散热器设计

合集下载

散热器尺寸设计计算方法

散热器尺寸设计计算方法
则散热器的总换热量为
对于表面做镀黑处理的散热器辐射换热量约为对流换热量的40%。
则散热器的总换热量为
5.模块功耗 的计算:可近似用变频器功率*%作为模块的功耗。
结论:通过计算的Q与实际模块的损耗值P进行对比,如果超出很多说明散热器的设计冗余较大。
二.
1.散热器与空气的表面对流换热系数 的计算:
对于直径120mm以下尺寸轴流风机 可近似取30W/(m2*K)
强迫风机不计算辐射换热量
则散热器的近似对流换热量
5.模块功耗 的计算:可近似用变频器功率*%作为模块的功耗。
结论:通过计算的Q与实际模块的损耗值P进行对比,如果超出很多说明散热器的设计冗余较大。
散热器尺寸ห้องสมุดไป่ตู้计计算方法
判断依据:
其中 :散热器换热量,W
:散热器与空气的表面对流换热系数,W/(m2*K)
:散热器表面积,m2
:散热器平均温度,℃
:空气温度,℃
一.自然冷却
对流换热量
1.散热器与空气的表面对流换热系数 的计算:
自然冷却, 可以近似取5W/(m2*K)
2.散热器表面积 的计算:
散热器的表面积可近似为翅片的表面积
其中
:散热器长度
:翅片高度
n: 翅片个数
3.空气温度 取45℃。
4.散热器平均温度 的计算
自然冷却时,散热器均稳性能较好,在环境温度为45℃时,我司测试标准为散热器NTC最大温升45℃,此时散热器的平均温升约40℃,,取5℃的安全余量,散热器平均温度75℃。
则散热器的对流换热量
辐射换热量
对于表面未做处理的散热器辐射换热量约为对流换热量的25%。
对于直径120mm以上尺寸轴流风机 可近似取45W/(m2*K)

散热器设计所需参数

散热器设计所需参数
1、水散热器需要的参数:
序号
参数名称
单位
备注
1
发动机型号
2
发动机最大功率
kw
3
发动机对应转速
rpm
最大功率时
4
对应水套散热量
kw
最大功率时
5
设计环境温度

6
发动机最大扭矩
N·m
7
发动机对应转速
rpm
最大扭矩时
8
对应水套散热量
kw
最大扭矩时
9பைடு நூலகம்
水套允许最高水温

发动机出水温度
10
冷却液流量
L/min
11
节温器开启温度

12
节温器全开温度

13
冷却液类型
乙二醇:水
14
冷却系统压力
kPa
散热器的最大外形尺寸,长、宽、厚,散热器与整机间的相对位置、连接尺寸,及进出水管位置和直径。
风扇参数
风扇风量-风压参数表
序号
参数名称
单位
数值
备注
1
风扇直径
mm
2
叶尖尖端最大速度
m/min
3
叶片数量

4
叶片宽度
mm
5
风扇型式
吹、吸风
2、中冷器需要的参数:
中冷器的散热量,压缩空气进、出口温度,进气量,最大工作压力。

散热器尺寸设计计算方法

散热器尺寸设计计算方法

散热器尺寸设计计算方法1.散热器面积计算:散热器的面积是散热效果的关键因素之一、根据散热器的材料、形状和工况要求,可以计算出散热器需要的面积。

常用的计算公式如下:A=Q/(U*ΔT)其中,A为散热器面积(m^2),Q为需要散热的功率(热量,W),U为散热器的总传热系数(J/(m^2·s·K)),ΔT为散热器的温差(K)。

2.散热器尺寸计算:散热器的尺寸也是影响散热效果的重要参数。

常用的尺寸设计计算方法有以下几种:(1)翅片间距计算:翅片间距是翅片散热器的一个重要参数,影响散热器的散热面积。

一般情况下,翅片间距需要与相邻的翅片高度相等,以确保散热面积充分利用。

翅片间距计算公式如下:S=H/(N+1)其中,S为翅片间距(m),H为散热器的高度(m),N为翅片数量。

(2)翅片厚度计算:翅片厚度会影响散热器的散热效果和机械强度,一般情况下,翅片厚度越小,散热效果越好。

根据散热器的散热面积和翅片的数量,可以计算出翅片的厚度。

翅片厚度计算公式如下:T=A/(N*L)其中,T为翅片厚度(m),A为散热器的面积(m^2),N为翅片数量,L为散热器的长度(m)。

(3)散热管直径计算:散热管的直径也是散热器的一个重要尺寸参数。

直径越大,散热效果越好,但同时也会增加材料成本。

根据散热器的总传热系数和散热管的数量,可以计算出散热管的直径。

D=sqrt((4Q)/(P*π*N))其中,D为散热管的直径(m),Q为需要散热的功率(W),P为散热管的壁厚(m),N为散热管的数量。

除了上面介绍的计算方法,根据具体的散热要求和特殊情况,也可以采用一些其他的尺寸设计计算方法。

需要根据实际情况选择合适的计算方法,确保散热器的散热效果和稳定性。

散热器设计方案

散热器设计方案

散热器设计方案散热器设计方案一、背景介绍随着电子设备的迅速普及和多样化,散热问题成为了一大挑战。

为了确保电子设备的正常运行和延长其使用寿命,散热器的设计变得至关重要。

本文将提出一种新型的散热器设计方案,以满足高效散热的要求。

二、设计目标1. 提高散热效率:尽可能减少电子设备的温度,确保其正常工作;2. 提高散热器的稳定性:保证长时间运作不损坏;3. 减小散热器的体积:以适应小型电子设备的需求;4. 降低成本:以确保产品的竞争力。

三、设计原则1. 采用铝合金材料:铝合金具有良好的导热性能,能够有效地散热;2. 优化散热片的结构:通过增加散热片的数量和表面积,提高散热效率;3. 采用风扇辅助散热:通过风扇的对流作用,增强散热效果;4. 考虑散热器的布局:确保空气能够充分流过散热器,提高散热效率;5. 提高散热器的稳定性:确保散热器的结构经得起长时间的运作,不失效。

四、设计方案1. 散热器材料选择:采用铝合金材料,具有良好的导热性能,能够有效地散热;2. 散热片的设计:通过增加散热片的数量和表面积,提高散热效率。

散热片之间采用间隔排列,以便空气流过散热片时能够充分散发热量;3. 风扇辅助散热:在散热器上安装风扇,通过对流作用增强散热效果。

风扇具有可调速的功能,以适应不同散热需求;4. 散热器的布局:根据电子设备的布局,合理安排散热器的位置和方向,确保空气能够流过散热器,提高散热效率;5. 提高散热器的稳定性:选用高强度材料制作散热器的承载结构,采用耐高温耐腐蚀的焊接工艺,确保散热器能够经得起长时间的运作。

五、设计效果分析经过以上设计方案的实施,散热器的散热效率明显提高,能够满足高效散热的要求。

散热器的稳定性得到了提升,长时间运作也不易损坏。

散热器的体积较小,适应了小型电子设备的需求。

根据采用的材料和工艺,散热器的成本也得到了降低。

六、结论本文提出的散热器设计方案,通过优化散热片结构、增加风扇辅助散热和合理布局等手段,提高了散热器的效率和稳定性,降低了成本。

散热器设计方法

散热器设计方法

散热器设计1.常用散热器介绍对于安装在PCB表面的元器件来说,其内部热量主要通过热传导的方式进入PCB和元器件表面,之后通过对流换热和热辐射的方式进入周围环境;由于元器件表面的面积要远小于PCB表面积,所以通过元器件表面散热的热量相对较少,因此我们在元器件表面安装散热器,使得元器件上方的散热面积得到扩展(如上图所示),更多热量通过热传导的方式进入元器件上表面,之后再由散热器进入周围环境中。

散热器的材料、加工工艺和表面处理是散热器生产的三个重要因素,会影响到散热器的性能和价格。

1.1散热器材料散热器的材料主要有:铝、铝合金、铜、铁等。

铝是自然界中存储最丰富的金属元素,而且质量轻、抗腐蚀性强、热导率高,非常适合作为散热器的原材料。

在铝中添加一些金属形成铝合金,可以答复提升材料的硬度。

在上章的材料介绍中,我们知道铜的导热率是最好的(比铝高将近一倍),但是它的密度也比铝要大3倍,所以相同体积的散热器要比铝重很多;铜存在着加工难度大、熔点高、不易挤压加工以及成本高等缺点,所以铜散热器的应用要比铝合金少很多,但是随着对电子产品性能要求的越来越高,导致单位体积的功耗大幅增加,所以铜材料散热器的应用越来越多。

1.2散热器加工工艺散热器的加工工艺主要有CNC、铝挤、压铸、铲齿、插齿、扣Fin。

1. 铝挤型:铝挤型散热器是将铝锭加热至460℃左右,在高压下让半固态铝流经具有沟槽的挤型模具,挤出散热器的初始形状,之后再进行切断和进一步加工。

——铝挤型工艺无法精确保证散热器的平面度等尺寸要求,所以通常后期还需要进一步加工。

1, 铝挤型散热器模具成本可以分摊到每一个散热器中,对于大批量产的应用成本较低;2, 齿片高度和齿片间距的比值(Z/X)有限制,通常不建议超过15。

2. 压铸:压铸是一种将熔化合金液体在高压的作用下高速填充钢制模具的型腔,并使合金液体在压力下凝固而形成铸件的加工方法;压铸散热器如下图所示,其尺寸不够精确、表面不光洁(热辐射小)以及星体复杂等特点,后期需要进一步加工;1, 压铸散热器的成本主要在于压铸模具、原材料、机加工和表面处理等,其模具成本较高,适合大批量生产的场合(分摊模具成本);2, 压铸散热器形态比铝挤压性散热器更加多样性,但是散热性能相对更差;3. 铲齿:铲齿是将长条状金属板材通过机械动作,成一定角度将材料切除片状并进行校直,重复切削形成排列一直的翅片结构,如下图所示;铲齿散热器没有模具费用,适用于小批量生产需要的场合,其生产成本主要是:原材料、铲齿加工、CNC加工、表面处理等,铝合金和铜是常用的铲齿散热器材料。

水冷散热设计要点

水冷散热设计要点

水冷散热设计要点水冷散热是一种有效的散热方式,适用于高功率电子设备和计算机等领域的热管理。

下面是水冷散热设计的要点。

1.散热器设计:-散热器是水冷散热系统中最关键的部件之一、散热器的设计应考虑到散热面积、散热翅片的形状和布局、散热管的数量和长度等因素。

散热器的散热面积越大,散热效果越好。

-散热翅片的形状和布局应该能够有效增加散热面积,并且能够保证气流顺利流过翅片,提升散热效果。

常见的翅片形状有直翅片、扇形翅片和锯齿翅片等。

-散热管的数量和长度影响散热器的散热能力。

散热管数量越多,散热能力越强。

同时,散热管的长度也要符合设计要求,过长或过短都会影响散热效果。

2.水冷散热系统的泵的设计:-泵是水冷散热系统中的关键组件之一、泵的设计应考虑泵的扬程、流量和噪音等因素。

-泵的扬程是指泵能提供的水的压力。

泵的扬程应满足系统中其他设备的水流需求,同时要避免过高或过低的扬程。

-泵的流量是指泵每秒钟能提供的水流量。

泵的流量应满足系统对水流量的需求,可以根据系统的热负荷和换热流体的流速来确定。

-泵的噪音也是需要考虑的因素。

选择低噪音的泵可以提升整个系统的工作环境。

3.换热介质的选择:-换热介质是指在散热器和散热设备之间传递热量的介质。

常见的换热介质有水、乙二醇水溶液、润滑油等。

-选择合适的换热介质要根据系统的工作环境、温度范围、传热性能要求等因素综合考虑。

水是一种常用的换热介质,具有传热效果好、成本低等优点。

但在低温环境下,水可能会结冰,影响系统的工作稳定性。

乙二醇水溶液可以有效降低水的结冰点,适用于低温环境的散热。

润滑油适用于高温环境下的散热。

4.散热系统的管路设计:-散热系统的管路设计需要考虑到管道直径、管道长度、弯头、阀门等因素。

管道直径越大,管道的流量越大,散热能力越强。

-管道的长度要尽量减少,减少管道内水流阻力。

同时,管道内的水流应保持连续,避免突然变窄或弯曲,影响水流的流畅性。

-管道中的阀门和弯头也会影响水的流通和损耗。

散热器尺寸设计计算办法

散热器尺寸设计计算办法

散热器尺寸设计计算办法
一、散热器尺寸设计原则
1、尽量缩短散热器和机械系统之间的体积,减少机械阻力。

2、尽量减少散热器尺寸,为后期组装及安装提供更多空间。

3、尽量增大内外表面积,保证散热器合理及有效的使用散热效率。

4、按照热负荷型号确定体积大小,且尽量压缩散热器尺寸,即减少散热器长度和宽度,以提高热传导效率。

二、散热器尺寸设计具体计算
1、热负荷计算:
热负荷是指每小时需要外界加热源提供的热量,单位是千焦(KJ)。

一般将热负荷分为三种:
(1)有固定输入功率的机械设备
由机械设备的实际功率可计算出机械设备的需要加热的热量,即机械设备的热负荷。

(2)有固定温度的机械设备
机械设备的热负荷可由其温度的改变量和密度等物理参数计算出来,具体计算公式为:
热负荷=物体所换热量(KJ)=易蒸发量(Kg)*全比焓*温差(℃)(3)有固定温升量的机械设备
机械设备的热负荷可由其实际功率及温升量计算出来,具体计算公式为:。

几种常见的散热器增强设计方法

几种常见的散热器增强设计方法

几种常见的散热器增强设计方法
散热器增强设计是为了提高散热器的散热效率和性能,常见的
几种方法包括:
1. 增加散热片数量和密度,增加散热片的数量和密度可以增加
散热器的表面积,提高散热效率。

通过增加散热片的数量和密度,
可以增加散热器与空气之间的热交换面积,从而提高散热效果。

2. 使用高导热材料,散热器的材料对散热性能有很大影响。

使
用高导热材料可以提高散热器的导热性能,例如铜、铝等金属材料
具有良好的导热性能,可以提高散热器的散热效率。

3. 增加风扇数量和转速,在散热器上增加风扇可以增加空气流
动量,提高散热效率。

同时增加风扇的转速也可以增加散热器的散
热效率,但需要注意噪音和能耗的问题。

4. 使用热管技术,热管是一种高效的热传导元件,可以将热量
快速传导到散热器的散热片上,提高散热效率。

通过使用热管技术,可以有效地提高散热器的散热性能。

5. 优化散热器结构,通过优化散热器的结构设计,如增加散热器的散热面积、改变散热片的形状和布局等,可以提高散热器的散热效率。

总的来说,散热器增强设计方法包括增加散热片数量和密度、使用高导热材料、增加风扇数量和转速、使用热管技术以及优化散热器结构等多种途径,这些方法可以综合应用来提高散热器的散热效率和性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

散热器设计
课程设计名称:电子技术课程设计;题目:专业:电气与控制工程班级:电气姓名:李鑫学号;的风扇控制器;07-40705040411;课程设计成绩评定表;课程设计任务书;一.设计题目;能模拟自然风和能定时关机的电风扇控制器二.设计任;1.设计一能模拟自然风和能定时关机的电风扇控制器;三.设计计划;电子课程设计共1周第1天:选题查资料第2天:方案;第5天:电路一.设计题目能模拟自然风和能定时关机的电风扇控制器二.设计任务
1.设计一能模拟自然风和能定时关机的电风扇控制器电路2.用模拟或数字电路完成,不得采用单片机, 3.用EWB软件仿真分析三.设计计划
电子课程设计共1周第1天:选题查资料第2天:方案确定,第3—4天:电原理图设计
第5天:电路仿真, 设计说明书编辑输出
四.设计要求
1.系统工作原理
2.画出整个系统电路原理图
3.功能仿真分析,仿真分析结果图形曲线 4.心得体会,发展方向
5.电路中图形符号必须电脑绘制,并符合国家制图标准
为了进一步提高我们对所学知识的运用能力,本文为主要设计一电风扇控制器,
由555定时器,与非门,非门,四—十六线译码器四大部分组成,各部分各有其重要作用,对风扇控制器的性能还有几方面的要求,具有模拟自然风和定时开关功能,通过对它的安装、设计和调试学会了如何设计风扇控制器。

对各种芯片的认识结合所学电路原理组合电路,构成电路的元件也具有简单、价格低廉、容易实现等特点。

所以该控制电路是初级设计者不错的练习设计的方案。

电风扇控制器通过对晶闸管触发电路的控制,能够模拟自然风。

通过对脉冲振荡器的调节和脉冲计数实现定时关机。

关键词:金旗舰铜铝复合暖气片60/100 综述;炎炎夏日,电风扇是人们生活中不可缺少的物品,然而;本文针对常规电风扇长期吹风会给人带来不适而设计能;1.设计方案与分析;1.1方案一;本方案介绍的模拟自然风控制器;该模拟自然风控制电路由电源电路和控制电路组成如下;图1-1方案一原理图;交流220V电压经电源变压器T降压,整流二极管V;路IC1稳压后,在滤波电容器C1两端产生+12V;IC2的2脚为触发四个输出端所组成的分频系数为:210+29+28+23=1800。

这就是说,当上述四个输出端输出为11 11时,D1输出低电平,并加至IC1的4脚,使脉冲振荡器停振,实现了定时停机功能。

如果将SA置于3档位,脉冲振荡器输出频率为0.5Hz的脉冲,通过1800分频后,其定时时间为0.25h。

课程设计心得体会
一直以来对数电模电的学习只是简单的停留在基础的理论阶段也从来不曾了解这些知识在生活中的应用和作用,通过这次课程设计使
我明白了原来我学的东西与我们的实际生活有着如此紧密的联系使我更坚定了努力学习知识的决心,同时我也感觉到我的动手、思考和解决问题的能力得到了显著的提高.面对一些从来没有使用的的软件,和从未遇到过的问题我从刚开始的手忙脚乱到最后的胸有成竹,我感觉我自己在这次设计中真的受益匪浅。

当然我设计的顺利完成离不开我的老师和同学尤其是我的指导老师谢国民老师给予我的指导方向,使我的设计明朗化。

现在设计已经做好了,在短短的一周时间内 ,但学到了很多东西.做课程设计的时候,自己不断的翻阅资料,增强了自己对知识的理解,甚至一些以前不懂的问题现在都明白了.在课程设计的过程中,我寻找了多种方案,查阅资料给予了我多种选择最终在老师的指导下以及自己综合分析后选取了最终的设计方案。

也许这只是一个小小的设计,但这对于我来说绝对是一次难得的自我展示的经历以及对自己所学知识合理应用的机会。

同时设计的过程是自己个人探索知识的过程也是和同学共同进步的过程,和同学一起共同研究问题发挥多人智慧,最终使得复杂的问题得以轻松解决也是对我合作意识的考研与锻炼。

最后我要由衷的感谢在实践过程中给了我很大的帮助和鼓励的谢国民老师,没有你的指点就不可能有我完整的设计。

相关文档
最新文档