用频率估计概率教案(完美版)

合集下载

用频率估计概率教案

用频率估计概率教案

用频率估计概率教案教案标题:用频率估计概率教学目标:1. 理解频率是概率的估计值。

2. 学会使用频率估计概率的方法。

3. 能够应用频率估计概率解决实际问题。

教学准备:1. 教师准备:白板、黑板笔、投影仪、教学PPT、实例题目。

2. 学生准备:纸、铅笔。

教学步骤:引入(5分钟):1. 教师通过引入问题激发学生对频率和概率的思考,如:如果我们想知道某个事件发生的概率,我们可以怎么做?2. 学生回答后,教师解释频率是概率的估计值,并介绍频率估计概率的概念。

讲解(15分钟):1. 教师通过教学PPT或黑板,详细讲解频率估计概率的方法:a. 频率的定义:事件发生的次数除以实验次数。

b. 频率估计概率的方法:通过实验重复多次,统计事件发生的次数,然后计算频率作为概率的估计值。

c. 频率估计概率的特点:随着实验次数的增加,频率会趋近于概率的真实值。

示范(15分钟):1. 教师给出一个实际问题,如:在一副扑克牌中,黑桃A的概率是多少?2. 教师引导学生进行实验,重复抽取扑克牌并统计黑桃A出现的次数。

3. 学生根据实验结果计算频率,并将其作为概率的估计值。

练习(15分钟):1. 学生分组进行练习,教师提供一些实际问题,要求学生通过实验估计概率。

2. 学生完成练习后,教师进行讲解和讨论,引导学生理解概率估计的过程和结果。

拓展(10分钟):1. 教师提供更多的实际问题,要求学生通过实验估计概率,并与理论概率进行比较。

2. 学生进行讨论和分析,总结频率估计概率的优缺点。

总结(5分钟):1. 教师进行总结,强调频率是概率的估计值,并提醒学生在实际问题中可以使用频率估计概率的方法。

2. 学生提出问题和意见,教师进行解答和回应。

作业:1. 学生完成课堂练习的剩余部分。

2. 学生自选一个实际问题,通过实验估计概率,并写出实验过程和结果。

教学反思:1. 教师应提前准备好实例题目,并确保实验过程简单易懂。

2. 教师应鼓励学生积极参与实验和讨论,培养学生的实验设计和数据分析能力。

九年级数学北师大版上册 第3章《用频率估计概率》教学设计 教案

九年级数学北师大版上册 第3章《用频率估计概率》教学设计 教案

教学设计用频率估计概率一、学生知识状况分析学生通过以前的学习,已经会用列表法或树状图求简单的随机事件的概率。

对用试验方法估计随机事件发生的概率有了初步的认识,知道了“当试验次数较大,试验频率稳定于理论概率,并可据此估计某一事件发生的概率”.二、教学任务分析本节课的重点是掌握试验的方法估计复杂的随机事件发生的概率。

难点是试验估计随机事件发生的概率。

为此,本节课的教学目标是:1、感受随机事件发生的频率的稳定性,理解事件发生的频率与概率的关系。

2、能用试验频率估计一些随机事件发生的概率,进一步体会概率的意义。

三、教学过程分析第一环节:课前3分钟(对相关知识进行回顾学习)1、事件的分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧随机事件不可能事件必然事件确定性事件事件2、什么是频率?在相同情况下,进行了n 次试验,在这n 次试验中,事件A 发生了m 次,则事件A 发生的频率P=nm . 3、练习:(1)下列事件,是确定事件的是( )A.投掷一枚图钉,针尖朝上、朝下的概率一样.B.从一幅扑克中任意抽出一张牌,花色是红桃.C.任意选择电视的某一频道,正在播放动画片.D.在同一年出生的367名学生中,至少有两人的生日是同一天.(2)明天下雨的概率为95%,那么下列说法错误的是( )A.明天下雨的可能性较大B.明天不下雨的可能性较小C.明天有可能是晴天D.明天不可能是晴天第二环节:情境引入内容:下表列出了一些历史上的数学家所做的掷硬币试验的数据:目的:以历史上的抛硬币试验引入本课,激发学生的学习兴趣.结论:当试验次数很大时,一个事件发生频率一般稳定在相应的概率附近.因此,我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的概率.在相同情况下随机的抽取若干个体进行试验,进行试验统计.并计算事件发生的频率nm ,根据频率估计该事件发生的概率.第三环节:实践演练例1、抛掷一只纸杯的重复试验的结果如下表:(1)在表内的空格初填上适当的数(2)任意抛掷一只纸杯,杯口朝上的概率为.练习一:1、对某服装厂的成品西装进行抽查,结果如下表:(1)请完成上表(2)任抽一件是次品的概率是多少?(3)如果销售1 500件西服,那么大约需要准备多少件正品西装供买到次品西装的顾客调换?思考:摸球游戏现在有一个盒子,3个红球,7个白球,每个球除颜色外全部相同。

九年级数学《用频率估计概率》优秀教案

九年级数学《用频率估计概率》优秀教案

九年级数学《用频率估计概率》优秀教案1.学习主体即学生,通过亲身经历数学活动过程获得具有个性特征的感性认识、情感体验以及数学意识;2.课标指出:教学活动应建立在学生认知发展水平和已有的知识经验基础之上,为学生提供充分从事数学活动的机会,帮助他们在自主探究和合作交流过程中真正理解和掌握数学知识技能、数学思想方法,提高数学学习兴趣和问题解决能力。

因此,学生数学学习的过程是建立在经验基础之上的一个自我再创造(或创新构造)过程。

在这一过程中,学生通过多样化的活动,不断获得、积累经验,分析、理解、反思经验,从而获得发展。

学习目标:1.借助实验,体会随机事件在每一次实验中发生与否具有不确定性;2.通过操作,体验重复实验的次数与事件发生的频率之间的关系;3.通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法;4.通过对实际问题的分析,激发学习兴趣,体验数学的应用价值.重点:能从频率值角度估计事件发生的概率.难点:通过试验体会用频率估计概率的合理性.温故篇1.抛一次硬币,向上的一面是正面的概率是2.掷一次骰子,向上的一面数字是6的概率是.3.从一副没有大小王的扑克牌中任抽一张,则抽到的牌面数字是5的概率为 .4.某射击运动员射击一次,命中靶心的概率是.思考:当实验的所有结果不是有限个;或各种可能结果发生的可能性不相等时,又该如何求事件发生的概率呢?引出课题——用频率估计概率模拟实验——掷骰子人们在长期的实践中发现,在随机试验中,由于众多微小的偶然因素的影响,每次测得的结果虽不尽相同,但大量重复试验所得结果却能反应客观规律.即在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总是在一个固定数的附近摆动,显示出一定的稳定性.这就是频率稳定性定理.是由瑞士数学家雅各布·伯努利最早发现的,他最早阐明了随着试验次数的增加频率稳定在概率附近.被公认为是概率论的先驱之一.则估计抛掷一枚硬币正面朝上的概率约为 (精确到0.1)则估计油菜籽发芽的概率为 (精确到0.1)实践篇——估计移植成活率某林业部门要考查某种幼树在一定条件下的移植成活率,应采用什么具体做法?1.计算并填空;2.观察在各次试验中得到的幼树成活的频率,谈谈你的看法.3.由上表可以发现,幼树移植成活的频率在__左右摆动,并且随着移植棵数越来越大,这种规律愈加明显.所以估计幼树移植成活的概率为__.4.解决问题:(1)林业部门种植了该幼树1000棵,估计能成活__棵.(2)我们学校需种植这样的树苗100棵来绿化校园,则至少向林业部门购买约___棵.巩固篇1.在一个不透明的布袋中,红色、黑色、白色的小球共有40个,它们除颜色外其余都相同.小李通过多次摸球后发现其中摸到红色、黑色球的频率分别稳定在0.15和0.45,则估计袋中白色球的个数是()A.6B.16C.20D.242.一水塘里有鲤鱼、鲫鱼、鲢鱼共1 000尾,一渔民通过多次捕获实验后发现:鲤鱼、鲫鱼出现的频率分别是31%和42%,则这个水塘里有鲤鱼_____尾,鲢鱼_____尾.3.在有一个10万人的小镇,随机调查了2000人,其中有250人看中央电视台的早间新闻.(1)在该镇随便问一个人,他看早间新闻的概率大约是多少?(2)该镇看中央电视台早间新闻的大约是多少人?应用篇——这个游戏公平吗?小红和小明在操场上做游戏,他们先在地上画了半径分别为2m 和3m的同心圆(如图),蒙上眼在一定距离外向圈内掷小石子,掷中阴影小红胜,掷中里面小圈小明胜,未掷入大圈内不算,你认为游戏公平吗?为什么?提升篇1.弄清了一种关系——频率与概率的关系.当试验次数很多或试验时样本容量足够大时,一件事件发生的频率与相应的概率会非常接近.此时,我们可以用一件事件发生的频率来估计这一事件发生的概率.2.了解了一种方法——用多次试验频率去估计概率.3.体会了一种思想:用样本去估计总体;用频率去估计概率.拓展篇如图,长方形内有一不规则区域,现在玩投掷游戏,如果随机掷中长方形的300次中,有150次是落在不规则图形内.(1)你能估计出掷中不规则图形的概率吗?(2)若该长方形的面积为150平方米,试估计不规则图形的面积.课后拓展:你能设计一个利用频率估计概率的实验方法估算该不规则图形的面积的方案吗?课堂测评:1.关于频率与概率的关系,下列说法正确的是()A.频率等于概率B.当试验次数很大时,频率稳定在概率附近C.当试验次数很大时,概率稳定在频率附近D.试验得到的频率与概率不可能相等2.做重复试验:抛掷同一枚啤酒瓶盖1000次,经过统计得“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为()A.0.22B.0.44C.0.50D.0.56。

用频率估计概率教案

用频率估计概率教案

用频率估计概率教案教案概述:本教案旨在教授频率估计概率的基本概念和方法。

学生将学习如何通过频率估计来估计事件发生的概率,并将通过实例演示来加深对频率估计概率的理解。

教学目标:1. 学习频率估计概率的基本概念和原理;2. 掌握频率估计的计算方法;3. 运用频率估计进行实际问题中的概率估计。

教学准备:1. PowerPoint幻灯片或白板和马克笔;2. 实例演示材料;3. 学生练习和作业材料。

教学步骤:引入:1. 通过幻灯片或白板,介绍频率估计概率的概念和作用;2. 引导学生思考频率估计与概率的关系,并讨论实际生活中常见的频率估计示例。

讲解频率估计概率的原理和方法:1. 解释频率估计概率的原理:频率估计概率是通过观察事件发生的频率来估计事件发生的概率;2. 讲解频率估计的计算方法:频率估计概率可以通过事件发生的次数除以总试验次数来计算;3. 通过实例演示展示频率估计概率的计算过程。

实例演示:1. 提供一个实际问题,例如:从一个装有不同颜色球的袋子中随机抽取球的颜色并记录频次;2. 通过实际演示,展示如何通过频率计算来估计抽取特定颜色球的概率;3. 引导学生参与实例演示,培养学生应用频率估计概率的能力。

练习与讨论:1. 分发练习题和作业,要求学生运用频率估计概率的方法来解答问题;2. 通过小组讨论回答问题,加深对频率估计概率的理解;3. 学生分享他们的答案和解题思路,进行讨论和互动。

总结:1. 复习频率估计概率的基本概念和计算方法;2. 强调频率估计概率在实际问题中的应用;3. 鼓励学生通过频率估计概率来解决问题。

作业布置:布置相关练习和作业,巩固学生对频率估计概率的理解和应用能力。

拓展活动:鼓励学生在日常生活中观察和应用频率估计概率的方法,例如估计公交车的准点率、估计赢得抽奖的概率等。

评估方式:1. 观察学生在课堂讨论中的参与程度;2. 检查学生完成的练习和作业;3. 考察学生对频率估计概率的理解,例如通过小测验或口头提问。

人教版九年级数学上册253用频率估计概率(教案)

人教版九年级数学上册253用频率估计概率(教案)
4.举例说明频率估计概率在实际生活中的应用,如天气预报、产品抽检等;
5.通过实例,让学生感受概率在生活中的重要性,培养学生的数据分析能力。
二、核心素养目标
1.数据分析:培养学生通过收集、整理、描述和分析数据,发现数据背后的规律,运用频率估计概率,提高解决实际问题的能力;
2.逻辑推理:引导学生运用数学语言和符号,进行逻辑推理,理解频率与概率之间的关系,培养严谨的逻辑思维能力;
c.在培养数据分析能力时,可以让学生分组进行试验,收集数据,然后讨论如何整理和分析这些数据,得出合理的结论。
直接输出:
四、教学流程
1.导入新课:通过提问方式引导学生回顾之前学过的概率知识,为新课学习做好铺垫。
-提问:“我们之前学过如何表示事件发生的可能性?它与今天我们要学习的频率估计概率有什么联系?”
人教版九年级数学上册253用频率估计概率(教案)
一、教学内容
人教版九年级数学上册253节“用频率估计概率”:本节课主要内容包括:
1.理解频率和概率的关系,通过大量重复试验,观察频率的稳定值来估计概率;
2.掌握利用频率估计概率的方法,并能运用该方法解决实际问题;
3.分析频率与概率之间的关系,探讨频率随试验次数增加的变化规律;
6.总结回顾:强调频率估计概率的重要性,巩固学生对本节知识点的掌握。
-总结:“通过今天的学习,我们知道了频率可以用来估计概率,这对于解决实际问题具有重要意义。”
7.作业布置:布置与频率估计概率相关的作业,强化学生对知识点的应用。
-布置:“请同学们课后思考,生活中还有哪些情况可以用频பைடு நூலகம்来估计概率?并尝试举例说明。”
三、教学难点与重点
1.教学重点
-理解频率与概率的关系:强调通过大量重复试验,观察频率的稳定值来估计概率,使学生掌握这一核心概念。

2024年人教版九年级数学上册教案及教学反思第25章25.3 用频率估计概率

2024年人教版九年级数学上册教案及教学反思第25章25.3 用频率估计概率

25.3 利用频率估计概率一、教学目标【知识与技能】理解每次试验可能的结果不是有限个,或各种可能结果发生的可能性不相等时,利用统计频率的方法估计概率.【过程与方法】经历利用频率估计概率的学习,使学生明白在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定到的常数,可以估计这个事件发生的概率.【情感态度与价值观】通过研究如何用统计频率求一些现实生活中的概率问题,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值.二、课型新授课三、课时1课时。

四、教学重难点【教学重点】对利用频率估计概率的理解和应用.【教学难点】利用频率估计概率的理解.五、课前准备课件等.六、教学过程(一)导入新课教师问:抛掷一枚均匀硬币,硬币落地后,会出现哪些可能的结果呢?(出示课件2)学生答:出现“正面朝上”和“反面朝上”两种情况.教师问:它们的概率是多少呢?学生答:都是1.2教师问:在实际掷硬币时,会出现什么情况呢?(出示课件3)在学完用列举法求随机事件发生的概率这节内容后,小明同学提出一个问题.他抛掷一枚硬币10次,其正面朝上的次数为5次,是否可以说明“正面向上”这一事件发生的概率为0.5?用列举法可以求一些事件的概率.实际上,我们还可以利用多次重复试验,通过统计试验结果估计概率.(板书课题)(二)探索新知探究一用频率估计概率出示课件5-9:抛硬币实验(1)抛掷一枚均匀硬币400次,每隔50次记录“正面朝上”的次数,并算出“正面朝上”的频率,完成下表:(2)根据上表的数据,在下图中画统计图表示“正面朝上”的频率.学生尝试画图:的直线,你发现了什么?(3)在上图中,用红笔画出表示频率为12的直线,并观察思考.学生画出表示频率为12教师强调:试验次数越多频率越接近0. 5,即频率稳定于概率.(4)下表是历史上一些数学家所做的掷硬币的试验数据,这些数据支持你发现的规律吗?学生答:支持.教师问:抛掷硬币试验有什么特点?学生答:1.可能出现的结果数有限;2.每种可能结果的可能性相等.教师问:如果某一随机事件,可能出现的结果是无限个,或每种可能结果发生的可能性不一致,那么我们无法用列举法求其概率,这时我们能够用频率来估计概率吗?学生独立思考,交流.出示课件10-13:图钉落地的试验从一定高度落下的图钉,着地时会有哪些可能的结果?其中顶帽着地的可能性大吗?(1)选取20名同学,每位学生依次使图钉从高处落下20次,并根据试验结果填写下表.(2)根据上表画出统计图表示“顶帽着地”的频率.学生尝试画图:(3)这个试验说明了什么问题?学生答:在图钉落地试验中,“顶帽着地”的频率随着试验次数的增加,稳定在常数56.5%附近.出示课件14:教师归纳:通过大量重复试验,可以用随机事件发生的频率来估计该事件发生的概率.出示课件15:知识拓展:人们在长期的实践中发现,在随机试验中,由于众多微小的偶然因素的影响,每次测得的结果虽不尽相同,但大量重复试验所得结果却能反应客观规律.这称为大数法则,亦称大数定律.出示课件16:教师强调:一般地,在大量重复试验中,随机事件A发生的(这里n是实验总次数,它必须相当大,m是在n次试验中随机事件A发频率mn生的次数)会稳定到某个常数P.于是,我们用P这个常数表示事件A发生的概率,即P(A)=P.练一练:判断正误(出示课件17)⑴连续掷一枚质地均匀硬币10次,结果10次全部是正面,则正面向上的概率是1.(2)小明掷硬币10000次,则正面向上的频率在0.5附近.(3)设一大批灯泡的次品率为0.01,那么从中抽取1000只灯泡,一定有10只次品.学生思考后口答:⑴错误;⑵正确;⑶错误.出示课件18:例1 某篮球队教练记录该队一名主力前锋练习罚篮的结果如下:(1)填表(精确到0.001);学生计算后并填表:(2)比赛中该前锋队员上篮得分并造成对手犯规,罚篮一次,你能估计这次他能罚中的概率是多少吗?学生独立思考后口答:从表中的数据可以发现,随着练习次数的增加,该前锋罚篮命中的频率稳定在0.8左右,所以估计他这次能罚中的概率约为0.8.巩固练习:(出示课件19)某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是( )A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一枚质地均匀的正六面体骰子,向上的面点数是4学生自主思考后口答:D.出示课件20,21:例2 瓷砖生产受烧制时间、温度、材质的影响,一块砖坯放在炉中烧制,可能成为合格品,也可能成为次品或废品,究竟发生那种结果,在烧制前无法预知,所以这是一种随机现象.而烧制的结果是“合格品”是一个随机事件,这个事件的概率称为“合格品率”.由于烧制结果不是等可能的,我们常用“合格品”的频率作为“合格品率”的估计.某瓷砖厂对最近出炉的一大批某型号瓷砖进行质量抽检,结果如下:(1)计算上表中合格品率的各频率(精确到0.001);(2)估计这种瓷砖的合格品率(精确到0.01);(3)若该厂本月生产该型号瓷砖500000块,试估计合格品数.学生计算思考后,师生共同解答.(出示课件22)解:(1)逐项计算,填表如下:稳定在0.962⑵观察上表,可以发现,当抽取的瓷砖数n≥400时,合格品率mn的附近,所以我们可取P=0.96作为该型号瓷砖的合格品率的估计.(3)500000×96%=480000(块),可以估计该型号合格品数为480000块.出示课件23:教师归纳总结:频率与概率的关系在实际问题中,若事件的概率未知,常用频率作为它的估计值.区别:频率本身是随机的,在试验前不能确定,做同样次数或不同次数的重复试验得到的事件的频率都可能不同,而概率是一个确定数,是客观存在的,与试验无关.巩固练习:(出示课件24)某射击运动员在同一条件下的射击成绩记录如下:(1)计算表中相应的“射中9环以上”的频率(精确到0.01);(2)这些频率具有什么样的稳定性?(3)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0.1)学生自主思考后独立解答:⑴计算如下:⑵稳定在0.8附近;⑶0.8.(三)课堂练习(出示课件25-34)1.某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的试验最有可能的是()A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过92.一水塘里有鲤鱼、鲫鱼、鲢鱼共1 000尾,一渔民通过多次捕获实验后发现:鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里有鲤鱼尾,鲢鱼尾.3.抛掷硬币“正面向上”的概率是0.5.如果连续抛掷100次,而结果并不一定是出现“正面向上”和“反面向上”各50次,这是为什么?4.在一个不透明的盒子里装有除颜色不同其余均相同的黑、白两种球,其中白球24个,黑球若干.小兵将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近(精确到0.1);(2)假如你摸一次,估计你摸到白球的概率P(白球)= .5.填表:由上表可知:柑橘损坏率是,完好率是.6.某水果公司以2元/千克的成本新进了10000千克柑橘,如果公司希望这些柑橘能够获得利润5000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?7.某池塘里养了鱼苗10万条,根据这几年的经验知道,鱼苗成活率为95%,一段时间准备打捞出售,第一网捞出40条,称得平均每条鱼重2.5千克,第二网捞出25条,称得平均每条鱼重2.2千克,第三网捞出35条,称得平均每条鱼重2.8千克,试估计这池塘中鱼的重量.参考答案:1.D解析:由图知试验结果在0.33附近波动,因此概率约等于0.33.取到红球概率为0.6,故A错;骰子向上的面点数是偶数的概率为0.5,故B错;两次都出现反面的概率为0.25,故C错,骰子两次向上的面点数之和是7或超过9的概率≈0.33,故D正确.为132.310;2703.答:这是因为频数和频率的随机性以及一定的规律性.或者说概率是针对大量重复试验而言的,大量重复试验反映的规律并非在每一次试验中都发生.4.⑴0.6;⑵0.6.5.解:填表如下:由上表可知:柑橘损坏率是0.10,完好率是0.90.6.分析:根据上表估计柑橘损坏的概率为0.1,则柑橘完好的概率为0.9.解:根据估计的概率可以知道,在10000千克柑橘中完好柑橘的质量为10000×0.9=9000千克,完好柑橘的实际成本为21000020= 2.22(90009⨯≈元/千克),设每千克柑橘的销价为x 元,则应有(x-2.22)×9000=5000,解得x ≈2.8.因此,出售柑橘时每千克大约定价为2.8元可获利润5000元.7.解:先计算每条鱼的平均重量是:(2.5×40+2.2×25+2.8×35)÷(40+25+35)=2.53(千克);所以这池塘中鱼的重量是2.53×100000×95%=240350(千克).(四)课堂小结1.你知道什么时候用频率来估计概率吗?2.你会用频率估计概率来解决实际问题吗?七、课后作业配套练习册内容八、板书设计:九、教学反思:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.当然,学生随机观念的养成是循序渐进的、长期的.这节课教师应把握教学难度,注意关注学生接受情况.。

《用频率估计概率》教案

《用频率估计概率》教案

《用频率估计概率》教案第一章:引言1.1 教学目标让学生理解概率的基本概念。

让学生了解频率与概率之间的关系。

1.2 教学内容概率的定义与例子。

频率与概率的关系。

1.3 教学方法通过具体的例子引导学生理解概率的概念。

使用实际实验或模拟实验让学生观察频率与概率之间的关系。

1.4 教学活动引入概率的概念,举例说明。

让学生进行简单的实验或观察,记录频率。

引导学生思考频率与概率之间的关系。

第二章:单次实验的频率估计2.1 教学目标让学生能够通过单次实验来估计概率。

2.2 教学内容单次实验的概率估计方法。

随机事件的概率估计。

2.3 教学方法使用实际实验或模拟实验让学生进行单次实验。

引导学生通过实验结果来估计概率。

2.4 教学活动让学生进行单次实验,如抛硬币、掷骰子等。

引导学生观察实验结果,计算频率。

让学生通过频率来估计事件的概率。

第三章:多次实验的频率估计3.1 教学目标让学生能够通过多次实验来估计概率。

3.2 教学内容多次实验的概率估计方法。

随机事件的概率估计。

3.3 教学方法使用实际实验或模拟实验让学生进行多次实验。

引导学生通过实验结果来估计概率。

3.4 教学活动让学生进行多次实验,如抛硬币、掷骰子等。

引导学生观察实验结果,计算频率。

让学生通过频率来估计事件的概率。

第四章:频率与概率的关系4.1 教学目标让学生理解频率与概率之间的关系。

4.2 教学内容频率与概率的关系。

概率的性质与定理。

4.3 教学方法通过具体的例子引导学生理解频率与概率之间的关系。

使用实际实验或模拟实验让学生观察频率与概率之间的关系。

4.4 教学活动引导学生思考频率与概率之间的关系。

让学生进行实验或观察,记录频率。

引导学生通过实验结果来理解频率与概率之间的关系。

第五章:总结与拓展5.1 教学目标让学生总结本节课所学的知识。

让学生了解概率估计在实际中的应用。

5.2 教学内容总结频率估计概率的方法。

概率估计在实际中的应用。

5.3 教学方法通过问题引导学生总结本节课所学的知识。

用频率估计概率教案

用频率估计概率教案

用频率估计概率教案概率是统计学中重要的概念,它描述一个事件发生的可能性。

概率估计是概率的重要方法,它基于一定的数据获得概率的估计值,从而推断这个事件发生的可能性。

用频率估计概率是概率估计的一种重要方法,它根据给定的数据集计算出一个事件发生的频率,然后根据这个频率估计这个事件发生的概率。

一、用频率估计概率原理用频率估计概率是一种顺序估计,具体步骤如下:1、收集数据:在概率估计过程中,我们首先需要收集一组数据,这些数据可以是实验数据、观测数据等。

2、计算实验概率:根据收集的数据,计算出一个实验概率,即某个事件发生的概率。

3、估计未知概率:根据实验概率,估计未知概率。

二、用频率估计概率实例本案例重点介绍如何用频率估计概率。

假设有一组包含13个元素的数据,我们想要知道某个特定元素出现的概率。

1、收集数据:首先,我们从这组数据中收集13个元素:A,B,C,D,E,F,G,H,I,J,K,L,M2、计算实验概率:接下来,我们要计算每个元素出现的频率,即实验概率。

我们可以假设,在13个元素中,A元素出现4次,B元素出现3次,C元素出现2次,其他元素各出现1次。

3、估计未知概率:接下来,我们可以根据计算出的实验概率估计未知概率,即某个特定元素出现的概率。

例如,我们可以估计A元素出现的概率为4/13;B元素出现的概率为3/13,以此类推。

三、用频率估计概率优缺点用频率估计概率是一种简单便捷的概率估计方法,它有如下优点:(1)简单:实现起来非常简单,原理容易理解。

(2)准确:它得到的估计值往往比较准确,能够准确地反映某个事件的可能性。

同时,用频率估计概率也有一些缺点,例如它只能针对小数据集进行估计,不能适用于大数据集。

另外,它也不能准确反映一个事件发生的概率,因为数据集往往不能完全代表一类事件。

四、总结用频率估计概率是一种求解概率的重要方法,它根据给定的数据集,计算出一个某个事件发生的频率,从而根据频率估计这个事件发生的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、通过实验,理解当实验次数较大时实验频率稳定于理论频率,并据此估计某一事件发生的概率。

3、通过动手实验和课堂交流,进一步培养收集、描述、分析数据的技能,提高数学交流水平,发展探索、合作的精神。

教学重点:
通过实验,理解当实验次数较大时实验频率稳定于理论频率,并据此估计某一事件发生的概率。

课型:
新授课
教法:
引导发现法
教学准备:
课前指导。

1.请你回忆。

(频数、频率、统计图表的设计。

)
2.实验方法和步骤的指导。

(每人准备两枚硬币,一个计算器。

)
3.学生分工合作的指导。

(设计好统计图表。

)
4.学生实验态度的教育。

教学过程:
(一)提出问题
1.在硬币还未抛出前,猜想当硬币抛出后是正面朝上,还是反面朝上?为什么?假如你已经抛掷了1000次,你能否预测到第l001次抛掷的结果?
2.假如你已经抛掷了400次,你能否猜测出“出现正面”的频数是多少?频率是多少?800次呢?随着我们抛掷一枚硬币的次数逐渐增多,你猜想有什么规律? 3.当我们抛掷两枚硬币时,猜一猜当抛掷次数很多以后,“出现正面”和“出现一正一反”这两个不确定事件的频率是多少?是否比较稳定?
4.假如你在抛硬币的过程中,硬币不见了,你该怎么办?找一枚图钉代替呢?还是再找另外一枚硬币代替?
(二)学生猜想,并归纳猜想结论。

学生先自己思考猜想,然后讨论交流继续猜想。

教师汇总并板书学生猜想的各种结果。

网友可以在线阅读和下载这些文档让每个人平等
地提升自我抛掷次数
5
0 10
150
200
250
300
350
400
出现正面的频数
出现正面的频

抛掷次数
450
500
550
600
650
700
750[来
源:Z|xx|] 800
出现正面的频数
出现正面的频率
2.实验2。

四人一组,一人抛掷,一人记录出现两个正面的数据,一人记录出现一正一反的数据,一人将实验结果填人课本的表格中,最后绘制折线图。

3.教师再利用计算机课件演示抛掷一枚、两枚硬币的全过程,以增加实验时的
抛掷次数。

(四)讨论交流,寻找规律。

1.通过实验,体会到随机事件在每次实验中发生与否具有不确定性。

2.只要保持实验条件不变,那么随机事件的发生频率也会表现出规律:即随着相同条件下实验次数的增加,其值逐渐趋于稳定,稳定到某一个数值。

(五)验证猜想,得出结论。

1.具有不确定性,因为抛掷硬币是随机事件。

2.频数具体是多少不确定。

但是在实验中,抛掷400次时频数约是200次,频率约是50%。

随着相同条件下实验次数的增加,其值逐渐趋于稳定,稳定到50%左右。

3.实验2中,出现两个正面的频率约是25%,出现一正一反的频率约是 50%。

比较稳定。

让每个人平等
By :麦群超
(六)预览典例: 例1:某射手在相同条件下进行射击训练,结果如下:
射击次数/次 10
20 50 100 200 500
击中靶心次数/次
9 19 44 91 178 451 击中靶心频率
分别计算表中击中靶心的频率,并填表。

这个射手射击一次,击中靶心的概率大约是多少? 解:(1)由射击次数和击中靶心次数,可以分别求出击中靶心的频率为:
0.9,0.95,0.88,0.91,0.89,0.90.
(2)由上表可以发现,随着射击次数的增加,事件“射击一次击中靶心”的频率稳定在0.90左右,所以可以用频率0.90来估计这个射手射击一次击中靶心的概
率,即击中靶心的概率大约是0.90。

例2:一个不透明的袋子里装有一些质地、大小都相同的黑球和白球,某学习小组做摸球实验,将球搅匀后,从中随击摸出一个球,记下它的颜色后放回袋中,
然后再进行下一次实验。

下表是他们整理得到的试验数据:
摸球次数n
10 20 50 100 200 500 摸到白球的次数m
9 19 44 91 178 451 摸到白球的频率m
n
(1)当摸球次数n 很大时,摸到白球的频率将会接近哪个数值?
(2)假如你去摸一次,摸到白球的概率约是多少?摸到黑球的概率约是多少? 解:(1)从表中的数据可以发现,随着摸球次数的增加,摸到白球的频率在0.60左右摆动,并且随着实验次数的增加,这种规律更加明显,所以估计摸到白球的频率会接近于0.60;
(2)根据(1),可以估计摸一次球时,摸到白球的概率约是0.60,摸到黑球的概率约是0.40。

增加,其值逐渐稳定到_____。

我们可以用平稳时的频率估计这一事件发生的可能性,即_______。

(2)抛掷一枚硬币的实验中,出现正面的机会是_____。

(3)抛掷两枚硬币的实验中,随着实验次数的增加出现两个正面的频率将逐渐稳定在_____左右。

出现—正一反的频率将逐渐稳定在______左右。

2.判断。

(1)某彩票的中奖机会是1/22,那么某人买22张彩票,肯定有一张中奖。

( )
(2)抛掷一枚质量分布均匀的硬币,出现"正面”和“反面”的机会均等。

因此,抛1000次的话,一定会有500次“正”,500次“反”。

( )
(八)拓展延伸、开放性练习。

1.以下是某位同学在做400次抛掷两枚硬币的实验时,根据“出现两个正面”的成功率,画出的折线图。

(横坐标表示实验总次数,纵坐标表示实验成功率。

)
(1)我们可以看到,随着实验的次数的增加,成功率是这样变化的:_______
(2)因为成功率有趋于稳定的特点,所以我们以后就用平稳时的成功率表示某一事件发生的_____,即_____。

(3)可以看到当实验进行到260次后,所得频率值就在____上下浮动,所以我们可以得到“机会大约是______”的粗略估计。

2.准备30张小卡片,上面分别写好数1到30,然后将卡片放在袋子里搅匀。

每次从袋中取出一张卡片,记录结果,然后放回搅匀再抽。

(1)将实验结果填人下表。

实验次数2
4
6
8
10
12
14
16
18
20
出现3的倍数的频数
(九)回顾概括:
学生畅所欲言,回顾归纳本节课的收获与体会。

(十)课后反思:
这是一节学生的自主活动课,教师既不提前给以暗示,也不道出答案,而是一切活动让学生经历、体验、感悟,教学目标一一达成。

以一种"平等中的首席"之身份介入,防止实践误入歧途。

学生经历活动一以后,在蓄势以待的求知状态下,眼神中闪烁着一份渴望探索的目光,数学正如春风化雨般悄悄地滋润着他们精神的家园。

若每一节课能这样深深地吸引学生,享受数学,享受成功的教育理想就会实现!。

相关文档
最新文档