CAD=30°,∴AD=2CD,AC=CD,∴FC=(﹣1)CD,∵△CEF为等腰直角三角形,∴EC=FC=CD,∵△ABC是等腰直角三角形,∴AB=AC=CD,∴==,如图③,∠EAC=15°,由(2)得,∠EDC=∠EAC=15°,∴∠ADC=30°,∴CD=AC,AB=AC,延长AC至G,使AG=CD,∴CG=AG﹣AC=DC﹣AC=AC﹣AC,在△EAG和△EDC中,,∴△EAG≌△EDC(SAS),∴EG=EC,∠AEG=∠DEC,∴∠CEG=90°,∴△CEG为等腰直角三角形,∴EC=CG=AC,∴=,综上所述,当∠EAC=15°时,的值为或.【知识点】三角形综合题26.【分析】(1)求直线y=﹣x+4与x轴交点B,与y轴交点C,用待定系数法即求得抛物线解析式.(2)根据点B、C坐标求得∠OBC=45°,又PE⊥x轴于点E,得到△PEB是等腰直角三角形,由PB=t求得BE=PE=t,即可用t表示各线段,得到点M的横坐标,进而用m表示点M纵坐标,求得MP的长.根据MP∥CN可证△MPQ∽△NCQ,故有,把用t表示的MP、NC代入即得到关于t的方程,求解即得到t的值.(3)因为不确定等腰△PDM的底和腰,故需分3种情况讨论:①若MD=MP,则∠MDP=∠MPD=45°,故有∠DMP=90°,不合题意;②若DM=DP,则∠DMP=∠MPD=45°,进而得AE=ME,把含t的式子代入并解方程即可;③若MP=DP,则∠PMD=∠PDM,由对顶角相等和两直线平行内错角相等可得∠CFD=∠PMD=∠PDM=∠CDF进而得CF=CD.用t表示M的坐标,求直线AM解析式,求得AM与y轴交点F的坐标,即能用t表示CF的长.把直线AM与直线BC解析式联立方程组,解得x的值即为点D横坐标.过D作y轴垂线段DG,得等腰直角△CDG,用DG即点D横坐标,进而可用t表示CD的长.把含t的式子代入CF=CD,解方程即得到t的值.【解答】解:(1)直线y=﹣x+4中,当x=0时,y=4∴C(0,4)当y=﹣x+4=0时,解得:x=4∴B(4,0)∵抛物线y=﹣x2+bx+c经过B,C两点∴解得:∴抛物线解析式为y=﹣x2+3x+4(2)∵B(4,0),C(0,4),∠BOC=90°∴OB=OC∴∠OBC=∠OCB=45°∵ME⊥x轴于点E,PB=t∴∠BEP=90°∴Rt△BEP中,sin∠PBE=∴BE=PE=PB=t∴x M=x P=OE=OB﹣BE=4﹣t,y P=PE=t∵点M在抛物线上∴y M=﹣(4﹣t)2+3(4﹣t)+4=﹣t2+5t∴MP=y M﹣y P=﹣t2+4t∵PN⊥y轴于点N∴∠PNO=∠NOE=∠PEO=90°∴四边形ONPE是矩形∴ON=PE=t∴NC=OC﹣ON=4﹣t∵MP∥CN∴△MPQ∽△NCQ∴∴解得:t1=,t2=4(点P不与点C重合,故舍去)∴t的值为(3)∵∠PEB=90°,BE=PE∴∠BPE=∠PBE=45°∴∠MPD=∠BPE=45°①若MD=MP,则∠MDP=∠MPD=45°∴∠DMP=90°,即DM∥x轴,与题意矛盾②若DM=DP,则∠DMP=∠MPD=45°∵∠AEM=90°∴AE=ME∵y=﹣x2+3x+4=0时,解得:x1=﹣1,x2=4∴A(﹣1,0)∵由(2)得,x M=4﹣t,ME=y M=﹣t2+5t∴AE=4﹣t﹣(﹣1)=5﹣t∴5﹣t=﹣t2+5t解得:t1=1,t2=5(0<t<4,舍去)③若MP=DP,则∠PMD=∠PDM如图,记AM与y轴交点为F,过点D作DG⊥y轴于点G∴∠CFD=∠PMD=∠PDM=∠CDF∴CF=CD∵A(﹣1,0),M(4﹣t,﹣t2+5t),设直线AM解析式为y=ax+m ∴解得:∴直线AM:y=tx+t∴F(0,t)∴CF=OC﹣OF=4﹣t∵tx+t=﹣x+4,解得:x=∴DG=x D=∵∠CGD=90°,∠DCG=45°∴CD=DG=∴4﹣t=解得:t=﹣1综上所述,当△PDM是等腰三角形时,t=1或t=﹣1.【知识点】二次函数综合题。

辽宁省葫芦岛市2019年中考数学试卷和答案解析

辽宁省葫芦岛市2019年中考数学试卷和答案解析

辽宁省葫芦岛市 2019 年中考数学试卷和解析一、选择题(每小题 3 分,共 30 分,在每小题给出的四个选项中,只有一项是符合题目)1.﹣6 的绝对值是()A.6 B.﹣6 C.16D.﹣162.下列运算正确的是()A.x2•x2=x6 B.x4+x4=2x8C.﹣2(x3)2=4x6 D.xy4÷(﹣xy)=﹣y33.甲、乙、丙、丁四位同学都参加了5 次数学模拟测试,每个人这5 次成绩的平均数都是 125 分,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则这 5 次测试成绩最稳定的是()A.甲B.乙C.丙D.丁4.如图是由 5 个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.5.某校女子排球队 12 名队员的年龄分布如下表所示:则该校女子排球队 12 名队员年龄的众数、中位数分别是()A.13,14 B.14,15 C.15,15 D.15,146.不等式组322113x xxx<+⎧⎪+⎨-≤⎪⎩的解集在数轴上表示正确的是()A.B.C.D.7.某工厂计划生产 300 个零件,由于采用新技术,实际每天生产零件的数量是原计划的2 倍,因此提前 5 天完成任务.设原计划每天生产零件x个,根据题意,所列方程正确的是()A.300x ﹣3002x+=5 B.3002x﹣300x=5C.300x ﹣3002x=5 D.3002x+﹣300x=58.二次函数y=a x2+b x的图象如图所示,则一次函数y=a x+b的图象大致是()A.B. C.D.9.如图,在⊙O中,∠BAC=15°,∠ADC=20°,则∠ABO的度数为()A.70°B.55°C.45°D.35°10.如图,正方形ABCD的对角线AC,BD相交于点O,点E在BD上由点B向点D运动(点E 不与点B重合),连接AE,将线段AE绕点A逆时针旋转 90 得到线段AF,连接BF交 AO于点G.设BE的长为x,OG的长为y,下列图象中大致反映y与x之间的函数关系的是()A.B. C.D.二、填空题(本题共 8 小题,每小题 3 分,共 24分)11.太阳的半径大约为 696000000,将数据 696000000 用科学记数法表示为.12.分解因式:x3y﹣xy3=.13.若关于x的一元二次方程x2+(2+a)x=0 有两个相等的实数根,则a的值是.14.在一个不透明的袋子中只装有n个白球和2 个红球,这些球除颜色外其他均相同.如果从袋子,那么n的值为.中随机摸出一个球,摸到红球的概率是1315.如图,河的两岸a,b互相平行,点A,B,C是河岸b上的三点,点P是河岸a上的一个建筑物,某人在河岸b上的A处测得∠PAB=30°,在B处测得∠PBC=75°,若AB=80 米,则河两岸之间的距离约为米.( 1.73,结果精确到 0.1 米)16.如图,BD 是▱ABCD 的对角线,按以下步骤作图:①分别以点B 和点 D 为圆心,BD 的长为半径作弧,两弧相交于E,F 两点;②作直线 EF,分别交 AD,BC 于点 M,N,大于12连接 BM,DN.若 BD=8,MN=6,则▱ABCD 的边 BC 上的高为.17.如图,在Rt△ABC的纸片中,∠C=90°,AC=5,AB=13.点D在边BC上,以AD为折痕将△ADB折叠得到△ADB′,AB′与边 BC交于点E.若△DEB′为直角三角形,则 BD的长是.18.如图,点P是正方形ABCD的对角线BD延长线上的一点,连接PA,过点P作PE⊥PA交 BC 的延长线于点E,过点E作EF⊥BP于点F,则下列结论中:BD;④S△PEF=S△ADP①PA=PE;②C E PD;③B F﹣PD=12正确的是(填写所有正确结论的序号)三、解答题(第 19 题 10 分,第 20 题 12 分,共 22 分)19.先化简,再求值:2221a aa a+-+÷(21a-﹣1a),其中a=(13)﹣1﹣(﹣2)0.20.某学校为了解学生“第二课堂“活动的选修情况,对报名参加A.跆拳道,B.声乐,C.足球,D.古典舞这四项选修活动的学生(每人必选且只能选修一项)进行抽样调查.并根据收集的数据绘制了图①和图②两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次调查的学生共有人;在扇形统计图中,B所对应的扇形的圆心角的度数是;(2)将条形统计图补充完整;(3)在被调查选修古典舞的学生中有4 名团员,其中有 1 名男生和 3 名女生,学校想从这 4 人中任选 2 人进行古典舞表演.请用列表或画树状图的方法求被选中的2 人恰好是 1 男 1 女的概率.四、解答题(第 21 题 12 分,第 22 题 12 分,共 24 分)21.在平面直角坐标系中,△A B C的三个顶点坐标分别是A(﹣1,1),B(﹣4,1),C(﹣3,3)(1)将△A BC向下平移5 个单位长度后得到△A1B1C1,请画出△A1B1C1;并判断以O,A1,B 为顶点的三角形的形状(直接写出结果);(2)将△A B C绕原点O顺时针旋转90°后得到△A2B2C2,请画出△A2B2C2,并求出点C旋转到C2 所经过的路径长.22.如图,一次函数y=k1x+b的图象与x轴、y轴分别交于A,B两点,与反比例函数y=2k的x图象分别交于C,D两点,点C(2,4),点B是线段AC的中点.的解析式;(1)求一次函数y=k1x+b与反比例函数y=2kx(2)求△COD的面积;.(3)直接写出当x取什么值时,k1x+b<2kx五、解答题(满分 12 分)23.某公司研发了一款成本为50 元的新型玩具,投放市场进行试销售.其销售单价不低于成本,按照物价部门规定,销售利润率不高于90%,市场调研发现,在一段时间内,每天销售数量y(个)与销售单价x(元)符合一次函数关系,如图所示:(1)根据图象,直接写出y与x的函数关系式;(2)该公司要想每天获得3000 元的销售利润,销售单价应定为多少元(3)销售单价为多少元时,每天获得的利润最大,最大利润是多少元?六、解答题(满分 12 分)24.如图,点 M 是矩形 ABCD 的边 AD 延长线上一点,以 AM 为直径的⊙O交矩形对角线 AC 于点 F,在线段 CD 上取一点 E,连接 EF,使 EC=EF.(1)求证:EF 是⊙O的切线;(2)若cos∠CAD=35,AF=6,MD=2,求F C的长.七、解答题(满分 12 分)25.如图,△ABC是等腰直角三角形,∠ACB=90°,D是射线CB上一点(点D不与点B重合),以AD为斜边作等腰直角三角形 ADE(点E和点C在AB的同侧),连接 CE.(1)如图①,当点 D 与点 C 重合时,直接写出 CE 与 AB 的位置关系;(2)如图②,当点 D 与点 C 不重合时,(1)的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)当∠EAC=15°时,请直接写出CEAB的值.八、解答题(满分 14 分)26.如图,直线y=﹣x+4 与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴另一交点为A.点P以每秒个单位长度的速度在线段BC上由点B向点C运动(点P不与点B和点C重合),设运动时间为t秒,过点P作x轴垂线交x轴于点E,交抛物线于点M.(1)求抛物线的解析式;(2)如图①,过点 P 作 y 轴垂线交 y 轴于点 N,连接 MN 交 BC 于点 Q,当MQNQ =12时,求 t的值;(3)如图②,连接 AM 交 BC 于点 D,当△PDM 是等腰三角形时,直接写出 t 的值.。

2019年初中毕业升学考试(辽宁葫芦岛卷)数学【含答案及解析】

730000000元,将730000000用科学记数法表示为
12.分解因式:a3-4a=
13.某广告公司全体员工年薪的具体情况如表:
14.年薪/万元25151064人数11332td
15. 如图,一只蚂蚁在正方形ABCD区域内爬行,点O是对角线的交点,/
ON分别交线段AB BC于M N两点,则蚂蚁停留在阴影区域的概率为
.4D
M
2灵
17. 如图,四边形OABC为矩形,点A,C分别在x轴和y轴上,连接AC,点B的坐标为(4,3),ZCAO的平分线与y轴相交于点D,则点D的坐标为
18.如图,在△AC中,/AOB=90°,点K的坐标为(2,1),BO=〈,反比例函数y=
19.如图,点A1(2,2)在直线y=x上,过点A1作A1B1//y轴交直线y=—x于点B1,以
5.九年级两名男同学在体育课上各练习10次立定跳远,平均成绩均为2.20米,要判断哪
一名同学的成绩比较稳定,通常需要比较这两名同学立定跳远成绩的()
A.方差B.众数C.平均数D.中位数
6.下列一元二次方程中有两个相等实数根的是()
A. 2x2-6x+1=0 B.3x2-x-5=0C.x2+x=0 D.x2-4x+4=0
2019
答案及解析】
姓名
题号
-二二



总分
得分
、选择题
1.4的相反数是()
A.4B.-4C.-D .-b)=-a2-ab
B.(2ab)2-a2b=4ab
C.2ab?3a=6a2b
D.(a-1)(1-a)=a2-1
4. 如图是由5个相同的小正方体构成的几何体,其左视图是(
hV=JC

辽宁省葫芦岛市2019-2020学年中考数学第四次调研试卷含解析

辽宁省葫芦岛市2019-2020学年中考数学第四次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个2.下面的几何体中,主(正)视图为三角形的是()A.B.C.D.3.﹣18的相反数是()A.8 B.﹣8 C.18D.﹣184.某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是()A.B.C.D.5.如图,等腰△ABC中,AB=AC=10,BC=6,直线MN垂直平分AB交AC于D,连接BD,则△BCD 的周长等于()A.13 B.14 C.15 D.166.已知二次函数y=x2+bx﹣9图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=8x,则该二次函数的对称轴是直线()A.x=1 B.x=49C.x=﹣1 D.x=﹣497.方程x2+2x﹣3=0的解是()A.x1=1,x2=3 B.x1=1,x2=﹣3C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣38.如图,AB是⊙O的直径,D,E是半圆上任意两点,连接AD,DE,AE与BD相交于点C,要使△ADC 与△BDA相似,可以添加一个条件.下列添加的条件中错误的是( )A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD·CD9.单项式2a3b的次数是()A.2 B.3 C.4 D.510.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)11.化简16的结果是()A.±4 B.4 C.2 D.±212.某校九年级(1)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x名学生,根据题意,列出方程为A.(1)19802x x-=B.x(x+1)=1980C.2x(x+1)=1980 D.x(x-1)=1980二、填空题:(本大题共6个小题,每小题4分,共24分.)13.甲,乙两家汽车销售公司根据近几年的销售量分别制作了如图所示的统计图,从2014~2018年,这两家公司中销售量增长较快的是_____公司(填“甲”或“乙”).14.如图,已知圆锥的底面⊙O的直径BC=6,高OA=4,则该圆锥的侧面展开图的面积为.15.已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于(x1,0),且﹣1<x1<0,对称轴x=1.如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中所有结论正确的是______(填写番号).16.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交»AB于点E,以点O为圆心,OC的长为半径作»CD交OB于点D,若OA=2,则阴影部分的面积为.17.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC 相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于______.18.如图,一根5m长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A在草地上的最大活动区域面积是_____平方米.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知点A,C在EF上,AD∥BC,DE∥BF,AE=CF.(1)求证:四边形ABCD是平行四边形;(2)直接写出图中所有相等的线段(AE=CF除外).20.(6分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A 种树苗每棵80元,B种树苗每棵60元.若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.21.(6分)如图1,已知抛物线y=ax2+bx(a≠0)经过A(6,0)、B(8,8)两点.(1)求抛物线的解析式;(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D 的坐标;(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,在坐标平面内有点P,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).22.(8分)某科技开发公司研制出一种新型产品,每件产品的成本为2500元,销售单价定为3200元.在该产品的试销期间,为了促销,鼓励商家购买该新型品,公司决定商家一次购买这种新型产品不超过10件时,每件按3200元销售:若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低5元,但销售单价均不低于2800元.商家一次购买这种产品多少件时,销售单价恰好为2800元?设商家一次购买这种产品x件,开发公司所获的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)23.(8分)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段AM最短时,求重叠部分的面积.24.(10分)为纪念红军长征胜利81周年,我市某中学团委拟组织学生开展唱红歌比赛活动,为此,该校随即抽取部分学生就“你是否喜欢红歌”进行问卷调查,并将调查结果统计后绘制成如下统计表和扇形统计图.态度非常喜欢喜欢一般不知道频数90 b 30 10频率 a 0.35 0.20请你根据统计图、表,提供的信息解答下列问题:(1)该校这次随即抽取了名学生参加问卷调查:(2)确定统计表中a、b的值:a= ,b= ;(3)该校共有2000名学生,估计全校态度为“非常喜欢”的学生人数.25.(10分)如图,抛物线y=ax2+bx+c与x轴相交于点A(﹣3,0),B(1,0),与y轴相交于(0,﹣32),顶点为P.(1)求抛物线解析式;(2)在抛物线是否存在点E,使△ABP的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;(3)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标,并求出平行四边形的面积.26.(12分)某商人制成了一个如图所示的转盘,取名为“开心大转盘”,游戏规定:参与者自由转动转盘,转盘停止后,若指针指向字母“A”,则收费2元,若指针指向字母“B”,则奖励3元;若指针指向字母“C”,则奖励1元.一天,前来寻开心的人转动转盘80次,你认为该商人是盈利的可能性大还是亏损的可能性大?为什么?27.(12分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件元,出厂价为每件元,每月销售量(件)与销售单价(元)之间的关系近似满足一次函数:.李明在开始创业的第一个月将销售单价定为元,那么政府这个月为他承担的总差价为多少元?设李明获得的利润为(元),当销售单价定为多少元时,每月可获得最大利润?物价部门规定,这种节能灯的销售单价不得高于元.如果李明想要每月获得的利润不低于元,那么政府为他承担的总差价最少为多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.考点:轴对称图形.2.C【解析】【分析】【详解】解:圆柱的主视图是矩形,正方体的主视图是正方形,圆锥的主视图是三角形,三棱柱的主视图是宽相等两个相连的矩形.故选C.3.C【解析】互为相反数的两个数是指只有符号不同的两个数,所以18的相反数是18,故选C.4.A【解析】试题分析:根据题意可知总共有10种等可能的结果,一次就能打开该密码的结果只有1种,所以P(一次就能打该密码)=,故答案选A.考点:概率.5.D【解析】【分析】由AB的垂直平分MN交AC于D,根据线段垂直平分线的性质,即可求得AD=BD,又由△CDB的周长为:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案.【详解】解:∵MN是线段AB的垂直平分线,∴AD=BD,∵AB =AC =10,∴BD+CD =AD+CD =AC =10,∴△BCD 的周长=AC+BC =10+6=16,故选D . 【点睛】此题考查了线段垂直平分线的性质,比较简单,注意数形结合思想与转化思想的应用. 6.D 【解析】 【分析】设A 点坐标为(a ,8a),则可求得B 点坐标,把两点坐标代入抛物线的解析式可得到关于a 和b 的方程组,可求得b 的值,则可求得二次函数的对称轴. 【详解】解:∵A 在反比例函数图象上,∴可设A 点坐标为(a ,8a). ∵A 、B 两点关于原点对称,∴B 点坐标为(﹣a ,﹣8a). 又∵A 、B 两点在二次函数图象上,∴代入二次函数解析式可得:228989a ab aa ab a ⎧+-=⎪⎪⎨⎪--=-⎪⎩,解得:389a b =⎧⎪⎨=⎪⎩或389a b =-⎧⎪⎨=⎪⎩,∴二次函数对称轴为直线x=﹣49. 故选D . 【点睛】本题主要考查二次函数的性质,待定系数法求二次函数解析式,根据条件先求得b 的值是解题的关键,注意掌握关于原点对称的两点的坐标的关系. 7.B 【解析】 【分析】本题可对方程进行因式分解,也可把选项中的数代入验证是否满足方程. 【详解】 x 2+2x-3=0,即(x+3)(x-1)=0, ∴x 1=1,x 2=﹣3 故选:B .【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.8.D【解析】【详解】解:∵∠ADC=∠ADB,∠ACD=∠DAB,∴△ADC∽△BDA,故A选项正确;∵AD=DE,∴»»AD DE,∴∠DAE=∠B,∴△ADC∽△BDA,∴故B选项正确;∵AD2=BD•CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故C选项正确;∵CD•AB=AC•BD,∴CD:AC=BD:AB,但∠ACD=∠ABD不是对应夹角,故D选项错误,故选:D.考点:1.圆周角定理2.相似三角形的判定9.C【解析】分析:根据单项式的性质即可求出答案.详解:该单项式的次数为:3+1=4故选C.点睛:本题考查单项式的次数定义,解题的关键是熟练运用单项式的次数定义,本题属于基础题型.10.A【解析】【详解】∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,∴ADBG=13,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴OAOB=13,∴2OAOA+=13,解得:OA=1,∴OB=3,∴C点坐标为:(3,2),故选A.11.B【解析】【分析】根据算术平方根的意义求解即可.【详解】=4,故选:B.【点睛】本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a 的算术平方根,正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.12.D【解析】【分析】根据题意得:每人要赠送(x﹣1)张相片,有x个人,然后根据题意可列出方程.【详解】根据题意得:每人要赠送(x﹣1)张相片,有x个人,∴全班共送:(x﹣1)x=1980,故选D.【点睛】此题主要考查了一元二次方程的应用,本题要注意读清题意,弄清楚每人要赠送(x﹣1)张相片,有x个人是解决问题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.甲【解析】【分析】。

辽宁省葫芦岛市2019-2020学年中考第四次质量检测数学试题含解析

辽宁省葫芦岛市2019-2020学年中考第四次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.从一个边长为3cm 的大立方体挖去一个边长为1cm 的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是( )A .B .C .D .2.已知一元二次方程2x 2+2x ﹣1=0的两个根为x 1,x 2,且x 1<x 2,下列结论正确的是( ) A .x 1+x 2=1 B .x 1•x 2=﹣1 C .|x 1|<|x 2| D .x 12+x 1=123.下列各式计算正确的是( )A .(b+2a )(2a ﹣b )=b 2﹣4a 2B .2a 3+a 3=3a 6C .a 3•a=a 4D .(﹣a 2b )3=a 6b 3 4.一副直角三角板如图放置,其中C DFE 90∠=∠=o ,45A ∠=︒,60E ∠=︒,点F 在CB 的延长线上若//DE CF ,则BDF ∠等于( )A .35°B .25°C .30°D .15°5.下列说法正确的是( )A .某工厂质检员检测某批灯泡的使用寿命采用普查法B .已知一组数据1,a ,4,4,9,它的平均数是4,则这组数据的方差是7.6C .12名同学中有两人的出生月份相同是必然事件D .在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是136.下图是某几何体的三视图,则这个几何体是( )A.棱柱B.圆柱C.棱锥D.圆锥7.一组数据8,3,8,6,7,8,7的众数和中位数分别是( )A.8,6 B.7,6 C.7,8 D.8,78.如图,在矩形ABCD中,E是AD上一点,沿CE折叠△CDE,点D恰好落在AC的中点F处,若CD=3,则△ACE的面积为()A.1 B.3C.2 D.239.下列说法正确的是()A.负数没有倒数B.﹣1的倒数是﹣1C.任何有理数都有倒数D.正数的倒数比自身小10.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.11.下列命题正确的是()A.对角线相等的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直且相等的四边形是正方形12.某广场上有一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法错误的是()A.红花、绿花种植面积一定相等B.紫花、橙花种植面积一定相等C.红花、蓝花种植面积一定相等D.蓝花、黄花种植面积一定相等二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,是用火柴棒拼成的图形,则第n个图形需_____根火柴棒.14.已知一次函数y=ax+b,且2a+b=1,则该一次函数图象必经过点_____.15.如图,AB∥CD,∠1=62°,FG平分∠EFD,则∠2= .16.如图,在△ABC中,点E,F分别是AC,BC的中点,若S四边形ABFE=9,则S三角形EFC=________.17.如图,为了测量铁塔AB高度,在离铁塔底部(点B)60米的C处,测得塔顶A的仰角为30°,那么铁塔的高度AB=________米.18.如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_________米.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,抛物线y =ax 2+(a+2)x+2(a≠0),与x 轴交于点A (4,0),与y 轴交于点B ,在x 轴上有一动点P (m ,0)(0<m <4),过点P 作x 轴的垂线交直线AB 于点N ,交抛物线于点M .(1)求抛物线的解析式;(2)若PN :PM =1:4,求m 的值;(3)如图2,在(2)的条件下,设动点P 对应的位置是P 1,将线段OP 1绕点O 逆时针旋转得到OP 2,旋转角为α(0°<α<90°),连接AP 2、BP 2,求AP 2+232BP 的最小值. 20.(6分)先化简,再求值:22111x x x x ⎛⎫-+ ⎪--⎝⎭,其中x 满足2410x x -+=. 21.(6分)《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”22.(8分)计算:﹣(﹣2)2+|﹣3|﹣20180×32723.(8分)许昌文峰塔又称文明寺塔,为全国重点文物保护单位,某校初三数学兴趣小组的同学想要利用学过的知识测量文峰塔的高度,他们找来了测角仪和卷尺,在点A 处测得塔顶C 的仰角为30°,向塔的方向移动60米后到达点B ,再次测得塔顶C 的仰角为60°,试通过计算求出文峰塔的高度CD .(结果保留两位小数)24.(10分)(14分)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值;(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.25.(10分)如今,旅游度假成为了中国人庆祝传统春节的一项的“新年俗”,山西省旅发委发布的《2018年“春节”假日旅游市场总结分析报告》中称:山西春节旅游供需两旺,实现了“旅游接待”与“经济效益”的双丰收,请根据图表信息解决问题:(1)如图1所示,山西近五年春节假日接待海内外游客的数量逐年增加,2018年首次突破了“千万”大关,达到万人次,比2017年春节假日增加万人次.(2)2018年2月15日﹣20日期间,山西省35个重点景区每日接待游客数量如下:日期2月15日(除夕)2月16日(初一)2月17日(初二)2月18日(初三)2月19日(初四)2月20日(初五)日接待游客数量(万人次)7.56 82.83 119.51 84.38 103.2 151.55这组数据的中位数是万人次.(3)根据图2中的信息预估:2019年春节假日山西旅游总收入比2018年同期增长的百分率约为,理由是.(4)春节期间,小明在“青龙古镇第一届新春庙会”上购买了A,B,C,D四枚书签(除图案外完全相同).正面分别印有“剪纸艺术”、“国粹京剧”、“陶瓷艺术”、“皮影戏”的图案(如图3),他将书签背面朝上放在桌面上,从中随机挑选两枚送给好朋友,求送给好朋友的两枚书签中恰好有“剪纸艺术”的概率.26.(12分)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,12),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.27.(12分)如图,正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C上y轴上,点B在反比例函数y=kx(k>0,x>0)的图象上,点E从原点O出发,以每秒1个单位长度的速度向x轴正方向运动,过点E作x的垂线,交反比例函数y=kx(k>0,x>0)的图象于点P,过点P作PF⊥y轴于点F;记矩形OEPF和正方形OABC不重合部分的面积为S,点E的运动时间为t秒.(1)求该反比例函数的解析式.(2)求S与t的函数关系式;并求当S=92时,对应的t值.(3)在点E的运动过程中,是否存在一个t值,使△FBO为等腰三角形?若有,有几个,写出t值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【详解】左视图就是从物体的左边往右边看.小正方形应该在右上角,故B错误,看不到的线要用虚线,故A错误,大立方体的边长为3cm,挖去的小立方体边长为1cm,所以小正方形的边长应该是大正方形13,故D错误,所以C正确.故此题选C.2.D【解析】【分析】直接利用根与系数的关系对A、B进行判断;由于x1+x2<0,x1x2<0,则利用有理数的性质得到x1、x2异号,且负数的绝对值大,则可对C进行判断;利用一元二次方程解的定义对D进行判断.【详解】根据题意得x1+x2=﹣22=﹣1,x1x2=﹣12,故A、B选项错误;∵x1+x2<0,x1x2<0,∴x1、x2异号,且负数的绝对值大,故C选项错误;∵x1为一元二次方程2x2+2x﹣1=0的根,∴2x12+2x1﹣1=0,∴x12+x1=12,故D选项正确,故选D.【点睛】本题考查了一元二次方程的解、一元二次方程根与系数的关系,熟练掌握相关内容是解题的关键. 3.C【解析】各项计算得到结果,即可作出判断.解:A、原式=4a2﹣b2,不符合题意;B、原式=3a3,不符合题意;C、原式=a4,符合题意;D、原式=﹣a6b3,不符合题意,故选C.4.D【解析】【分析】直接利用三角板的特点,结合平行线的性质得出∠BDE=45°,进而得出答案.【详解】解:由题意可得:∠EDF=30°,∠ABC=45°,∵DE∥CB,∴∠BDE=∠ABC=45°,∴∠BDF=45°-30°=15°.故选D.【点睛】此题主要考查了平行线的性质,根据平行线的性质得出∠BDE的度数是解题关键.5.B【解析】【分析】分别用方差、全面调查与抽样调查、随机事件及概率的知识逐一进行判断即可得到答案.【详解】A. 某工厂质检员检测某批灯泡的使用寿命时,检测范围比较大,因此适宜采用抽样调查的方法,故本选项错误;B. 根据平均数是4求得a的值为2,则方差为15[(1−4)2+(2−4)2+(4−4)2+(4−4)2+(9−4)2]=7.6,故本选项正确;C. 12个同学的生日月份可能互不相同,故本事件是随机事件,故错误;D. 在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”六个图形中有3个既是轴对称图形,又是中心对称图形,所以,恰好既是中心对称图形,又是轴对称图形的概率是12,故本选项错误.故答案选B.【点睛】本题考查的知识点是概率公式、全面调查与抽样调查、方差及随机事件,解题的关键是熟练的掌握概率公式、全面调查与抽样调查、方差及随机事件.6.D【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】由俯视图易得几何体的底面为圆,还有表示锥顶的圆心,符合题意的只有圆锥.故选D.【点睛】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力以及对立体图形的认识.7.D【解析】试题分析:根据中位数和众数的定义分别进行解答即可.把这组数据从小到大排列:3,6,7,7,8,8,8,8出现了3次,出现的次数最多,则众数是8;最中间的数是7,则这组数据的中位数是7 考点:(1)众数;(2)中位数.8.B【解析】【分析】由折叠的性质可得,DE=EF,AC=EF的长,即可求△ACE 的面积.【详解】解:∵点F是AC的中点,∴AF=CF=12 AC,∵将△CDE 沿CE 折叠到△CFE ,∴DE=EF ,∴AC=在Rt △ACD 中,.∵S △ADC =S △AEC +S △CDE , ∴12×AD×CD=12×AC×EF+12×CD×DE∴,∴DE=EF=1,∴S △AEC=12× 故选B .【点睛】本题考查了翻折变换,勾股定理,熟练运用三角形面积公式求得DE=EF=1是解决本题的关键. 9.B【解析】【分析】根据倒数的定义解答即可.【详解】A 、只有0没有倒数,该项错误;B 、﹣1的倒数是﹣1,该项正确;C 、0没有倒数,该项错误;D 、小于1的正分数的倒数大于1,1的倒数等于1,该项错误.故选B.【点睛】本题主要考查倒数的定义:两个实数的乘积是1,则这两个数互为倒数,熟练掌握这个知识点是解答本题的关键.10.B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A 、C 、D 都不是中心对称图形,只有B 是中心对称图形.故选B.11.C【解析】分析:根据平行四边形、矩形、菱形、正方形的判定定理判断即可.详解:对角线互相平分的四边形是平行四边形,A 错误;对角线相等的平行四边形是矩形,B 错误;对角线互相垂直的平行四边形是菱形,C正确;对角线互相垂直且相等的平行四边形是正方形;故选:C.点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.12.C【解析】【分析】图中,线段GH和EF将大平行四边形ABCD分割成了四个小平行四边形,平行四边形的对角线平分该平行四边形的面积,据此进行解答即可.【详解】解:由已知得题图中几个四边形均是平行四边形.又因为平行四边形的一条对角线将平行四边形分成两个全等的三角形,即面积相等,故红花和绿花种植面积一样大,蓝花和黄花种植面积一样大,紫花和橙花种植面积一样大.故选择C.【点睛】本题考查了平行四边形的定义以及性质,知道对角线平分平行四边形是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2n+1.【解析】【详解】解:根据图形可得出:当三角形的个数为1时,火柴棒的根数为3;当三角形的个数为2时,火柴棒的根数为5;当三角形的个数为3时,火柴棒的根数为7;当三角形的个数为4时,火柴棒的根数为9;……由此可以看出:当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1.故答案为:2n+1.14.(2,1)【解析】∵一次函数y=ax+b,∴当x=2,y=1,即该图象一定经过点(2,1).故答案为(2,1).15.31°.【解析】试题分析:由AB∥CD,根据平行线的性质得∠1=∠EFD=62°,然后根据角平分线的定义即可得到∠2的度数.∵AB∥CD,∴∠1=∠EFD=62°,∵FG平分∠EFD,∴∠2=∠EFD=×62°=31°.故答案是31°.考点:平行线的性质.16.3【解析】分析:由已知条件易得:EF∥AB,且EF:AB=1:2,从而可得△CEF∽△CAB,且相似比为1:2,设S△CEF=x,根据相似三角形的性质可得方程:194xx=+,解此方程即可求得△EFC的面积.详解:∵在△ABC中,点E,F分别是AC,BC的中点,∴EF是△ABC的中位线,∴EF∥AB,EF:AB=1:2,∴△CEF∽△CAB,∴S△CEF:S△CAB=1:4,设S△CEF=x,∵S△CAB=S△CEF+S四边形ABFE,S四边形ABFE=9,∴1 94xx=+,解得:3x=,经检验:3x=是所列方程的解. 故答案为:3.17.203 【解析】 【分析】 在Rt △ABC 中,直接利用tan ∠ACB=tan30°=AB BC =3即可. 【详解】在Rt △ABC 中,tan ∠ACB=tan30°=AB BC =3,BC=60,解得AB=203. 故答案为203.【点睛】本题考查的知识点是解三角形的实际应用,解题的关键是熟练的掌握解三角形的实际应用.18.1【解析】【分析】根据题意,画出示意图,易得:Rt △EDC ∽Rt △FDC ,进而可得ED DC DC FD =;即DC 2=ED?FD ,代入数据可得答案.【详解】根据题意,作△EFC ,树高为CD ,且∠ECF=90°,ED=3,FD=12,易得:Rt △EDC ∽Rt △DCF ,有ED DC DC FD=,即DC 2=ED×FD , 代入数据可得DC 2=31,DC=1,故答案为1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)213222x x -++;(2)m =3;(3145【解析】(1)本题需先根据图象过A 点,代入即可求出解析式;(2)由△OAB ∽△PAN 可用m 表示出PN ,且可表示出PM ,由条件可得到关于m 的方程,则可求得m 的值;(3)在y 轴上取一点Q ,使2O 3O 2Q P =,可证的△P 2OB ∽△QOP 2,则可求得Q 点坐标,则可把AP 2+32BP 2转换为AP 2+QP 2,利用三角形三边关系可知当A 、P 2、Q 三点在一条线上时,有最小值,则可求出答案.【详解】解:(1)∵A (4,0)在抛物线上,∴0=16a+4(a+2)+2,解得a =﹣12, ∴抛物线的解析式为y =213222x x -++; (2)∵213222y x x =++- ∴令x =0可得y =2,∴OB =2,∵OP =m ,∴AP =4﹣m ,∵PM ⊥x 轴,∴△OAB ∽△PAN , ∴OB PN OA PA=, ∴244mPN =-, ∴1PN (4m)2=-, ∵M 在抛物线上,∴PM =21322m m +-+2, ∵PN :MN =1:3,∴PN :PM =1:4, ∴2131m m 24(4m)222-++=⨯⨯-, 解得m =3或m =4(舍去);(3)在y 轴上取一点Q ,使2O 3O 2Q P =,如图,由(2)可知P 1(3,0),且OB =2, ∴22O 32OP Q OP OB ==,且∠P 2OB =∠QOP 2, ∴△P 2OB ∽△QOP 2, ∴22OP 3BP 2=, ∴当Q (0,92)时,QP 2=232BP , ∴AP 2+32BP 2=AP 2+QP 2≥AQ , ∴当A 、P 2、Q 三点在一条线上时,AP 2+QP 2有最小值,∵A (4,0),Q (0,92), ∴AQ 22942⎛⎫+ ⎪⎝⎭145, 即AP 2+32BP 2145 【点睛】本题考查了抛物线解析式的求法,抛物线与相似三角形的问题,坐标系里表示三角形的面积及线段和最小值问题,要求会用字母代替长度,坐标,会对代数式进行合理变形,难度相对较大.20.21x x+,1. 【解析】【分析】原式括号中的两项通分并利用同分母分式的加法法则计算,再与括号外的分式通分后利用同分母分式的加【详解】 解:原式2(1)11(1)(1)x x x x x x x x ⎡⎤-=-+⎢⎥---⎣⎦ 2211(1)x x x x x x -+=--- 321(1)(1)x x x x x x x -+=--- 321(1)x x x x x -+-=- 2(1)(1)(1)x x x x x -+-=- 21x x+= ∵2410x x -+=,∴214x x +=, ∴原式44x x== 【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.21.x=60【解析】【分析】设有x 个客人,根据题意列出方程,解出方程即可得到答案.【详解】解:设有x 个客人,则 65234x x x ++= 解得:x=60;∴有60个客人.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键. 22.﹣1【解析】根据乘方的意义、绝对值的性质、零指数幂的性质及立方根的定义依次计算各项后,再根据有理数的运算法则进行计算即可.【详解】原式=﹣1+3﹣1×3=﹣1.【点睛】本题考查了乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算,熟知乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算顺序是解决问题的关键. 23.51.96米.【解析】【分析】先根据三角形外角的性质得出∠ACB=30°,进而得出AB=BC=1,在Rt△BDC中,sin60CD BC︒=,即可求出CD的长.【详解】解:∵∠CBD=1°,∠CAB=30°,∴∠ACB=30°.∴AB=BC=1.在Rt△BDC中,sin60CD BC︒=∴3sin606030351.96CD BC=⋅︒=⨯=≈(米).答:文峰塔的高度CD约为51.96米.【点睛】本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.24.(1);(2)12;(3)t=或t=或t=1.【解析】试题分析:(1)首先利用根与系数的关系得出:,结合条件求出的值,然后把点B,C的坐标代入解析式计算即可;(2)(2)分0<t<6时和6≤t≤8时两种情况进行讨论,据此即可求出三角形的最大值;(3)(3)分2<t≤6时和t>6时两种情况进行讨论,再根据三角形相似的条件,即可得解.试题解析:解:(1)由题意知x1、x2是方程mx2﹣8mx+4m+2=0的两根,由.解得:.∴B(2,0)、C(6,0)则4m﹣16m+4m+2=0,解得:m=,∴该抛物线解析式为:y=;.(2)可求得A(0,3)设直线AC的解析式为:y=kx+b,∵∴∴直线AC的解析式为:y=﹣x+3,要构成△APC,显然t≠6,分两种情况讨论:当0<t<6时,设直线l与AC交点为F,则:F(t,﹣),∵P(t,),∴PF=,∴S△APC=S△APF+S△CPF===,此时最大值为:,②当6≤t≤8时,设直线l与AC交点为M,则:M(t,﹣),∵P(t,),∴PM=,==,当t=8时,取最大值,最大值为:12,综上可知,当0<t≤8时,△APC面积的最大值为12;(3)如图,连接AB,则△AOB中,∠AOB=90°,AO=3,BO=2,Q(t,3),P(t,),①当2<t≤6时,AQ=t,PQ=,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=2(舍),②当t>6时,AQ′=t,PQ′=,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=1,∴t=或t=或t=1.考点:二次函数综合题.25.(1)1365.45、414.4(2)93.79(3)30%;近3年平均涨幅在30%左右,估计2019年比2018年同比增长约30%(4)1 2【解析】【分析】(1)由图1可得答案;(2)根据中位数的定义求解可得;(3)由近3年平均涨幅在30%左右即可做出估计;(4)根据题意先画出树状图,得出共有12种等可能的结果数,再利用概率公式求解可得.【详解】(1)2018年首次突破了“千万”大关,达到1365.45万人次,比2017年春节假日增加1365.45﹣951.05=414.4万人次.故答案为:1365.45、414.4;(2)这组数据的中位数是84.38+103.22=93.79万人次,故答案为:93.79;(3)2019年春节假日山西旅游总收入比2018年同期增长的百分率约为30%,理由是:近3年平均涨幅在30%左右,估计2019年比2018年同比增长约30%,故答案为:30%;近3年平均涨幅在30%左右,估计2019年比2018年同比增长约30%.(4)画树状图如下:则共有12种等可能的结果数,其中送给好朋友的两枚书签中恰好有“剪纸艺术”的结果数为6,所以送给好朋友的两枚书签中恰好有“剪纸艺术”的概率为12.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率,也考查了条形统计图与样本估计总体.26.(1)y=﹣12x 2+32x+2;(2)m=﹣1或m=3时,四边形DMQF 是平行四边形;(3)点Q 的坐标为(3,2)或(﹣1,0)时,以点B 、Q 、M 为顶点的三角形与△BOD 相似.【解析】【分析】分析:(1)待定系数法求解可得;(2)先利用待定系数法求出直线BD 解析式为y=12x-2,则Q (m ,-12m 2+32m+2)、M (m ,12m-2),由QM ∥DF 且四边形DMQF 是平行四边形知QM=DF ,据此列出关于m 的方程,解之可得;(3)易知∠ODB=∠QMB ,故分①∠DOB=∠MBQ=90°,利用△DOB ∽△MBQ 得12DO MB OB BQ ==,再证△MBQ ∽△BPQ 得BM BP BQ PQ =,即214132222m m m -=-++,解之即可得此时m 的值;②∠BQM=90°,此时点Q 与点A 重合,△BOD ∽△BQM′,易得点Q 坐标.详解:(1)由抛物线过点A (-1,0)、B (4,0)可设解析式为y=a (x+1)(x-4),将点C (0,2)代入,得:-4a=2,解得:a=-12, 则抛物线解析式为y=-12(x+1)(x-4)=-12x 2+32x+2; (2)由题意知点D 坐标为(0,-2),设直线BD 解析式为y=kx+b ,将B (4,0)、D (0,-2)代入,得:402k b b +⎧⎨-⎩==,解得:122k b ⎧⎪⎨⎪-⎩==, ∴直线BD 解析式为y=12x-2, ∵QM ⊥x 轴,P (m ,0),∴Q (m ,-12m 2+32m+2)、M (m ,12m-2), 则QM=-12m 2+32m+2-(12m-2)=-12m 2+m+4, ∵F (0,12)、D (0,-2), ∴DF=52, ∵QM ∥DF ,∴当-12m2+m+4=52时,四边形DMQF是平行四边形,解得:m=-1(舍)或m=3,即m=3时,四边形DMQF是平行四边形;(3)如图所示:∵QM∥DF,∴∠ODB=∠QMB,分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,则21=42 DO MBOB BQ==,∵∠MBQ=90°,∴∠MBP+∠PBQ=90°,∵∠MPB=∠BPQ=90°,∴∠MBP+∠BMP=90°,∴∠BMP=∠PBQ,∴△MBQ∽△BPQ,∴BM BPBQ PQ=,即214132222mm m-=-++,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,∴m=3,点Q的坐标为(3,2);②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,此时m=-1,点Q的坐标为(-1,0);综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.点睛:本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、平行四边形的判定与性质、相似三角形的判定与性质及分类讨论思想的运用.【详解】请在此输入详解!27.(1)y=9x (x >0);(2)S 与t 的函数关系式为:S=﹣3t+9(0≤t≤3);S=9﹣27t (t >3);当S=92时,对应的t 值为32或6;(3)当t=32或3时,使△FBO 为等腰三角形. 【解析】【分析】(1)由正方形OABC 的面积为9,可得点B 的坐标为:(3,3),继而可求得该反比例函数的解析式.(2)由题意得P (t ,9t ),然后分别从当点P 1在点B 的左侧时,S=t•(9t-3)=-3t+9与当点P 2在点B 的右侧时,则S=(t-3)•9t =9-27t 去分析求解即可求得答案; (3)分别从OB=BF ,OB=OF ,OF=BF 去分析求解即可求得答案.【详解】解:(1)∵正方形OABC 的面积为9,∴点B 的坐标为:(3,3),∵点B 在反比例函数y=k x (k >0,x >0)的图象上, ∴3=3k , 即k=9, ∴该反比例函数的解析式为:y= y=9x (x >0); (2)根据题意得:P (t ,9t), 分两种情况:①当点P 1在点B 的左侧时,S=t•(9t ﹣3)=﹣3t+9(0≤t≤3); 若S=92, 则﹣3t+9=92, 解得:t=32; ②当点P 2在点B 的右侧时,则S=(t ﹣3)•9t =9﹣27t ; 若S=9t ,则9﹣27t =92, 解得:t=6; ∴S 与t 的函数关系式为:S=﹣3t+9(0≤t≤3);S=9﹣27t (t >3);当S=9t 时,对应的t 值为32或6; (3)存在.若CF=BC=3,∴OF=6,∴6=9t, 解得:t=32;若,则9t ,解得:t=2; 若BF=OF ,此时点F 与C 重合,t=3;∴当t=323时,使△FBO 为等腰三角形. 【点睛】此题考查反比例函数的性质、待定系数法求函数的解析式以及等腰三角形的性质.此题难度较大,解题关键是注意掌握数形结合思想、分类讨论思想与方程思想的应用.。

2019年辽宁省葫芦岛市连山区中考数学一模试卷(解析版)

2019 年辽宁省葫芦岛市连山区中考数学一模试卷一.选择题(本题有 10 小题,每小题 3 分,共 30 分) 1.下列等式成立的是( )A .(﹣3) ﹣2=﹣9 B .(﹣3)﹣2=12C .( a)2=a 14﹣7D .0.0000000618=6.18× 10 2.如果两条平行直线被第三条直线所截得的 8 个角中有一个角的度数已知,则( )A .只能求出其余 3 个角的度数B .只能求出其余 5 个角的度数C .只能求出其余 6 个角的度数D .只能求出其余 7 个角的度数 3.函数 中自变量x 的取值范围是( ) A .x ≥ 3B .x ≤ 7C .3≤ x ≤ 7D .x ≤ 3 或 x ≥ 72﹣6 的值为21,那么 x 的值是( )4.如果代数式 3x A .3B .± 3C .﹣3D .±5.已知在 ⊙ O 中,弦 AB 的长为8 厘米,圆心O 到 AB 的距离为3 厘米,则 ⊙ O 的半径是( )A .3 厘米B .4 厘米C .5 厘米D .8 厘米6.方程组的解是( )A .B .C .D .7.在△ ABC 中,∠ C =90°, tanA = ,△ ABC 的周长为60,那么△ ABC 的面积为()A .60B .30C .240D .1208.如图,平行四边形ABCD 中,对角线 AC ,BD 相交于点 O ,将△ AOD 平移至△ BEC 的位置,则 图中与O A 相等的其它线段有()A.1条B.2条C.3条D.4条3 9.一定质量的干松木,当它的体积V=2m33时,它的密度ρ=0.5×10,则ρ与V的函数关系kg/m式是()A.ρ=1000V B.ρ=V+1000C.ρ=D.ρ=10.如图,一个平行四边形被分成面积为S1、S2、S3、S4四个小平行四边形,当CD沿AB自左向右在平行四边形内平行滑动时,S1S4与S2S3的大小关系为()A.S1S4>S2S3B.S1S4<S2S3C.S1S4=S2S3D.无法确定二.填空题(本题有8小题,每小题3分,共24分)11.为鼓励节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电如果不超过100度,那么每度电价按a元收费;如果超过100度,那么超过部分每度电价按b元收费.某户居民在一个月内用电160度,他这个月应缴纳电费是元(用含a,b的代数式表示).322﹣6x=.12.因式分解:x y+9x y13.已知a是整数,点A(2a+1,2+a)在第二象限,则a=.14.已知双曲线y=经过点(1,﹣2),则k的值是.215.若关于x的方程x+5x+k=0有实数根,则k的取值范围是.16.已知⊙O的直径为6,弦AB的长为2,由这条弦及弦所对的弧组成的弓形的高是.17.数据﹣5,3,2,﹣3,3的平均数是,众数是,中位数是,方差是.18.台湾总面积为35989.76平方千米,这个数据用科学记数法表示为平方千米.三.解答题(本题有8小题,共96分)19.(10分)计算.20.(12分)解方程:21.(12分)在边长为1的5×5的方格中,有一个四边形OABC,(1)以O点为位似中心,作一个四边形,使得所作四边形与四边形OABC位似,且该四边形的各个顶点都在格点上;(2)求出你所作的四边形的面积.22.(12分)某商场开展购物抽奖活动,抽奖箱中有4个标号分别为1,2,3,4的质地、大小相同的小球,顾客任意摸取一个小球,然后放回,再摸取一个小球,若两次摸出的数字之和为“8”是一等奖,数字之和为“6”是二等奖,数字之和为其它数字则是三等奖,请分别求出顾客抽中一、二、三等奖的概率.23.(12分)某水果批发市场香蕉的价格如下表购买香蕉数不超过20千克以上40千克以上的(千克)20千克但不超过40千克的每千克价格6元5元4元张强两次共购买香蕉50kg(第二次多于第一次),共付出264元,请问张强第一次,第二次分别购买香蕉多少千克?24.(12分)已知直线y=2x+1.(1)求已知直线与y轴交点A的坐标;(2)若直线y=kx+b与已知直线关于y轴对称,求k与b的值.25.(12分)如图,正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB 上.(1)连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题“在旋转的过程中,线段DF与BF的长始终相等”是否正确?若正确,请证明;若不正确,请举例说明;(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转过程中,你能否找到一条线段的长与线段DG的长始终相等?并以图为例说明理由.26.(14分)如图,H是⊙O的内接锐角△ABC的高线AD、BE的交点,过点A引⊙O的切线,与22﹣6x+36(cosBE的延长线相交于点P,若AB的长是关于x的方程x C﹣cosC+1)=0的实数根.(1)求:∠C=度;AB的长等于(直接写出结果);(2)若BP=9,试判断△ABC的形状,并说明理由.2019年辽宁省葫芦岛市连山区中考数学一模试卷参考答案与试题解析一.选择题(本题有10小题,每小题3分,共30分)1.【分析】本题涉及负整数指数幂和科学记数法以及数的乘方的运算,根据实数的运算法则求得计算结果即可.﹣2【解答】解:A、(﹣3)=,错误;B、(﹣3)﹣2=,正确;12 C、(a)2=a24,错误;﹣8,错误. D、0.0000000618=6.18×10故选:B.【点评】本题考查负整数指数幂的运算,科学记数法及幂的乘方与积的乘方的运算方法,需熟练掌握.2.【分析】本题主要利用两直线平行,同旁内角互补以及对顶角相等进行做题.【解答】解:如图,a∥b,已知∠1,根据平行线的性质和对顶角相等,可以求出各角的值.故选:D.【点评】“三线八角”问题,若有两条直线平行,可以根据已知条件和平行线的性质可以求出其余7个角.3.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得x﹣3≥0且7﹣x≥0,解得x≥3且x≤7,所以3≤x≤7.故选:C.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.【分析】根据题意列出方程,整理后利用平方根定义开方即可求出x的值.【解答】解:根据题意得:3x2﹣6=21,即x2=9,解得:x=±3,故选:B.【点评】此题考查了解一元二次方程﹣直接开平方法,熟练掌握平方根定义是解本题的关键.5.【分析】根据垂径定理和根据勾股定理求解.【解答】解:根据垂径定理,得半弦长是4cm.再根据勾股定理,得其半径是5cm.故选:C.【点评】此题综合运用了垂径定理和勾股定理.6.【分析】用代入法即可解答,把①化为x=1+y,代入②得(1+y)2+2y+3=0即可.【解答】解:把①化为x=1+y,代入②得:(1+y)2+2y+3=0,2即y+4y+4=0,解得:y=﹣2,代入①得x=﹣1,∴原方程组的解为.故选:B.【点评】解答此类题目一般用代入法比较简单,先消去一个未知数再解关于另一个未知数的一元二次方程,把求得结果代入一个较简单的方程中即可.7.【分析】由tanA的值,利用锐角三角函数定义设出BC与AC,进而利用勾股定理表示出AB,由周长为60求出x的值,确定出两直角边,即可求出三角形面积.【解答】解:如图所示,由tanA=,设BC=12x,AC=5x,根据勾股定理得:AB=13x,由题意得:12x+5x+13x=60,解得:x=2,∴BC=24,AC=10,则△ABC面积为120,故选:D.【点评】此题考查了解直角三角形,锐角三角函数定义,以及勾股定理,熟练掌握勾股定理是解本题的关键.8.【分析】根据平行四边形的性质和平移的基本性质,可求得图中与OA相等的其它线段.【解答】解:∵ABCD是平行四边形,∴OC=OA;又∵△AOD平移至△BEC,∴OA=BE.故选:B.【点评】本题需要学生将平行四边形的性质和平移的基本性质结合求解.经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.9.【分析】根据等量关系“密度=质量÷体积”即可列出ρ与V的函数关系式.【解答】解;根据物理知识得:ρ=,∵体积V=2m3时,它的密度ρ=0.5×103kg/m3,∴m=2×0.5×103=1000,∴ρ=.故选:D.【点评】本题考查了反比例函数在实际生活中的运用,重点是找出题中的等量关系.10.【分析】要求面积大小关系,就要利用面积公式计算,可设CG到EF的距离为h1,EF到AB 的距离为h2,然后利用平行四边形的面积公式计算.【解答】解:如图,设直线CG到EF的距离为h1,EF到AB的距离为h2,根据平行四边形的性质知,S1=AD?h1,S4=BD?h2,S2=AD?h2,S3=BD?h1,∴S1S4=AD?BD?h1?h2,S2S3=AD?BD?h1?h2,∴S1S4=S2S3.故选:C.【点评】本题考查平行四边形的性质,注意掌握平行四边形的面积等于平行四边形的边长与该边上的高的积.即S=a?h.其中a可以是平行四边形的任何一边,h必须是a边与其对边的距离,即对应的高.二.填空题(本题有8小题,每小题3分,共24分)11.【分析】因为160>100,所以其中100度是每度电价按a元收费,多出来的60度是每度电价按b元收费.【解答】解:100a+(160﹣100)b=100a+60b.故答案为:(100a+60b).【点评】该题要分析清题意,要知道其中100度是每度电价按a元收费,多出来的60度是每度电价按b元收费.用字母表示数时,要注意写法:①在代数式中出现的乘号,通常简写做“?”或者省略不写,数字与数字相乘一般仍用“×”号;②在代数式中出现除法运算时,一般按照分数的写法来写;③数字通常写在字母的前面;④带分数的要写成假分数的形式.12.【分析】先提出公因式x,再用完全平方公式因式分解.22【解答】解:原式=x(x﹣6xy+9y=x(x﹣3y)2.2故答案是:x(x﹣3y).【点评】本题考查的是因式分解,先提出公因式,然后再用完全平方公式因式分解.13.【分析】第二象限的点的坐标,横坐标小于0,纵坐标大于0,因而就得到关于a的不等式组,求出a的范围,又由于a是整数,就可以求出a的值.【解答】解:根据题意得:,解得:﹣2<a<,又∵a是整数,∴a=﹣1.故填:﹣1.【点评】本题主要考查了坐标平面内各象限点的坐标的符号,常与不等式、方程结合起来求一些类型的题目.字母的取值范围,此类题往往转化成解不等式或不等式组的问题.这是一个常见14.【分析】因为函数经过一定点,将此点坐标(1,﹣2)代入函数解析式y=(k≠0)即可求得k的值.2),【解答】解:因为函数经过点P(1,﹣∴﹣2=,解得k=﹣2.2.故答案为:﹣重的点.【点评】此题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段2﹣4ac的值的符号就可以了.关于15.【分析】判断上述方程的根的情况,只要看根的判别式△=b224a c≥0. x﹣的方程x+5x+k=0有实数根,△=b【解答】解:∵a=1,b=5,c=k,22∴△=b﹣4ac=5﹣4×1×k=25﹣4k≥0,∴k≤.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根.16.【分析】此题只需先求得弦的弦心距.因为弦所对的弧有两条,所以弦所对的弧组成的弓形高有两种情况.【解答】解:根据垂径定理,得半弦是,在由半径、半弦和弦心距组成的直角三角形中,根据勾股定理,得弦心距==,.是3+或3﹣因为弦所对的弧有两条,所以弦所对的弧组成的弓形高【点评】此题注意两种情况,熟练运用垂径定理和勾股定理求得弦的弦心距.17.【分析】直接利用平均数求法以及众数、中位数、方差的定义分别分析得出答案.【解答】解:数据﹣5+3+2﹣3+3)=0,3,3的平均数是:(﹣5,3,2,﹣5个数据中,3出现的次数最多,故3是众数;3,2,3,3,故中位数是:2;按大小顺序排列:﹣5,﹣0)2+(3﹣0)2+(2﹣0)2+(﹣3﹣0)2+(3﹣0)2]5﹣方差是:[(﹣=11.2.故答案为:0,3,2,11.2.【点评】此题主要考查了平均数求法以及众数、中位数、方差的定义,正确把握相关定义是解题关键.n的形式,其中1≤|a|<10,n为整数.确定n的值时,18.【分析】科学记数法的表示形式为a×10要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对10时,n是正数;当原数的绝对值<1时,n是负数.值>4【解答】解:35989.76=3.598976×10,故答案为: 3.598976×104.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.96分)8小题,共三.解答题(本题有19.【分析】原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=1+2+2×=3+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.x,即x2+3x=0,1+x2=1﹣【解答】解:去分母得:2+2x﹣分解因式得:x(x+3)=0,3.解得:x1=0,x2=﹣【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.【分析】(1)结合网格特点,分别作出点A、B、C关于点O成位似变换的对应点,再顺次连接即可得;(2)根据S四边形OA′B′C′=S△OA′B′+S△OB′C′计算可得.【解答】解:(1)如图所示,四边形OA′B′C′即为所求.(2)S四边形OA′B′C′=S△OA′B′+S△OB′C′=×4×4+×2×2=8+2=10.【点评】本题考查了作图﹣位似变换:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.22.【分析】列举出符合题意的各种情况的个数,再根据概率公式解答即可.【解答】解:列表得:(1,4)(2,4)(3,4)(4,4)(1,3)(2,3)(3,3)(4,3)(1,2)(2,2)(3,2)(4,2)(1,1)(2,1)(3,1)(4,1)∴一共有16种情况,两次摸出的数字之和为“8”的有一种,数字之和为“6”的有3种情况,数字之和为其它数字的有12种情况,∴抽中一等奖的概率为,抽中二等奖的概率为,抽中三等奖的概率为.合【点评】此题考查的是用列表法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适识点为:概率=所于两步完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知求情况数与总情况数之比.23.【分析】本题两个等量关系为:第一次买的千克数+第二次买的千克数=50;第一次出的钱数+论:①当0<x≤20,y≤40;②第二次出的钱数=264.对张强买的香蕉的千克数,应分情况讨25<y<30.当0<x≤20,y>40③当20<x<25时,则【解答】解:设张强第一次购买香蕉xkg,第二次购买香蕉ykg,由题意可得0<x<25.则①当0<x≤20,y≤40,则题意可得.解得.②当0<x≤20,y>40 时,由题意可得.解得.(不合题意,舍去)③当20<x<25 时,则25<y<30,此时张强用去的款项为5x+5y=5(x+ y)=5×50=250<264(不合题意,舍去);④当20<x≤40 y>40 时,总质量将大于60 k g,不符合题意,蕉14kg,第二次购买香蕉36kg.答:张强第一次购买香【点评】本题主要考查学生分类讨论的思想.找到两个基本的等量关系后,应根克数据讨论的千找到相应的价格进行作答.24.【分析】(1)求直线与y 轴的交点坐标,令交点的横坐标为0 即可;,(2)先求出直线y=2x+1 与两坐标轴的交点(0,1),(﹣,0),因为两直线关于y 轴对称所以两直线都过点(0,1),它们与x 轴的交点横坐标互为相反数,从而可知所求直线过点(0,1),(,0),进而利用待定系数法,通过解方程组,即可求出答案.【解答】解:(1)当x=0 时,y=1,所以直线y=2x+1 与y 轴交点 A 的坐标为(0,1);(2)对于直线y=2x+1,当x=0 时,y=1;当y=0 时,x=﹣,(0,1),(﹣,0),是即直线y=2x+1 与两坐标轴的交点分别∵两直线关于y 轴对称∴直线y=kx+ b过点(0,1),(,0),所以,∴.2,b=1.所以k=﹣利【点评】此类题目结合轴对称出现,体现了数形结合的思想,需找出几对对应点的坐再用,标待定系数法解决问题.25.【分析】(1)显然,当A,F,B在同一直线上时,DF≠BF.(2)注意使用两个正方形的边和90°的角,可判断出△DAG≌△BAE,那么DG=BE.【解答】解:(1)不正确.A B或AB的延长线上.(或将正若在正方形GAEF绕点A顺时针旋转45°,这时点F落在线段A B或AB的延长线上).如图:方形GAEF绕点A顺时针旋转,使得点F落在线段设A D=a,AG=b,则D F=>a,BF=|AB﹣A F|=|a﹣b|<a,∴DF>BF,即此时DF≠BF;(2)连接B E,可得△ADG≌△ABE,则D G=BE.如图,∵四边形ABCD是正方形,∴AD=AB,∵四边形GAEF是正方形,∴AG=AE,又∵∠DAG+∠GAB=90°,∠BAE+∠GAB=90°,∴∠DAG=∠BAE,∴△DAG≌△BAE,∴DG=BE.【点评】注意点在特殊位置时所得到的关系,判断边相等,通常要找全等三角形.2﹣4×1×36(cos2C﹣c osC+1)≥0,化26.【分析】(1)关于x的方程有实根,则△=(﹣6)21=0,则∠C=60°,此时方程有相等的根,AB+AB=6;1)≤0,只有2cosC﹣简得:(2cosC﹣△ABC中一个角为60°,则可知△ABC为等边三角形.(2)已知∠C=60°,则再证明【解答】解:(1)∠C=60°,AB=3;(2)结论:△ABC是等边三角形(1分)∵AD、BE是△ABC的高,∴∠P+∠PAC=∠BAD+∠ABC=90°又∵PA切⊙O于A,∴∠PAC=∠ABC∴∠P=∠BAD而∠PBA=∠ABH,∴△PBA∽△ABH∴∴当PB=9时,BH=(2分)在Rt△BHD中,BD=BH?cos30°=在Rt△ABD中,cos∠ABD=,∴∠ABD=60°即∠ABC=60°∵∠C=60°∴△ABC是等边三角形..此轴题,综合考查函数、方程与圆的切线,三角形相似的判定与性质等知识【点评】此题作为压题是一个大综合题,难度较大,有利于培养同学们的钻研精神和坚韧不拔的意志品质.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年辽宁省葫芦岛市中考数学试卷一、选择题(每小题3分,共30分)1.﹣6的绝对值是()A.6 B.﹣6 C.D.﹣2.下列运算正确的是()A.x2•x2=x6 B.x4+x4=2x8C.﹣2(x3)2=4x6 D.xy4÷(﹣xy)=﹣y33.甲、乙、丙、丁四位同学都参加了5次数学模拟测试,每个人这5次成绩的平均数都是125分,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则这5次测试成绩最稳定的是()A.甲B.乙C.丙D.丁4.如图是由5个完全相同的小正方体组成的立体图形,它的俯视图是()A. B. C. D.5A.13,14 B.14,15 C.15,15 D.15,146.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.某工厂计划生产300个零件,由于采用新技术,实际每天生产零件的数量是原计划的2倍,因此提前5天完成任务.设原计划每天生产零件x个,根据题意,所列方程正确的是()A.﹣=5 B.﹣=5 C.﹣=5 D.﹣=5 8.二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象大致是()A.B.C.D.9.如图,在⊙O中,∠BAC=15°,∠ADC=20°,则∠ABO的度数为()A.70°B.55°C.45°D.35°10.如图,正方形ABCD的对角线AC,BD相交于点O,点E在BD上由点B向点D运动(点E 不与点B重合),连接AE,将线段AE绕点A逆时针旋转90得到线段AF,连接BF交AO于点G.设BE的长为x,OG的长为y,下列图象中大致反映y与x之间的函数关系的是()A.B.C.D.二、填空题(本题共8小题,每小题3分,共24分)11.太阳的半径大约为696000000,将数据696000000用科学记数法表示为.12.分解因式:x3y﹣xy3=.13.若关于x的一元二次方程x2+(2+a)x=0有两个相等的实数根,则a的值是.14.在一个不透明的袋子中只装有n个白球和2个红球,这些球除颜色外其他均相同.如果从袋子中随机摸出一个球,摸到红球的概率是,那么n的值为.15.如图,河的两岸a,b互相平行,点A,B,C是河岸b上的三点,点P是河岸a上的一个建筑物,某人在河岸b上的A处测得∠PAB=30°,在B处测得∠PBC=75°,若AB=80米,则河两岸之间的距离约为米.(≈1.73,结果精确到0.1米)16.如图,BD是▱ABCD的对角线,按以下步骤作图:①分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于E,F两点;②作直线EF,分别交AD,BC于点M,N,连接BM,DN.若BD=8,MN=6,则▱ABCD的边BC上的高为.17.如图,在Rt△ABC的纸片中,∠C=90°,AC=5,AB=13.点D在边BC上,以AD 为折痕将△ADB折叠得到△ADB′,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是.18.如图,点P是正方形ABCD的对角线BD延长线上的一点,连接PA,过点P作PE⊥PA交BC的延长线于点E,过点E作EF⊥BP于点F,则下列结论中:①PA=PE;②CE=PD;③BF﹣PD=BD;④S△PEF=S△ADP正确的是(填写所有正确结论的序号)三、解答题(第19题10分,第20题12分,共22分)19.先化简,再求值:÷(﹣),其中a=()﹣1﹣(﹣2)0.20.某学校为了解学生“第二课堂“活动的选修情况,对报名参加A.跆拳道,B.声乐,C.足球,D.古典舞这四项选修活动的学生(每人必选且只能选修一项)进行抽样调查.并根据收集的数据绘制了图①和图②两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次调查的学生共有人;在扇形统计图中,B所对应的扇形的圆心角的度数是;(2)将条形统计图补充完整;(3)在被调查选修古典舞的学生中有4名团员,其中有1名男生和3名女生,学校想从这4人中任选2人进行古典舞表演.请用列表或画树状图的方法求被选中的2人恰好是1男1女的概率.四、解答题(第21题12分,第22题12分,共24分)21.在平面直角坐标系中,△ABC的三个顶点坐标分别是A(﹣1,1),B(﹣4,1),C(﹣3,3)(1)将△ABC向下平移5个单位长度后得到△A1B1C1,请画出△A1B1C1;并判断以O,A1,B 为顶点的三角形的形状(直接写出结果);(2)将△ABC绕原点O顺时针旋转90°后得到△A2B2C2,请画出△A2B2C2,并求出点C旋转到C2所经过的路径长.22.如图,一次函数y=k1x+b的图象与x轴、y轴分别交于A,B两点,与反比例函数y=的图象分别交于C,D两点,点C(2,4),点B是线段AC的中点.(1)求一次函数y=k1x+b与反比例函数y=的解析式;(2)求△COD的面积;(3)直接写出当x取什么值时,k1x+b<.五、解答题(满分12分)23.某公司研发了一款成本为50元的新型玩具,投放市场进行试销售.其销售单价不低于成本,按照物价部门规定,销售利润率不高于90%,市场调研发现,在一段时间内,每天销售数量y(个)与销售单价x(元)符合一次函数关系,如图所示:(1)根据图象,直接写出y与x的函数关系式;(2)该公司要想每天获得3000元的销售利润,销售单价应定为多少元(3)销售单价为多少元时,每天获得的利润最大,最大利润是多少元?六、解答题(满分12分)24.如图,点M是矩形ABCD的边AD延长线上一点,以AM为直径的⊙O交矩形对角线AC于点F,在线段CD上取一点E,连接EF,使EC=EF.(1)求证:EF是⊙O的切线;(2)若cos∠CAD=,AF=6,MD=2,求FC的长.七、解答题(满分12分)25.如图,△ABC是等腰直角三角形,∠ACB=90°,D是射线CB上一点(点D不与点B重合),以AD为斜边作等腰直角三角形ADE(点E和点C在AB的同侧),连接CE.(1)如图①,当点D与点C重合时,直接写出CE与AB的位置关系;(2)如图②,当点D与点C不重合时,(1)的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)当∠EAC=15°时,请直接写出的值.八、解答题(满分14分)26.如图,直线y=﹣x+4与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴另一交点为A.点P以每秒个单位长度的速度在线段BC上由点B向点C运动(点P不与点B和点C重合),设运动时间为t秒,过点P作x轴垂线交x轴于点E,交抛物线于点M.(1)求抛物线的解析式;(2)如图①,过点P作y轴垂线交y轴于点N,连接MN交BC于点Q,当=时,求t的值;(3)如图②,连接AM交BC于点D,当△PDM是等腰三角形时,直接写出t的值.2019年辽宁省葫芦岛市中考数学试卷解析一.选择题(共10小题)1.﹣6的绝对值是()A.6 B.﹣6 C.D.﹣【分析】根据负数的绝对值是它的相反数,可得负数的绝对值.【解答】解:|﹣6|=6,故选:A.2.下列运算正确的是()A.x2•x2=x6B.x4+x4=2x8C.﹣2(x3)2=4x6D.xy4÷(﹣xy)=﹣y3【分析】根据同底数幂的乘除法的运算方法,幂的乘方与积的乘方的运算方法,以及合并同类项的方法,逐项判断即可.【解答】解:∵x2•x2=x4,∴选项A不符合题意;∵x4+x4=2x4,∴选项B不符合题意;∵﹣2(x3)2=﹣2x6,∴选项C不符合题意;∵xy4÷(﹣xy)=﹣y3,∴选项D符合题意.故选:D.3.甲、乙、丙、丁四位同学都参加了5次数学模拟测试,每个人这5次成绩的平均数都是125分,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则这5次测试成绩最稳定的是()A.甲B.乙C.丙D.丁【分析】直接利用方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可.【解答】解:∵S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,∴S丁2<S丙2<S乙2<S甲2,∴成绩最稳定的是丁.故选:D.4.如图是由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看是四个小正方形,如图所示:故选:B.5A.13,14 B.14,15 C.15,15 D.15,14【分析】根据众数和中位数的定义求解可得.【解答】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,∴中位数为=15岁,故选:C.6.不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x<2x+2,得:x<2,解不等式﹣x≤1,得:x≥﹣1,则不等式组的解集为﹣1≤x<2,故选:A.7.某工厂计划生产300个零件,由于采用新技术,实际每天生产零件的数量是原计划的2倍,因此提前5天完成任务.设原计划每天生产零件x个,根据题意,所列方程正确的是()A.﹣=5 B.﹣=5C.﹣=5 D.﹣=5【分析】根据实际每天生产零件的数量是原计划的2倍,可以提前5天完成任务可以列出相应的分式方程,本题得以解决.【解答】解:由题意可得,,8.二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象大致是()A.B.C.D.【分析】可先根据二次函数的图象判断a、b的符号,再判断一次函数图象与实际是否相符,判断正误.【解答】解:由二次函数图象,得出a<0,﹣<0,b<0,A、一次函数图象,得a>0,b>0,故A错误;B、一次函数图象,得a<0,b>0,故B错误;C、一次函数图象,得a>0,b<0,故C错误;D、一次函数图象,得a<0,b<0,故D正确;故选:D.9.如图,在⊙O中,∠BAC=15°,∠ADC=20°,则∠ABO的度数为()A.70°B.55°C.45°D.35°【分析】根据圆周角定理可得出∠AOB的度数,再由OA=OB,可求出∠ABO的度数【解答】解:连接OA、OC,∵∠BAC=15°,∠ADC=20°,∴∠AOB=2(∠ADC+∠BAC)=70°,∵OA=OB(都是半径),∴∠ABO=∠OAB=(180°﹣∠AOB)=55°.10.如图,正方形ABCD的对角线AC,BD相交于点O,点E在BD上由点B向点D运动(点E 不与点B重合),连接AE,将线段AE绕点A逆时针旋转90得到线段AF,连接BF交AO于点G.设BE的长为x,OG的长为y,下列图象中大致反映y与x之间的函数关系的是()A.B.C.D.【分析】连接FD,证明△BAE≌△DAF,得到∠ADF=∠ABE=45°,FD=BE,再说明GO为△BDF的中位线OG=FD,则y=x,且x>0,是在第一象限的一次函数图象.【解答】解:连接FD,∵∠BAE+∠EAD=90°,∠FAD+∠EAD=90°,∴∠BAE=∠FAD.又BA=DA,EA=FA,∴△BAE≌△DAF(SAS).∴∠ADF=∠ABE=45°,FD=BE.∴∠FDO=45°+45°=90°.∵GO⊥BD,FD⊥BD,∴GO∥FD.∵O为BD中点,∴GO为△BDF的中位线.∴OG=FD.∴y=x,且x>0,是在第一象限的一次函数图象.故选:A.二.填空题(共3小题)11.已知a、b、c、d是成比例的线段,其中a=3cm,b=2cm,d=4cm,则c= 6 cm.【分析】由a、b、c、d四条线段是成比例的线段,根据成比例线段的定义,即可得=,又由a=3cm,b=2cm,d=4cm,即可求得c的值.【解答】解:∵a、b、c、d四条线段是成比例的线段,∴=,又∵a=3cm,b=2cm,d=4cm,∴=,解得:d=6.故c=6cm.故答案为:6.12.某超市今年l月份的销售额是2万元,3月份的销售额是2.88万元,从1月份到3月份,该超市销售额平均每月的增长率是20% .【分析】设该超市销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由3月份的销售额是2.88万元,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设该超市销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,根据题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该超市销售额平均每月的增长率是20%.故答案为:20%.13.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为.3【分析】求出AB=3,由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴=;故答案为:.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布二.填空题(共8小题)11.太阳的半径大约为696000000,将数据696000000用科学记数法表示为 6.96×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将数据6 9600 0000用科学记数法表示为6.96×108.故答案为:6.96×108.12.分解因式:x3y﹣xy3=xy(x+y)(x﹣y).【分析】首先提取公因式xy,再对余下的多项式运用平方差公式继续分解.【解答】解:x3y﹣xy3,=xy(x2﹣y2),=xy(x+y)(x﹣y).13.若关于x的一元二次方程x2+(2+a)x=0有两个相等的实数根,则a的值是﹣2 .【分析】根据根的判别式得出△=(2+a)2﹣4×1×0=0,求出即可.【解答】解:∵关于x的一元二次方程x2+(2+a)x=0有两个相等的实数根,∴△=(2+a)2﹣4×1×0=0,解得:a=﹣2,故答案为:﹣2.14.在一个不透明的袋子中只装有n个白球和2个红球,这些球除颜色外其他均相同.如果从袋子中随机摸出一个球,摸到红球的概率是,那么n的值为 4 .【分析】根据概率公式得到=,然后利用比例性质求出n即可.【解答】解:根据题意得=,解得n=4,经检验:n=4是分式方程的解,故答案为:4.15.如图,河的两岸a,b互相平行,点A,B,C是河岸b上的三点,点P是河岸a上的一个建筑物,某人在河岸b上的A处测得∠PAB=30°,在B处测得∠PBC=75°,若AB=80米,则河两岸之间的距离约为54.6 米.(≈1.73,结果精确到0.1米)【分析】过点A作AE⊥a于点E,过点B作BD⊥PA于点D,然后锐角三角函数的定义分别求出AD、PD后即可求出两岸之间的距离.【解答】解:过点A作AE⊥a于点E,过点B作BD⊥PA于点D,∵∠PBC=75°,∠PAB=30°,∴∠DPB=45°,∵AB=80,∴BD=40,AD=40,∴PD=DB=40,∴AP=AD+PD=40+40,∵a∥b,∴∠EPA=∠PAB=30°,∴AE=AP=20+20≈54.6,故答案为:54.616.如图,BD是▱ABCD的对角线,按以下步骤作图:①分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于E,F两点;②作直线EF,分别交AD,BC于点M,N,连接BM,DN.若BD=8,MN=6,则▱ABCD的边BC上的高为.【分析】由作法得MN垂直平分BD,则MB=MD,NB=ND,再证明△BMN为等腰三角形得到BM=BN,则可判断四边形BMDN为菱形,利用菱形的性质和勾股定理计算出BN=5,然后利用面积法计算▱ABCD的边BC上的高.【解答】解:由作法得MN垂直平分BD,∴MB=MD,NB=ND,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠MDB=∠NBD,而MB=MD,∴∠MBD=∠MDB,∴∠MBD=∠NBD,而BD⊥MN,∴△BMN为等腰三角形,∴BM=BN,∴BM=BN=ND=MD,∴四边形BMDN为菱形,∴BN==5,设▱ABCD的边BC上的高为h,∵MN•BD=2BN•h,∴h==,即▱ABCD的边BC上的高为.故答案为.17.如图,在Rt△ABC的纸片中,∠C=90°,AC=5,AB=13.点D在边BC上,以AD 为折痕将△ADB折叠得到△ADB′,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是7或.【分析】由勾股定理可以求出BC的长,由折叠可知对应边相等,对应角相等,当△DEB′为直角三角形时,可以分为两种情况进行考虑,分别利用勾股定理可求出BD的长.【解答】解:在Rt△ABC中,BC===12,(1)当∠EDB′=90°时,如图1,过点B′作B′F⊥AC,交AC的延长线于点F,由折叠得:AB=AB′=13,BD=B′D=CF,设BD=x,则B′D=CF=x,B′F=CD=12﹣x,在Rt△AFB′中,由勾股定理得:(5+x)2+(12﹣x)2=132,即:x2﹣7x=0,解得:x1=0(舍去),x2=7,因此,BD=7.(2)当∠DEB′=90°时,如图2,此时点E与点C重合,由折叠得:AB=AB′=13,则B′C=13﹣5=8,设BD=x,则B′D=x,CD=12﹣x,在Rt△B′CD中,由勾股定理得:(12﹣x)2+82=x2,解得:x=,因此BD=.故答案为:7或.18.如图,点P是正方形ABCD的对角线BD延长线上的一点,连接PA,过点P作PE⊥PA交BC的延长线于点E,过点E作EF⊥BP于点F,则下列结论中:①PA=PE;②CE=PD;③BF﹣PD=BD;④S△PEF=S△ADP正确的是①②③(填写所有正确结论的序号)【分析】①解法一:如图1,作辅助线,构建三角形全等和平行四边形,证明△BFG≌△EFP (SAS),得BG=PE,再证明四边形ABGP是平行四边形,可得结论;解法二:如图2,连接AE,利用四点共圆证明△APE是等腰直角三角形,可得结论;②如图3,作辅助线,证明四边形DCGP是平行四边形,可得结论;③证明四边形OCGF是矩形,可作判断;④证明△AOP≌△PFE(AAS),则S△AOP=S△PEF,可作判断.【解答】解:①解法一:如图1,在EF上取一点G,使FG=FP,连接BG、PG,∵EF⊥BP,∴∠BFE=90°,∵四边形ABCD是正方形,∴∠FBC=∠ABD=45°,∴BF=EF,在△BFG和△EFP中,∵,∴△BFG≌△EFP(SAS),∴BG=PE,∠PEF=∠GBF,∵∠ABD=∠FPG=45°,∴AB∥PG,∵AP⊥PE,∴∠APE=∠APF+∠FPE=∠FPE+∠PEF=90°,∴∠APF=∠PEF=∠GBF,∴AP∥BG,∴四边形ABGP是平行四边形,∴AP=BG,∴AP=PE;解法二:如图2,连接AE,∵∠ABC=∠APE=90°,∴A、B、E、P四点共圆,∴∠EAP=∠PBC=45°,∵AP⊥PE,∴∠APE=90°,∴△APE是等腰直角三角形,∴AP=PE,故①正确;②如图3,连接CG,由①知:PG∥AB,PG=AB,∵AB=CD,AB∥CD,∴PG∥CD,PG=CD,∴四边形DCGP是平行四边形,∴CG=PD,CG∥PD,∵PD⊥EF,∴CG⊥EF,即∠CGE=90°,∵∠CEG=45°,∴CE=CG=PD;故②正确;③由②知:∠CGF=∠GFO=90°,∵四边形ABCD是正方形,∴AC⊥BD,∴∠COF=90°,∴四边形OCGF是矩形,∴CG=OF=PD,∴BD=OB=BF﹣OF=BF﹣PD,故③正确;④在△AOP和△PFE中,∵,∴△AOP≌△PFE(AAS),∴S△AOP=S△PEF,∴S△ADP<S△AOP=S△PEF,故④不正确;本题结论正确的有:①②③,故答案为:①②③.三.解答题(共2小题)19.先化简,再求值:÷(﹣),其中a=()﹣1﹣(﹣2)0.【分析】根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:÷(﹣)====,当a=()﹣1﹣(﹣2)0=3﹣1=2时,原式=.20.某学校为了解学生“第二课堂“活动的选修情况,对报名参加A.跆拳道,B.声乐,C.足球,D.古典舞这四项选修活动的学生(每人必选且只能选修一项)进行抽样调查.并根据收集的数据绘制了图①和图②两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次调查的学生共有200 人;在扇形统计图中,B所对应的扇形的圆心角的度数是144°;(2)将条形统计图补充完整;(3)在被调查选修古典舞的学生中有4名团员,其中有1名男生和3名女生,学校想从这4人中任选2人进行古典舞表演.请用列表或画树状图的方法求被选中的2人恰好是1男1女的概率.【分析】(1)由A活动的人数及其所占百分比可得总人数,用360°乘以B活动人数所占比例即可得;(2)用总人数减去其它活动人数求出C的人数,从而补全图形;(3)列表得出所有等可能的情况数,找出刚好抽到一男一女的情况数,即可求出所求的概率.【解答】解:(1)本次调查的学生共有30÷15%=200(人),扇形统计图中,B所对应的扇形的圆心角的度数是360°×=144°,故答案为:200、144;(2)C活动人数为200﹣(30+80+20)=70(人),补全图形如下:(3)画树状图为:或列表如下:∴被选中的2人恰好是1男1女的概率=.四.解答题(共6小题)21.在平面直角坐标系中,△ABC的三个顶点坐标分别是A(﹣1,1),B(﹣4,1),C(﹣3,3)(1)将△ABC向下平移5个单位长度后得到△A1B1C1,请画出△A1B1C1;并判断以O,A1,B 为顶点的三角形的形状(直接写出结果);(2)将△ABC绕原点O顺时针旋转90°后得到△A2B2C2,请画出△A2B2C2,并求出点C旋转到C2所经过的路径长.【分析】(1)利用点平移的坐标变换规律写出A1、B1、C1的坐标,则描点即可得到△A1B1C1;然后利用勾股定理的逆定理判断以O,A1,B为顶点的三角形的形状;(2)利用网格特点和旋转的性质画出A、B、C的对应点A2、B2、C2,从而描点得到△A2B2C2,然后利用弧长公式计算出点C旋转到C2所经过的路径长.【解答】解:(1)如图,△A1B1C1为所作,∵OB==,OA1==,BA1==,∴OB2+OA12=BA12,∴以O,A1,B为顶点的三角形为等腰直角三角形;(2)如图,△A2B2C2为所作,点C旋转到C2所经过的路径长==π.22.如图,一次函数y=k1x+b的图象与x轴、y轴分别交于A,B两点,与反比例函数y=的图象分别交于C,D两点,点C(2,4),点B是线段AC的中点.(1)求一次函数y=k1x+b与反比例函数y=的解析式;(2)求△COD的面积;(3)直接写出当x取什么值时,k1x+b<.【分析】(1)把点C的坐标代入反比例函数,利用待定系数法即可求得反比例函数的解析式,作CE⊥x轴于E,根据题意求得B的坐标,然后利用待定系数法求得一次函数的解析式;(2)联立方程求得D的坐标,然后根据S△COD=S△BOC+S△BOD即可求得△COD的面积;(3)根据图象即可求得k1x+b<时,自变量x的取值范围.【解答】解:(1)∵点C(2,4)在反比例函数y=的图象上,∴k2=2×4=8,∴y2=;如图,作CE⊥x轴于E,∵C(2,4),点B是线段AC的中点,∴B(0,2),∵B、C在y1=k1x+b的图象上,∴,解得k1=1,b=2,∴一次函数为y1=x+2;(2)由,解得或,∴D(﹣4,﹣2),∴S△COD=S△BOC+S△BOD=×2×2+×2×4=6;(3)由图可得,当0<x<2或x<﹣4时,k1x+b<.23.某公司研发了一款成本为50元的新型玩具,投放市场进行试销售.其销售单价不低于成本,按照物价部门规定,销售利润率不高于90%,市场调研发现,在一段时间内,每天销售数量y(个)与销售单价x(元)符合一次函数关系,如图所示:(1)根据图象,直接写出y与x的函数关系式;(2)该公司要想每天获得3000元的销售利润,销售单价应定为多少元(3)销售单价为多少元时,每天获得的利润最大,最大利润是多少元?【分析】(1)由待定系数法可得函数的解析式;(2)根据利润等于每件的利润乘以销售量,列方程可解;(3)设每天获得的利润为w元,由题意得二次函数,写成顶点式,可求得答案.【解答】解:(1)设y=kx+b(k≠0,b为常数)将点(50,160),(80,100)代入得解得∴y与x的函数关系式为:y=﹣2x+260(2)由题意得:(x﹣50)(﹣2x+260)=3000化简得:x2﹣180x+8000=0解得:x1=80,x2=100∵x≤50×(1+90%)=95∴x2=100>95(不符合题意,舍去)答:销售单价为80元.(3)设每天获得的利润为w元,由题意得w=(x﹣50)(﹣2x+260)=﹣2x2+360x﹣13000=﹣2(x﹣90)2+3200∵a=﹣2<0,抛物线开口向下∴w有最大值,当x=90时,w最大值=3200答:销售单价为90元时,每天获得的利润最大,最大利润是3200元.24.如图,点M是矩形ABCD的边AD延长线上一点,以AM为直径的⊙O交矩形对角线AC于点F,在线段CD上取一点E,连接EF,使EC=EF.(1)求证:EF是⊙O的切线;(2)若cos∠CAD=,AF=6,MD=2,求FC的长.【分析】(1)根据等腰三角形的性质和直角三角形两锐角互余证得∠EFC+∠OFA=90°,即可证得∠EFO=90°,即EF⊥OF,从而证得结论;(2)根据圆周角定理得出∠AFM=90°,通过解直角三角形求得AM=10,得出AD=8,进而求得AC=,即可求得FC=﹣6=.【解答】(1)证明:连接OF,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠CAD+∠DCA=90°,∵EC=EF,∴∠DCA=∠EFC,∵OA=OF,∴∠CAD=∠OFA,∴∠EFC+∠OFA=90°,∴∠EFO=90°,∴EF⊥OF,∵OF是半径,∴EF是⊙O的切线;(2)连接MF,∵AM是直径,∴∠AFM=90°,在Rt△AFM中,cos∠CAD==,∵AF=6,∴=,∴AM=10,∵MD=2,∴AD=8,在Rt△ADC中,cos∠CAD==,∴=,∴AC=,∴FC=﹣6=25.如图,△ABC是等腰直角三角形,∠ACB=90°,D是射线CB上一点(点D不与点B重合),以AD为斜边作等腰直角三角形ADE(点E和点C在AB的同侧),连接CE.(1)如图①,当点D与点C重合时,直接写出CE与AB的位置关系;(2)如图②,当点D与点C不重合时,(1)的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)当∠EAC=15°时,请直接写出的值.【分析】(1)根据等腰直角三角形的性质、平行线的判定定理解答;(2)在AF上截取AF=CD,连接EF,证明△EAF≌△EDC,根据全等三角形的性质得到EF =EC,∠AEF=∠DEC,根据平行线的判定定理证明;(3)分图②、图③两种情况,根据全等三角形的性质、等腰直角三角形的性质计算,得到答案.【解答】解:(1)当点D与点C重合时,CE∥AB,理由如下:∵△ABC是等腰直角三角形,∴∠CAB=45°,∵△ADE是等腰直角三角形,∴∠ADE=45°,∴∠CAB=∠ADE,∴CE∥AB;(2)当点D与点C不重合时,(1)的结论仍然成立,理由如下:在AF上截取AF=CD,连接EF,∵∠AED=∠ACB=90°,∴∠EAF=∠EDC,在△EAF和△EDC中,,∴△EAF≌△EDC(SAS),∴EF=EC,∠AEF=∠DEC,∵∠AED=90°,∴∠FEC=90°,∴∠ECA=45°,∴∠ECA=∠CAB,∴CE∥AB;(3)如图②,∠EAC=15°,∴∠CAD=30°,∴AD=2CD,AC=CD,∴FC=(﹣1)CD,∵△CEF为等腰直角三角形,∴EC=FC=CD,∵△ABC是等腰直角三角形,∴AB=AC=CD,∴==,如图③,∠EAC=15°,由(2)得,∠EDC=∠EAC=15°,∴∠ADC=30°,∴CD=AC,AB=AC,延长AC至G,使AG=CD,∴CG=AG﹣AC=DC﹣AC=AC﹣AC,在△EAG和△EDC中,,∴△EAG≌△EDC(SAS),∴EG=EC,∠AEG=∠DEC,∴∠CEG=90°,∴△CEG为等腰直角三角形,∴EC=CG=AC,∴=,综上所述,当∠EAC=15°时,的值为或.26.如图,直线y=﹣x+4与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴另一交点为A.点P以每秒个单位长度的速度在线段BC上由点B向点C 运动(点P不与点B和点C重合),设运动时间为t秒,过点P作x轴垂线交x轴于点E,交抛物线于点M.(1)求抛物线的解析式;(2)如图①,过点P作y轴垂线交y轴于点N,连接MN交BC于点Q,当=时,求t的值;(3)如图②,连接AM交BC于点D,当△PDM是等腰三角形时,直接写出t的值.【分析】(1)求直线y=﹣x+4与x轴交点B,与y轴交点C,用待定系数法即求得抛物线解析式.(2)根据点B、C坐标求得∠OBC=45°,又PE⊥x轴于点E,得到△PEB是等腰直角三角形,由PB=t求得BE=PE=t,即可用t表示各线段,得到点M的横坐标,进而用m表示点M纵坐标,求得MP的长.根据MP∥CN可证△MPQ∽△NCQ,故有,把用t表示的MP、NC代入即得到关于t的方程,求解即得到t的值.(3)因为不确定等腰△PDM的底和腰,故需分3种情况讨论:①若MD=MP,则∠MDP=∠MPD=45°,故有∠DMP=90°,不合题意;②若DM=DP,则∠DMP=∠MPD=45°,进而得AE=ME,把含t的式子代入并解方程即可;③若MP=DP,则∠PMD=∠PDM,由对顶角相等和两直线平行内错角相等可得∠CFD=∠PMD=∠PDM=∠CDF进而得CF=CD.用t表示M 的坐标,求直线AM解析式,求得AM与y轴交点F的坐标,即能用t表示CF的长.把直线AM与直线BC解析式联立方程组,解得x的值即为点D横坐标.过D作y轴垂线段DG,得等腰直角△CDG,用DG即点D横坐标,进而可用t表示CD的长.把含t的式子代入CF =CD,解方程即得到t的值.【解答】解:(1)直线y=﹣x+4中,当x=0时,y=4∴C(0,4)当y=﹣x+4=0时,解得:x=4∴B(4,0)∵抛物线y=﹣x2+bx+c经过B,C两点∴解得:∴抛物线解析式为y=﹣x2+3x+4(2)∵B(4,0),C(0,4),∠BOC=90°∴OB=OC∴∠OBC=∠OCB=45°∵ME⊥x轴于点E,PB=t∴∠BEP=90°∴Rt△BEP中,sin∠PBE=∴BE=PE=PB=t∴x M=x P=OE=OB﹣BE=4﹣t,y P=PE=t∵点M在抛物线上∴y M=﹣(4﹣t)2+3(4﹣t)+4=﹣t2+5t∴MP=y M﹣y P=﹣t2+4t∵PN⊥y轴于点N∴∠PNO=∠NOE=∠PEO=90°∴四边形ONPE是矩形∴ON=PE=t∴NC=OC﹣ON=4﹣t∵MP∥CN∴△MPQ∽△NCQ∴∴解得:t1=,t2=4(点P不与点C重合,故舍去)∴t的值为(3)∵∠PEB=90°,BE=PE∴∠BPE=∠PBE=45°∴∠MPD=∠BPE=45°①若MD=MP,则∠MDP=∠MPD=45°∴∠DMP=90°,即DM∥x轴,与题意矛盾②若DM=DP,则∠DMP=∠MPD=45°∵∠AEM=90°∴AE=ME∵y=﹣x2+3x+4=0时,解得:x1=﹣1,x2=4∴A(﹣1,0)∵由(2)得,x M=4﹣t,ME=y M=﹣t2+5t∴AE=4﹣t﹣(﹣1)=5﹣t∴5﹣t=﹣t2+5t解得:t1=1,t2=5(0<t<4,舍去)③若MP=DP,则∠PMD=∠PDM如图,记AM与y轴交点为F,过点D作DG⊥y轴于点G∴∠CFD=∠PMD=∠PDM=∠CDF∴CF=CD∵A(﹣1,0),M(4﹣t,﹣t2+5t),设直线AM解析式为y=ax+m ∴解得:∴直线AM:y=tx+t∴F(0,t)∴CF=OC﹣OF=4﹣t∵tx+t=﹣x+4,解得:x=∴DG=x D=∵∠CGD=90°,∠DCG=45°∴CD=DG=∴4﹣t=解得:t=﹣1综上所述,当△PDM是等腰三角形时,t=1或t=﹣1.。

相关文档
最新文档