配电网线损计算方法及降损措施开题

合集下载

配电网的损耗计算与降损措施

配电网的损耗计算与降损措施

配电网的损耗计算与降损措施当配电网运行时,在线路和变压器中将要产生功率损耗和电能损耗,计算这些损耗对于配电网的平安经济运行很重要。

虽然功率损耗和电能损耗是不行避兔的,但应尽力实行措施去降低它。

这从节省能源、降低电能成本、提高设备利用率等方面来看都是特别必要的。

配电网的损耗组成:变动损耗:与传输功率有关的损耗,产生在输电线路和变压器的串连阻抗上,传输功率愈大则损耗愈大,在总损耗中所占比重较大;固定损耗:仅与电压有关,产生在输电线路和变压器的并联导纳上,如输电线路的电晕损耗、变压器的励磁损耗等。

一、线路的功率损耗线路功率损耗计算见图1。

首端导纳的功率损耗计算见图2。

末端导纳的功率损耗计算见图3。

阻抗的功率损耗计算见图4。

图1 线路功率损耗图4 阻抗的功率损耗图2 首端导纳功率损耗图3 末端导纳的功率损耗二、变压器的功率损耗阻抗的功率损耗计算见图5。

导纳的功率损耗计算见图6。

图5 阻抗的功率损耗图6 导纳的功率损耗对于三绕组变压器,应用这些公式同样可以求出各侧绕组的功率损耗,见图7。

图7 各侧绕组的功率损耗三、配电网的电能损耗1.电能损耗和损耗率配电网的电能损耗:在给定的时间内,配电网的全部送电、变电环节损耗的电量。

在同一时间内,配电网的电能损耗占供电量的百分比,称为配电网的损耗率,简称网损率或线损率。

见图8。

图8 网损率由于电力系统的实际负荷是随时都在转变的,线路的功率损耗也随时间而转变。

工程上采纳“最大负荷损耗时间法”。

最大负荷损耗时间τ可以理解为:假如线路中输送的功率始终保持为最大负荷功率Smax(此时的有功损耗为△Pmax),在τ小时内的电能损耗恰好等于线路全年的实际电能损耗,则称为τ最大负荷损耗时间。

求τ:(1)Tmax:假如用户以年最大负荷Pmax持续运行Tmax小时,其所消耗的电能等价于该用户以实际负荷运行时全年消耗的电能A。

(2)求τ:由不同行业的最大负荷年利用小时数Tmax。

由Tmax 和用户功率因数,查出τ的值。

配电网线损降损措施

配电网线损降损措施

配电网线损降损措施在配电变压器方面,仍有S7型高能耗变压器在运行,S9节能型变压器的普及不够。

运行中的配电变压器普遍存在台变容量过大,而负荷率(在最大负荷时)很低及三相负荷不平衡的现象。

在城网改造中,都注重改造了10 kV主线,而变压器380 V以下的低压线路则基本未进行改造。

目前运行中的低压线路现状是陈旧、凌乱、搭头多、线路过长,这不仅存在安全隐患,也使线损增加。

降低线损的技术措施1.采用无功功率补偿设备提高功率因数在负荷的有功功率P保持不变的条件下,提高负荷的功率因数,可以减小负荷所需的无功功率Q,进而减少通过线路及变压器的无功功率,减少线路和变压器的有功功率和电能损耗。

2.对电网进行升压改造在负荷功率不变的条件下,电网元件中的负荷损耗部分随电压等级的提高而减少,提高电网电压,通过电网元件的电流将相应减小,负载损耗也随之降低。

升压是降低线损很有效的措施。

升压改造可以与旧电网的改造结合进行,减少电压等级,减少重复的变电容量,简化电力网的接线,适应负荷增长的需要,以显著降低电力网的线损。

具体可有如下措施。

3.分流负荷,降低线路的电流密度。

利用变电站剩余出线间隔,对负荷大、损耗高的线路进行分流改造,通过增加线路出线的方式降低线路负荷,从而降低线损。

4.调整负荷中心,优化电网结构。

针对农村10 kV配电网中存在的电源布点少,供电半径过长的问题,采取兴建新站和改造旧站的方法来缩短供电半径,农村低压配电网中则采取小容量、密布点、短半径的方式来达到节电的目的。

5.改造不合理的线路布局,消除近电远供,迂回倒送现象,减少迂回线路,缩短线路长度。

对运行时间长、线径细、损耗高的线路更换大截面的导线。

6.更新高损主变,使用节能型主变。

主变应按经济运行曲线运行,配有两台主变的要根据负荷情况投运一台或两台主变,并适时并、解裂运行.有载调压的主变,要适时调整电压,使电压经常保持在合格的范围内。

配电变压器的损耗对线损的影响起着举足轻重的作用。

配电网线损计算与降损技术措施研究

配电网线损计算与降损技术措施研究

配电网线损计算与降损技术措施研究1. 引言1.1 研究背景配电网线损是指在配电系统中由于线路本身和设备的电阻、电感、电容以及各种电气设备导致的能量损耗。

线损导致了电能资源的浪费和供电质量的下降,同时也增加了供电成本和减少了系统的稳定性和可靠性。

随着我国经济的快速发展和电力需求的增加,配电网线损问题日益突出。

当前,我国电力系统中线损率普遍较高,尤其是在一些地区和行业。

线损不仅影响了电网的经济运行,还影响了全社会的电力供应和能源利用效率。

对配电网线损进行深入研究和采取有效技术措施降损具有重要意义。

通过研究配电网线损计算方法和降损技术措施,可以为我国电力系统的优化和提升提供理论依据和实践指导,促进电力系统的可持续发展。

本文将对配电网线损计算与降损技术措施进行研究,探讨相关技术应用案例,评估降损效果,并分析影响线损的因素,旨在总结相关研究成果并展望未来的研究方向。

通过本文的研究,可以为我国电力系统的线损问题提供参考和借鉴,推动电力系统的智能化和可持续发展。

1.2 研究意义配电网线损是指在配电系统中由于电能在输送和分配过程中所产生的损耗。

线损的计算和降损技术是配电系统运行和管理中非常重要的内容,对提高配电系统的运行效率和经济性具有重要意义。

研究配电网线损计算与降损技术的意义在于可以减少电能资源的浪费,提高能源利用效率,降低配电系统运行成本。

通过合理的计算方法和技术措施,可以有效地降低配电网线损率,提升电网的负载能力和稳定性,保障电能的安全稳定供应。

研究配电网线损计算与降损技术还可以推动能源节约与环保理念的实践,促进配电系统的现代化和智能化发展。

通过研究配电网线损计算与降损技术,可以为我国配电系统的持续发展提供技术支持和保障,推动能源管理水平的不断提升,助力实现我国能源生产和消费的可持续发展目标。

.1.3 研究方法研究方法是科学研究的重要环节,它直接关系到研究结果的可靠性和科学性。

在本研究中,我们将采取以下方法进行配电网线损计算与降损技术措施的研究:我们将对配电网线损计算方法进行详细分析和比较。

配电网电能的损耗计算及降损措施

配电网电能的损耗计算及降损措施

配电网电能的损耗计算及降损措施摘要:配电网由高压配电网、中压配电网和低压配电网组成,覆盖我国广大城市和农村,配电网的运行要保证电能质量合格、电能损耗低。

特别要注重电能损耗的控制,在此,文章主要对电能的损耗计算及降损措施进行分析,可为相关工作者提供技术参考。

关键词:配电网;电能损耗;无功补偿电能损耗是在电力网运行中发生的,它的出现不可避免,要采取措施把损耗降低。

本文将首先提出电能损耗的计算方法,其中包括电压损耗、配电线路损耗以及无功功率补偿计算等计算的方法,并且在此计算方法的基础上提出相应的降损措施。

1 配电网电能损耗计算的方法配电网电能损耗计算包括电压损耗的计算、配电线路电量损耗计算以及无功功率补偿容量计算等三部分组成。

1.1 电压损耗的计算配电网在运行功率传输时,电流将在线路等阻抗上产生电压损耗ΔU,假如始端电压为U1,末端电压为U2,则电压损耗计算公式为:ΔU=U1-U2=(PR-QX)UN式中:P为线路传输的有功功率,Q为线路传输的无功功率,UN为线路传输的额定电压,R、X为线路电阻、阻抗。

1.2 配电线路电量耗损计算在配电网中线路的年电能耗损为:ΔA=3RI■■τ×10-3=ΔPmaxτ×10-3=P2Rτ×10-3(U2cos2?渍)式中:ΔPmax为年内线路输送最大负荷时的有功功率,I■■为装置所通过的最大负荷电流,τ为最大负荷耗损时间。

如果将功率因数cos?渍由cos?渍1提高到cos?渍2时,线路中的功率耗损降低为:ΔP%=[1-(cos?渍1cos?渍2)]×100%当电压为额定值时,在农用配电网中变压器的年电能耗损为:ΔA=nΔP0t+S■■ΔP■τnS■■式中:ΔP0为变压器的铁损,ΔP■为电压器的铜损,S■为变压器的额定容量,S■■为电压器的最大负荷,t为变压器每年投入运行的时间。

1.3 无功功率补偿容量计算无功功率自动补偿装置检测瞬时功率因数,自动投切电容器,保证功率因数在设定范围内。

配电网线损计算方法及降损主要措施探讨

配电网线损计算方法及降损主要措施探讨

配电网线损计算方法及降损主要措施探讨配电网线损是指电能从供电点到终端用户的传输过程中发生的能量损耗。

线损是电网运行中一个常见的问题,不仅会造成浪费电能,还会对电网运行稳定性和供电质量产生一定的影响。

因此,针对配电网线损问题,需要采取合适的方法进行线损计算,并采取相应的措施进行降线损。

下面将对配电网线损计算方法和降线损的主要措施进行探讨。

一、配电网线损计算方法1.直接测量法:直接测量法是指在配电网的不同部位设置测量仪表,通过对电能输入和输出的测量,计算出线损值。

直接测量法的优点是测量结果可靠,但需要在各个关键位置设置测量仪表较为繁琐。

2.间接计算法:间接计算法是通过对供电所或用户户表的测量数据进行统计分析,然后推算出整个配电网的线损值。

间接计算法相对于直接测量法来说比较简单,但是其结果的准确性和可靠性会受到数据采集的影响。

3.收支法:收支法是通过统计供电所的输送电量和用户的用电量,然后进行电能收支平衡,计算出线损值。

收支法是目前配电网线损计算中应用较多的方法,其结果比较准确。

二、降线损主要措施1.优化线路设计:合理规划配电网的线路结构和电压等级,在设计中减少长线路、导线截面过小等不合理因素,以降低线路损耗。

2.优化供电侧设备:提高变电站的运行效率,确保变电站主变压器的负载率适当,减少变压器的损耗。

3.加强线路管理:加强对线路的维护和管理,及时发现并修复线路的故障和损坏,避免因线路老化和破损导致的额外损耗。

4.优化配变供电:合理规划配电变压器的容量和位置,减小变压器的空载损耗,保持变压器的运行效率。

5.优化用户侧负载:与用户协商,合理规划用户的用电负载,避免用户侧负载过大造成配电线路过载和损耗增加。

6.使用高效设备:采用高效率的配电设备和电气元件,例如低损耗变压器、低损耗开关等,以减少线损。

7.落实电力电量计量和考核:建立完善的电力电量计量和考核制度,通过对供电所和用户用电情况的计量和考核,激励供电所和用户降低线损。

配电网的网损计算与降损措施分析

配电网的网损计算与降损措施分析

毕业设计题目配电网的网损计算与降损措施分析学院自动化与电气工程学院专业电气工程及其自动化二〇一七年三月三十一日配电网的网损计算与降损措施分析摘要总结了国内外对配电网网损计算的研究情况, 介绍了传统的配电网网损计算方法; 提出采用最大电流法与新的数据处理方式相结合的线损计算方案, 充分地利用了所能采集到的运行数据, 采用持续负荷曲线直接求线损, 提高了计算精度和计算效率, 适用于10 kV 及以下的县级配电网的线损计算; 并对电力市场化后, 配电网经济运行所面临的新问题进行了分析。

关键词配电网; 网损计算; 持续负荷曲线; 经济运行随着配电自动化工作的开展, 配电网的线损管理变得越来越重要。

降低线损是提高配电网经济效益的重要因素, 采取技术措施降低线损是电力企业追求效益最优化的必然趋势。

配电网线损率是表征一个供用电企业经济效益和技术管理水平的综合性技术经济指标, 也是国家贯彻节能方针考核供用电部门的一项重要指标。

目前, 我国的线损率与世界上发达国家相比还比较高, 各省、市电力公司的线损率差距也不小, 节电潜力比较大。

因此, 进行线损的理论计算和降损分析计算, 具有重要的现实意义。

1传统的配电网网损计算分析1. 1均方根电流法均方根电流法原理简单, 易掌握, 对局部电网和个别元件电能损耗的计算或线路出口处仅装设电流表时是相当有效的。

尤其是在0. 4~10 kV 配电网的电能损耗计算中, 该法易于推广和普及。

但缺点是负荷测录工作量庞大, 需24 h 监测, 准确率差, 计算精度不高, 且由于当前我国电力系统运行管理水平所限, 缺乏用户用电信息的自动反馈手段, 给计算带来困难, 所以该法适用范围较窄。

1. 2节点等值功率法节点等值功率法方法简单, 适用范围广, 对于运行电网进行网损的理论分析时, 所依据的运行数据来自计费用的电能表, 即使不知道具体的负荷曲线形状, 也能对计算结果的最大可能误差作出估计, 并且电能表本身的准确级别比电流表要高, 又有严格的定期校验制度, 因此发电及负荷24 h 的电量和其他的运行参数等原始数据比较准确, 且容易获取。

线损理论计算方法与降损增效技术措施分析

线损理论计算方法与降损增效技术措施分析

线损理论计算方法与降损增效技术措施分析摘要:线损率是综合反映配电网规划设计、运营和管理水平的重要指标。

在电力系统中,线损是普遍存在的,如果电力企业能够及时的对线损进行处理,减少电能在传输等过程中的损耗,将会为企业带来巨大的经济效益。

本文将对配电网系统中造成技术线损的主要原因进行研究、分析,并针对技术线损提出相应的降损措施。

关键词:配电网;理论线损计算;降损措施1线损理论计算的常用方法1.1等值电量法等值电量法又成为电压损失法、电阻计算法。

在选用等值电量法计算电网线损时,需要结合实际情况,确保计算结果的精确性和可靠性。

如在配电网中能取得全部被测数据时,应当采用电量法,这种方法以三相快速牛顿分解潮流为基础;在配电网没有综合测试仪装置或者有部分综合测试仪的情况下,应当选用等值电阻法或者改进等值电阻法进行线损计算。

电压损失法以低压网运行中相关的电压数据为基础,通过线路阻抗、线路电流以及相电压转变成线电压计算得电压损耗。

另外,将甚至电阻系数的等值电阻法应用于低压配电台区的线损计算,也可以极大提高计算的精确度。

1.2改进前推回带法由于配电网实际运行过程中,代表的是各个时段的功率因数是显动态变化的,不可能准确获得,这就需要一种方法可以利用统计规律大致确定功率因数随着时间变化规律,再根据此规律分配供电量到各个时段,从而提高了计算的精确度。

该方法对传统化简的配电网线损理论计算方法的一种改进,将无功功率和线路电压损失对线损的影响同时考虑进去,在处理小电源时显得更加容易。

1.3改进迭代法改进迭代法是以前推回代法潮流迭代算法为理论基础,能完全反映出配电网络结构特征的动态链表为网络结构基础,适用于环状、网状、辐射状等多种复杂配电网线损理论计算,是在实践中应用比较广泛的一种计算方法,如损耗功率插值/拟和法、节点电压插值/拟和法、动态潮流法等方法能克服配电网运行动态时变性,提高网损计算精度。

2 配电网技术线损主要原因2.1 负荷波动幅度过大造成的线损当配电网系统运行时,其负荷曲线的形态会直接对技术线损的大小产生影响。

配电网技术线损和降损措施分析

配电网技术线损和降损措施分析

配电网技术线损和降损措施分析随着社会经济的不断发展和电力需求的不断增长,配电网的建设和运行变得越发重要。

在配电网运行过程中,线损一直是一个难题,严重影响了电网的经济性和可靠性。

如何有效地降低线路损耗,提高配电网的效率成为了当前亟待解决的问题之一。

本文将从技术角度分析配电网线损现状以及降损措施,并探讨未来的发展方向。

一、配电网技术线损现状在配电网运行过程中,线损是不可避免的。

线损主要包括导线本身的电阻损耗、变压器的铁损、铜损和磁耦合损耗以及配电设备的损耗等多个方面。

线损不仅直接影响了配电网的效率和经济性,还对环境和资源造成了浪费。

根据国家电网公司发布的数据显示,我国目前平均线损率在10%左右。

而一些地区的线损率更是高达15%以上,严重影响了电网的正常运行。

线损不仅会导致电能的浪费,还会造成线路过载,影响电力稳定供应。

二、配电网线损的主要原因1. 低电压配电线路损耗大在低电压配电线路中,电流较大,线路阻抗损耗也相对较大。

由于电流的平方与线路的电阻成正比,因此低电压配电线路的损耗对整个配电网的线损率贡献较大。

2. 配电变压器和线路设备老化随着设备的使用时间的增加,配电变压器和线路设备会出现老化和损耗,降低了设备的工作效率,增加了线路的电阻和损耗。

3. 不合理的负荷分配在一些地区,由于负荷不均导致一些线路过载,增加了线路的损耗。

4. 人为操作和管理疏漏由于人为原因,如操作不当、维护不及时等,也会增加线路的损耗。

以上种种原因都导致了配电网线损的增加,严重影响了电网的正常运行和效益。

三、配电网线损的降损措施1. 提高设备运行效率对配电变压器和线路设备进行定期检测和维护,及时更换老化和损坏的设备,保持设备的状态良好,提高设备的运行效率。

2. 提高电网的负荷能力科学合理地进行负荷配置,优化电力系统的运行结构,提高配电网的负荷能力,减少线路的过载,从而降低线路的损耗。

3. 采用新技术新材料运用新的导线技术和材料,减小线路的电阻,减少损耗。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西安交通大学网络教育学院毕业论文开题报告论文题目配电网线损计算方法及降损措施班级学号姓名联系方式__指导教师提交日期一、选题的理论意义与实际意义理论意义:电力企业为了减少线损、提高经济效益、合理利用电力资源,在进行配电网规划和接线方案比较变时,都会对线损进行系统分析、计算,对降损措施方案和效益进行预测。

降低传输和分配过程中的电能损耗是电力行业实现节能减排的重要任务,是实现少损,提高供电企业的效益和电能质量的重要措施。

实际意义:一、帮助供电公司全面分析线损的组件,从而找寻出更高效的降低损失的策略。

二、在设计电网的时候,对减损的因素考虑周到,有效优化方案,电网的更新因此被推动。

三、供电企业提高管理水平因此有了依据,将降低损耗作为参考值来提升电网的运行管理水平,将会有效的提高运行的效率,从而提升电网经济收益[5]。

四、透过分析线损结构,影响线损的因素被发掘出来,降低线损成为可能,电能损耗减少,电力供应短缺的问题因此得到了有效的解决,整体的供电能力得到提升。

二、论文综述(综述国内外有关选题的研究动态)20 世纪 30 年代,外国学者理论线损,他们通过对电力开始研究配电网系统内部的每一种设备在运行中造成损耗的机理的分析,构建了严谨的数学分析模型,分析配电网损耗量的产生过程以及统计策略。

到了 20 世纪的末期,配电网理论线损的统计分析逐渐走向成熟,专家把有关的理论、技术与配电网理论线损的统计分析结合起来分析的结果普遍运用在电力公司统计配电网理论线损的具体实践中,并且获得了巨大的成就。

对线损的理论计算研究,经过了三个发展历程:第一个阶段是70 年代,这一阶段主要以手工计算为主,因为数据往往比较大,而且非常的复杂,导致了统计需要非常多的时间,几天的时间往往只能运算一条线路,计算跟实际数额差距也比较大;第二个阶段是80 年代,这一个阶段运算的工具是诸如PC 一1500 的小型微机,相对于70 年代纯手工计算来说,计算的速度大大的提升,但是依旧存在着人际对话繁琐,获得的信息量少的问题;第三个阶段是90 年代,这一个阶段运算的工具是依赖电子计算机,计算的速度得到飞跃、计算的周期得到缩短、计算结果的精度得到提高。

以上所论述的三个阶段,虽然选择的运算工具都不一样,但是变电站出口某一典型代表日(或月)的电量、电流、电压等都是这三个阶段所选择的运行参数[11]。

因为在农村地区,用电负荷往往存在着季节性,在一些特殊的日期和月/年的平均负荷情况有着较大的差距,所以,理论计算的误差大是必然的。

除此之外,特殊日期数据存在较大误差的另外一个重要的原因是人为因素。

尽管忽略理论统计结果的差距,但是不能忽略的是传统的统计方式和统计的结果与当时电网损失不能同时开展的事实,也就意味着线损分析工作失去了指导意义。

也就是因为上面所叙述的各种原因,开展线损分析和理论计算的工作存在着很多的阻碍。

近些年,因为国内智能电网的迅速发展,相应的系统也渐渐走向了智能化的道路,同时配电网络的构建技术性越来越强,配电网理论线损计算难度越来越大。

为了不落后于智能电网,配电网自动化系统被成功研发,并且得到了普遍的运用。

配电自动化系统有着很明显的优势,例如数据采集功能强大、为配电网理论线损计算提供及时精确的数据支持。

所以,面对越来越复杂的智能配电网,为了找到与当前运行状况相符合的计算方式,相关领域的专家要充分的运用当前高科技,深入的分析研究配电网理论线损。

当前,在配电网建设领域,外国明显具有更科学的规划。

在一些高科技领域(如配电自动化系统软件以及有关的高级计算机软件的应用)外国的专家更加重视研究软件和技术智能化、集成化、网络化。

关于配电网理论线损统计,外国专家关注的焦点在于研究配电网线损的探析方式和降低损耗策略。

例如:优化无功规划、系统恢复时的网络重构评价函数、无功运行和有关技能的分析、目标定位于减少配网线损等,所针对的并不仅仅是减少损耗。

模糊理论逼近法、人工智能算法、数据聚类等是近年来外国研究经常运用的新技能。

当前,一些供电公司(电能采集终端覆盖好)实现了在数据库领域整合变电站抄表系统、EMS 系统、负荷控制系统数据等数据,线损在线统计与分析系统被研发出来。

但是这些系统依旧存在着很多的问题,例如:数据接口复杂、数据整合度低、监测分析效率低、业务有效整合还没有实现、高效进行大规模线损分析的需求还是没有得到满足等。

在国内外研究成果的基础上,本文将会根据配电网运行的实际状况,以特定区域的运行管理经验作为依据,对合理的配电网理论线损计算方法进行细致分析,以此制定出科学的降损策略,增强电网运转的效率,让地方配电网能够得到发展。

三、论文提纲1绪论1.1课题研究背景和意义1.2国内外研究现状1.3论文主要工作2 配电网线损计算理论基础2.1 线损的组件和类别2.2 配电网理论线损运算基础2.3 配电网理论线损一般计算步骤2.4 分析计算模型第3 章配电网降损措施3.1 电网降损管理措施3.2 电网降损技术措施3.3 降低配电变压器电能损耗第4 章总结四、与选题相关的主要参考文献[1]虞忠年, 陈星莺, 刘昊. 电力网电能损耗[M]. 中国电力出版社, 2001.[2]中华人民共和国电力工业部电力网电能损耗计算导则[Z]. 1998.[3]王成山, 王守相. 基于区间算法的配电网三相潮流计算及算例分析[J]. 中国电机工程学报, 2002, 22(3):58-62.[4]何健, 丁侣娜. 可视化配电网线损理论计算软件的开发应用[J], 浙江电力, 2002, (3):6-9.[5]Hsu C.T., Tzeng Y.M., Chen C.Z., Distribution Feeder Loss Analysis by using an Artificial neural Network[J]. Electric Power Systems Research, 1995, 34(2):85-90[6]Schaffer J.D., A study of control Parameters Affecting online Aerformance of ge netically Gorithms for Function Optimization[C]. Proc3rd conf Geneh Algorithms, 19 89, 1575-1583.[7]李占昌, 利用实施监控系统计算实际线损的研究与实践[D]. 西安: 西安理工大学.[8]蔺格晒, 王国强. 配电网理论线损计算分析系统的研究与开发[J]. 青海电力, 1999, (2): 12-17.[9]罗毅芳, 刘巍, 师流忠等. 1997. 电网线损理论计算与分析系统的研制[J]. 中国电力, 3 0(9): 37-39[10]王春生, 彭建春, 永红. 配电网线损分析与管理系统的研制[J]. 华北电力技术, 1999, 25(11): 50-52.[11]Michalewicz, Z., A modified genetically Gorithm for optimal Control Problems[C]. Computer Math Applic., 1992, 23(12):83-94.[12]Steven T., Bruce A., Kirchhoff and Scott Newber. Differentiating Market Strate gies for Disruptive Technologies[J]. IEEE Transactions on Engineering Managemen t, 2002, 49(4):341-350.[13]Jun Y., The Impact of Transmission Network on the Market Strategies. Inaugu ral[C], IEEE PES Conference and Exposition, 2005, 40(7):88~91.[14]Bhuiya, A., Chowdhury, N., Huq, M. Optimum Market Strategy for An Indepen dent Power Preducer[J], Technology Driving Innovation, 2004, 1937-1942.[15]Ross, D.W., Kim S., Dynamic Dispatch of Generation[J]. IEEE Trans on Power Systems, 1980, 99(6):151-158.[16]Nazarko, J., Styczyski, Z., Poplawski, M., The Approach to energy losses calc ulations in low voltage distribution networks[J]. IEEE Engineering Society Winter M eeting, 2000, 150(46):1589-1597.[17]王瑞, 林飞, 游小杰. 基于遗传算法的分布式发电系统无功优化控制策略研究[J]. 电力系统保护与控制, 2009, 37(2):24-27.[18]蔡金锭,孙轶群.计及分布式发电的配电网快速潮流算法[J]. 电力科学与技术学报, 2008, 23(4):62-66.[19]Alemi, P., Gharehpetian, G.B., DG Allocation Using an Analytical Method toMi nimize Losses and to Improve Voltage Security[C]. Power and Energy Conference, 2008, 190(80):1575-1580.[20]王锡凡. 电力系统优化规划[M]. 北京:水利电力出版社, 1990.[21]蓝毓俊. 现代城市电网规划设计与建设改造[M]. 北京:中国电力出版社, 2004.[22]Romero R., Gallego, R., A., Monticelli, A., Transmission system expansion pla nning simulated annealing[J]. IEEE Transactions on Power Systems, 1996, 11(1):8 22-828.[23]Vladimiro, M., Ranito J.V., Proenca, L.M., Genetic algorithms in optimal multist age distribution network planning[J]. IEEE Transactions on Power Systems, 1994, 9(4):1927-1933.[24]谢敏, 敬东. 遗传算法在配电网规划中的应用[J]. 电站系统工程, 2002, 18(1):30-32.[25]杨文字, 刘键, 余健明,等. 配电网分段和联络开关的优化规划[J]. 中国电力, 2004, 37(2):50-54.五、论文写作进度安排。

相关文档
最新文档