第二章 粉末压制成形原理
粉末压制和常用复合材料成形过程材料成型技术基础讲课稿

3—高压容器; 4—高压泵
Page 25
3)三向压制
这种方法得到的
压坯密度和强度超过
用其他成形方法得到 的压坯。但它适用于 成形形状规则的零件, 如圆柱形、正方形、 长方形、套筒等。
综合了单 向钢模压 制与等静 压制的特 点
1—侧向压力;2—轴向冲头;3—放气孔
Page 26
在现今汽车工业中广泛采用粉末压制制造零件。烧 结结构件总产量的60%~70%用于汽车工业,如发动 机、变速箱、转向器、启动马达、刮雨器、减震 器、车门锁中都使用有烧结零件。
Page 40
汽车变速箱中粉末压制件
零件名称 材料及处理 零件名称 材料及处理
离合器导向轴 Fe-C-Pb, Fe-
承
Cu-C
B 烧结分类
① 固相烧结 :烧结过程中各组元均不形成液相。
② 液相烧结:烧结时部分组元形成液相。在液相表面张力的作用 下,粉粒相互靠紧,故烧结速度快,制品强度高。
Page 32
4.1.4 压坯烧结
粉末压坯一般因孔隙度大,表面积大,在烧结 中高温长时间加热下,粉粒表面容易发生氧化,造 成废品。因此,烧结必须在真空或保护气氛中进行, 若采用还原性气体作保护气氛则更为有利。
(2)颗粒形状和大小
颗粒形状是影响粉末技术特征(如松装密度、流动 性等)的因素之一。通常,粉粒以球状或粒状为好。
颗粒大小常用粒度表示。粉末粒度通常在0.1~50 0μm,150μm以上的定为粗粉,40~150μm定为中等 粉,10~40μm的定为细粉,0.5~10μm为极细粉,0.5 μm以下的为超细粉。粉末颗粒大小通常用筛号表示 其范围,各种筛号表示每平方英寸(1 in2=6.45×104 m2)筛网上的网孔数。
(完整word版)粉末压制成型

(完整word版)粉末压制成型粉末压制成形(powder pressing)在压模中利用外加压力的粉末成形方法.又称粉末模压成形。
压制成形过程由装粉、压制和脱模组成。
粉末压制成形的内容包括粉末压制理论、粉末压坯、粉末压制模具和粉末压制压力机4个方面.压制成形过程中,颗粒间以及颗粒与模壁间存在的内、外摩擦引起压力损失使压坯各部位受力不均,因此压坯密度分布不均匀。
不均匀的程度与选用的压制方式有关。
基本的压制方式有单向压制、双向压制、浮动压制、拉下式压制和摩擦芯杆压制5种。
(1)单向压制。
阴模与芯杆不动,上模冲单向加压。
此时,外摩擦使压坯上端密度较下端高,且压坯直径越小,高度越大,则密度差也越大。
故单向压制一般适用于高径比H/D≤1的制品或高度与壁厚之比H/T≤3的套类零件。
(2)双向压制。
阴模固定不动,上、下模冲从两端同时加压,又称同时双向压制。
若先单向加压,然后再在密度较低端进行一次反向单向压制,则称为非同时双向压制,又称后压。
这种方式可以在单向加压的压力机上实现双向压制。
双向压制时,若两向压力相等则低密度层位于压坯中部;反之,低密度层向低压端移动。
双向压制的压坯密度分布较单向压制的均匀,密度差减小,适用于H/D≥2或H/T≤6的零件。
(3)浮动压制。
下模冲固定不动,阴模由弹簧、汽缸或油缸支撑可上下浮动。
压制时对上模冲加压,随着粉末被压缩,阴模壁与粉末间的摩擦逐渐增大。
当摩擦力大于弹簧等的支承力(浮动力)时,阴模与上模冲一同下降,相当于下模冲上升反向压制而起双向压制的作用。
浮动压制中除阴模浮动外,芯杆也可浮动,这时的密度分布同双向压制。
若阴模浮动,芯杆不动,则压坯靠近阴模处近似双向压制,中部密度最低;压坯靠近芯杆处类似上模冲下移的单向压制,最下端密度最低。
浮动压制适用于H/T≤6或H/D≥2的零件.(4)拉下式压制。
又称引下式压制、强动压制。
压制开始时,上模冲被压下一定距离,然后与阴模一同下降(阴模被强制拉下)。
粉末冶金原理第二章

比重瓶法 (Pycnometer method) ;
The volume of the pycnometer is generally about 2x10-5m-3(20ml), The following masses are measured: m0: empty pycnometer ml: pycnometer containing liquid ms: pycnometer including sample particles msl: pycnometer including sample and liquid ρl: the liquid density ρp: The particle density ;
• 粉末颗粒表现出流体性质 ,粉末越细,流动性质越
2012/2/28
明显。
4
• 粉末颗粒与粉末体 • 粉末颗粒: 晶粒或多晶聚合体 • 粉末体:简称粉末,是由大量的粉末颗粒 组成的一种分散体系,其中的颗粒彼此可 以分离,或者说,粉末是由大量的颗粒及 颗粒之间的空隙所构成的集合体。
2012/2/28
5
• 二、粉末颗粒
• 1.颗粒聚集状态 • 粉末聚集状态: 单颗粒,二次颗粒。 • 单颗粒:粉末中能分开并独立存在的最小实体称
为单颗粒 。
• 二次颗粒:单颗粒以某种方式聚集就构成二次颗
粒,其中的原始颗粒就称为一次颗粒。 2012/2/28
6
a
粉末体示意图 可能存在一次颗粒、二次颗粒、颗粒团 颗粒之间存在孔隙
针对不同成分,有多种方法:传统的化学滴定法、 燃烧法、溶解法、荧光分析法、能谱分析法等。 粉末氧含量测定: ● 氢损值(可被H还原氧含量测定):用氢还原, 计算粉末还原前后的重量变化。 氢损值=(A-B)/(A-C)x 100%
第二章粉末压制成形原理

模压成形 是将金属粉末或粉末混合料装入 钢制压模(阴模)中,通过模冲对粉末加压,卸 压后,压坯从阴模内脱出,完成成形过程。
▪ Loose powder is compacted and densified into a shape, known as green compact
▪ Most compacting is done with mechanical presses and rigid tools ▪ Hydraulic and pneumatic presses are also used
x
推导
zP y
压坯受力示意图
School of Materials Science and Engineering
p侧
1
p p
p侧 — 单位侧压力(MPa);p — 单位压制压力(MPa); ξ = γ /(1-γ )—侧压系数;γ—泊桑比
(二)侧压系数
● 定义: ξ = γ /(1-γ )= p侧 /p :单位侧压力与单位正压力之比 ● 影响因素
▪ 颗粒间可用于相互填充的空间(孔隙) ▪ 粉末颗粒间摩擦 ▪ 颗粒表面粗糙度 ▪ 润滑条件 ▪ 颗粒的显微硬度 ▪ 颗粒形状 ▪ 加压速度
School of Materials Science and Engineering
2. 粉末颗粒的变形
● 弹性变形 颗粒所受实际应力超过其弹性极限,发生弹性变形。 ● 塑性变形
● 净压力(有效压力):p,,P1
● 压力损失:∆p,P2—克服内外摩擦力,
单向压制各种力的示意图
P = P1 + P2 ∆p = p-p,
School of Materials Science and Engineering
高等粉末冶金原理课件:粉末模压成形原理(合肥工业大学研究生课件)

本讲内容§3.1 粉末模压成形原理§3.2 成形技术-1§3.3 成形技术-2程继贵材料科学与工程学院本讲内容-成形技术部分一、成形前的粉末冶金二、模压成形技术三、等静压成形四、粉末连续成形五、浆料成形专题-粉末注射成形四、粉末连续成形定义:粉末在压力作用下由松散状态经过连续变化而成 为具有一定密度、强度以及所需尺寸形状压坯或 制品的过程。
主要包括:粉末轧制、挤压、喷射成形、楔形压制等基本特征:● 是模压成形方法的重要补充,可以生产 普通模压成形无法生产的多孔或致密的 板、带、棒、及管材等;● 比钢模压制需要较少的设备、容器。
(一)金属粉末轧制(Powder rolling)概述1.1. 概述粉末轧制的概念:粉末在一对轧棍之间在轧辊力的作用下压实成具有一定强度的连续带坯的过程。
粉末轧制的特点:● 与熔铸轧制相比:11)基本原理相同,要实现轧制:μ+ξ>α2)可轧制出熔铸轧制无法生产或难以生产的板、带材等(尤多层复合板、带)33)工艺流程短、节能、成本较低44)压坯或产品成分精确可控、轧制产品各向同性55)成材率较高● 与模压成形相比:1)轧制能耗比压制低22)可以生产模压成形无法生产的板、带材3)压坯密度更均匀,压坯长度原则上不限44)板带材宽度、厚度有限:δ=(1/100 ~1/300)D,一般≤10mm 粉末轧制适用于生产宽度几百mm,厚度10mm 以下,长度原则不限的板带材,或D/D/δδ很大的衬套等粉末轧制的分类:● 粉末直接轧制(direct powder rolling )应用较广泛:对塑性好的粉末 ● 粉末粘结轧制 (bonded powder rolling)加入粘结剂改善粉末体的成形性● 包套粉末热轧(canned powder hot rolling ) 对活性粉末以及要求高致密度的材料粉末冷轧粉末热轧按进料方式分为:水平、垂直和倾斜轧制轧制过程的定量关系(轧制带坯厚度、密度与粉末特性及轧辊尺寸之间的定量关系)基本概念及符号: 咬入层、咬入角α(α1) H α— 咬入宽度δR — 轧制带坯厚度D 、r r —— 轧辊直径、半径 ρ松、ρ压—粉末松装密度及轧坯密度V 进、V 轧— 粉末进料速度和轧制速度粉末料柱宽度 B ≈轧坯宽度 b H α图4-26 粉末轧制时的咬入区和变形区H αδ几何关系:质量关系:1cos 1cos 11−−=⎥⎦⎤⎢⎣⎡−+=z D D R R ηαδδαηρρ)()(松压进轧v v /=η松压ρρ/=z ——延伸系数————压紧系数 定量关系式:影响轧制过程的因素1)粉末性能● 松装密度: ρ松↑,ρ压↑,δ↑(保证轧制条件下)● 流动性: 流动性↑,V进↑,η↓, ρ压↑,δ↑(保证轧制条件下)● 粉末硬度:低的粉末硬度便于变形和形成高的机械啮 合,↑成形性,↑压坯强度2)轧辊直径↑D, ρ(δR固定);δR ↑(ρ一定)3)给料方式水平与垂直:垂直 V V进↑,ρ↑、δR↑4)轧制速度↑ω,ρ、δR↓(m不变)5)辊缝t↑t,轧制压力降低,ρ↓,δR↑粉末轧制工艺:粉末准备→ 喂料(水平、垂直方式)→轧制(冷轧、热轧) → 轧坯→烧结(直接烧结、成卷烧结)粉末冷轧工艺● 室温下轧制● 轧制速度较低:0.6-30m/s● 轧坯可卷成卷后烧结,也可烧结后卷成卷,还可烧结后再热轧冷轧冷轧+ 热轧粉末热轧工艺● 可以对粉末、预成形坯等进行轧制● 防氧化—包套(真空)轧制或气氛保护粉末轧制的应用�多孔板材,如过滤板、催化剂板材�层状复合材料带、板材�多层钢背支撑轴承�纤维增强复合材料粉末、粉末压坯或粉末烧结坯在外力作用下,通过挤压筒的挤压嘴挤成坯料或制品的成形方法(二)粉末挤压1. 概述●粉末挤压的定义Powder Extrusion挤● 挤压的分类�粉末直接挤压(冷挤压):适应于塑性好的金属粉末�粉末增塑挤压:粉末加入一定量的成形剂或粘结剂后挤压,适应于硬质粉末如硬质合金粉末�粉末包套热挤:适应于弥散强化合金等�烧结坯或粉末压坯的热挤压:适应于塑性较好的有色金属材料。
粉末压制成形详解

School of Materials Scienቤተ መጻሕፍቲ ባይዱe and Engineering
3. 随粉末体密实,压坯密度增加,压坯强度也增加。 压坯强度是如何形成的
三、 粉末体在压制过程中的变形
(一) 粉末体受压力后的变形特点(与致密材料受力变形比 较)
1. 致密材料受力变形遵从质量不变和体积不变,粉末体压制 变形仅服从质量不变。
粉末体变形较致密材料复杂。 2.致密材料受力变形时,仅通过固体质点本身变形,粉末体
变形包括粉末颗粒的变形,还包括颗粒之间孔隙形态的改 变,即颗粒发生位移。
4. 由于粉末颗粒之间摩擦,压力传递不均匀,压坯中不同部位密 度存在不均匀。 压坯密度不均匀对压坯乃至产品性能有十分重要的影响。
5. 卸压脱模后,压坯尺寸发生膨胀—产生弹性后效 弹性后效是压坯发生变形、开裂的最主要原因之一。
School of Materials Science and Engineering
本章内容
§2.1 概述 §2.2 压制过程中力的分析 §2.3 压制压力与压坯密度的关系 §2.4 粉末压坯密度的分布 §2.5 粉末压坯的强度
School of Materials Science and Engineering
第一节 概述
一、基本概念
● 成形(Forming)的定义: 将粉末密实(densify)成具有一定形状、尺
寸、孔隙度和强度的坯体(green compacts)的工 艺过程。
School of Materials Science and Engineering
压制成型技术及其理论

颗粒承受的应力达到了颗粒的屈服极限时,颗粒发生塑性变形。外力卸 掉后,颗粒的变形仍然保存。 断裂
颗粒承受的应力达到了颗粒的断裂强度时,颗粒发生破裂。但压制应力 一般没有达到使颗粒破裂的程度。
孔隙率/%
粉末的韧性对压制性能的影响
60
50
40
1
30
20
2
10
50 100 150 200 250 300
1
排列(颗粒重排), 使拱桥效应破坏,
填充密度提高。
4
3
干压成型示意图(单向压) 1,阴模;2,上模冲; 3,下模冲;4,粉料
颗粒位移的几种形式
第3步:粉末变形
压力增大到一定程度时,颗粒产生变形。随压力增大,颗 粒依次以三种机制变形:
弹性变形 颗粒承受的应力达到了颗粒的弹性极限时,颗粒发生弹性变形。外力卸
压力/MPa
不同粉料的压缩性能 1,二氧化钍粉;2,镁粉
随着压力的增加, 粉体成型坯的孔隙率降 低;在同样压力下,镁 粉压坯中的孔隙率明显 低于二氧化钍粉压坯, 即镁坯料更容易压制。
粉末的压制理论简介
(一)基本定义
➢ 密度
= 质量/体积(g/cm3)
➢ 比容
= 1/ (cm3/g)
➢ 相对密度
(2)理想均匀压缩条件下粉末颗粒的位移规律
实际粉末颗粒层数取决于粉末体的高度H 和粉末的平
均粒度。设粉末的平均粒度为φ,粉末体高度为H,则粉
末体内颗粒层数的极限值为:。
n H
又 因为 n >> 1, 所以 n - 1 ≈ n,则
d
(dn
dn' )
H h n 1
H h n
粉末模压成型的原理是什么意思

粉末模压成型的原理是什么意思粉末模压成型是一种常用的粉末冶金加工工艺,通过将金属粉末预先压制成所需形状的模子,然后在高温高压条件下对其进行加压,使粉末颗粒之间发生固态扩散结合,最终形成致密坚固的成品零件。
这种加工方法广泛应用于各种行业,在汽车制造、航空航天、机械制造等领域都有着重要的地位。
粉末模压成型的原理实质上是利用了金属粉末在高温高压条件下的固态扩散反应。
首先,选取适当的金属粉末作为原料,这些粉末具有良好的可压性和可烧结性,经过混合、制备和筛选之后,填充到模具中。
模具的设计需要考虑到成品零件的形状、尺寸和内部结构,确保粉末在模具内充分填充,并能在加工过程中保持形状稳定。
随后,将填充好粉末的模具放入高温高压的加工设备中,施加足够的压力和温度。
在高压下,粉末颗粒之间发生塑性变形和扩散,边界清晰的粒子相互结合在一起,从而形成了连续致密的结构。
同时,由于高温的作用,粉末颗粒表面发生烧结,使得颗粒间产生了颈缩效应,加强了粒子之间的相互作用力,有利于形成坚固的结合。
经过一定时间的保温处理,使得粉末颗粒之间的结合更加牢固和致密。
随后,将成型后的零件进行冷却固化,待其冷却到室温后,取出模具,进行清理和表面处理,最终得到符合设计要求的成品零件。
粉末模压成型的优点在于可以加工复杂形状的零件,在保证工件尺寸精度的同时,还能减少材料浪费,提高材料利用率。
此外,由于是在固态条件下进行成形,因此避免了材料的氧化和变质,可以获得高质量、无气孔的成品。
同时,粉末模压成型还可以一次性成形多个零件,提高生产效率,适用于批量生产。
在实际应用中,粉末模压成型除了用于金属制品制造,还被广泛应用于陶瓷、石墨、塑料等材料的加工。
其灵活性强,适用性广,是一种高效、节能、环保的加工工艺,为各行业生产制造提供了方便和可靠的技术支持。
1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等静压成形 isostatic(hydrostatic) pressing
热法(热压注法):钢模
注浆成形法
冷法
常压冷法注浆 加压冷法注浆 抽真空冷法注浆
粉末连续成形
粉末轧制 粉末挤压(可塑成形) 喷射成形
石膏模
热成形及高能率成形—— 成形烧结同时进行
特殊成形
2020/4/23
School of Materials Science and Engineering
Making Powder-Metallurgy Parts
2020/4/23
School of Materials Science and Engineering
▪第一节 概述
▪ 一、基本概念
▪ ● 成形(Forming)的定义:
▪
将粉末密实(densify)成具有一定形状、
尺寸、孔隙度和强度的坯体(green compacts)的
▪ Loose powder is compacted and densified into a shape, known as green compact
▪ Most compacting is done with mechanical presses and rigid tools
▪ Hydraulic and pneumatic presses are also used
第二章 粉末压制成形原 理
2020年4月23日星期四
▪ 本章内容
▪ §2.1 概述 ▪ §2.2 压制过程中力的分析 ▪ §2.3 压制压力与压坯密度的关系 ▪ §2.4 粉末压坯密度的分布 ▪ §2.5 粉末压坯的强度 ▪ §2.6 影响压制过程的因素
2020/4/23
School of Materials Science and Engineering
模压成形PM产品实例—汽车变速箱粉末烧结钢零件
2020/4/23
School of Materials Science and Engineering
▪ 12-4 粉末压制示意图
▪
1— 阴模 Die
▪
2—上模冲 Top(upper) punch
▪
3—下模冲 Bottom(lower)punch
▪
但是粉末体非流体,侧压力小于正压力!
2020/4/23
School of Materials Science and Engineering
▪ 3. 随粉末体密实,压坯密度增加,压坯强度也增加。
▪
Q: 压坯强度是如何形成的?(后述)
▪ 4. 由于粉末颗粒之间摩擦,压力传递不均匀,压坯中不同 部位密度存在不均匀。
▪
b)影响随后各工序(包括辅助工序)及最终产品质量。
▪
c)影响生产的自动化、生产率和生产成本。
2020/4/23
School of Materials Science and Engineering
▪ ● 成形方法的一般分类
粉末压制成形(钢模压制)compacting,briquetting,pressing
▪
压坯密度不均匀对压坯乃至产品性能有十分重要的影响
。
▪ 5. 卸压脱模后,压坯尺寸发生膨胀—产生弹性后效
▪
▪
4— 粉末 Powder
2020/4/23
School of Materials Science and Engineering
钢模 压制 粉末
的 基本 过程
▪ 粉末混合 料
▪ 称量、装模
▪ 压制
▪ 卸压
▪ 脱模 ▪ 粉末压坯
▪ Powder mix
▪ Weighting, filling
▪ Compacting
2020/4/23
➢ 模压成形是最重要、应用最广的成形方法! ➢ 本章有关成形原理的讨论以模压成形为基础!
上模冲
粉 末
阴 模
下模冲
▪ 成形压模的基本结 构
2020/4/23
School of Materials Science and Engineering
模压成形是将金属粉末或粉末混合料装入 钢制压模(阴模)中,通过模冲对粉末加压,卸 压后,压坯从阴模内脱出,完成成形过程。
2020/4/23
2020/4/23
模压成形PM产品实例—电动工具零件
2020/4/23
School of Materials Science and Engineering
模压成形PM产品实例—汽车发动机用粉末烧结钢零件
2020/4/23
School of Materials Science and Engineering
▪ compacts
2020/4/23
School of Materials Science and Engineering
▪ 粉末压制过程中发生的现象
▪ 1. 压制后粉末体的孔隙度降低,压坯相对密度明显高 于粉末体的相对密度。
▪ 压制使粉末体堆积高度降低,一般压缩量超过50%
▪ 2. 轴向压力(正压力)施加于粉末体,粉末体在某种 程度上表现出类似流体的行为,向阴模模壁施加作用 力,其反作用力—侧压力产生。
2020/4/23
模压成形
,pressing
2020/4/23
模压成形的主要功用是: ➢ 将粉末成形成所要求的形状; ➢ 赋予压坯以精确的几何尺寸; ➢ 赋予压坯所要求的孔隙度和孔隙模型; ➢ 赋予压坯以适当的强度以便于搬运。
2020/4/23
School of Materials Science and Engineering
▪ ● 成形方法的其他分类
▪ ☻ 按成形过程中有无压力:
▪
有压(压力)成形、无压成形
▪ ☻ 按成形过程中粉末的温度:
▪
冷压(常温)成形、温压成形、热成形
▪ ☻ 按成形过程的连续性:
▪
间歇成形、粉末连续成形
▪ ☻ 按成形料的干湿程度:
▪
干粉压制、可塑成形、浆料成形
2020/4/23
School of Materials Science and Engineering
工艺过程。
▪Consolidation
2020/4/23
School of Materials Science and Engineering
▪ ● 成形的重要性
▪ 1)是重要性仅次于烧结的一个基本的粉末冶金工艺过程
。
▪ 2)比其他工序更限制和决定粉末冶金整个生产过程。
▪
a)成形方法的合理与否直接决定其能否顺利进行。