离心风机性能测试实验

合集下载

风机性能曲线实验报告

风机性能曲线实验报告

教学实验泵与风机离心式风机性能实验实验报告班级:学号:姓名:能源与动力工程学院2017年11月离心式风机性能实验台实验指导书一、实验目的1.熟悉风机性能测定装置的结构与基本原理。

2.掌握利用实验装置测定风机特性的实验方法。

3.通过实验得出被测风机的气动性能(P-Q,P st-Q,ηin-Q,ηstin-Q ,N-Q曲线)4.通过计算将测得的风机特性换算成无因次参数特性曲线。

5.将试验结果换算成指定条件下的风机参数。

二、实验装置根据国家关于GB1236《通风机空气动力性能实验方法》标准,设计并制造了本试验装置。

本试验装置采用进气试验方法,风量采用锥形进口集流器方法测量。

装置主要分三部分(见图1)图1 实验装置示意图1.进口集流器2.节流网3.整流栅4.风管5.被测风机6.电动机7.测力矩力臂8.测压管9.测压管试验风管主要由测试管路,节流网、整流栅等组成。

空气流过风管时,利用集流器和风管测出空气流量和进入风机的静压Pest1,整流栅主要是使流入风机的气流均匀。

节流网起流量调节作用。

在此节流网位置上加铜丝网或均匀地加一些小纸片可以改变进入风机的流量。

测功率电机6,用它来测定输入风机的力矩,同时测出电机转速,就可得出输入风机的轴功率。

三、实验步骤1.将压力计(倾斜管压力计)通过联通管与试验风管的测压力孔相连接,在连接前检查测压管路有无漏气现象,应保证无漏气。

2.电动机启动前,在测力矩力臂上配加砝码,使力臂保持水平。

3.装上被测风机,卸下叶轮后,启动测功电机,再加砝码ΔG´使测力矩力臂保持水平,记下空载力矩(一般有指导教师事先做好)。

4.装上叶轮,接好进风口与试验风管,转动联轴节,检查叶轮是否与进风口有刮碰磨擦现象。

5.启动电机,运行10分钟后,在测力臂上加配砝码使力臂保持水平,待工况稳定后记下集流器压力ΔPn,静压Pest1,平衡重量G(全部砝码重量)和转速n。

6.在节流网前加铜丝网或小圆纸片,使流量逐渐减小直到零,来改变风机的工况,一般取十个测量工况(包括全开和全闭工况),每一工况稳定后记下读数。

风机性能曲线测定——流体输配管网

风机性能曲线测定——流体输配管网

风机性能曲线测定实验指导书一.实验目的1.熟悉风机性能测定装置的结构与基本原理。

2.掌握利用实验装置测定风机特性的实验方法。

3.通过实验得出被测风机的性能曲线(P-Q ,Pst-Q ,η-Q , N-Q 曲线)4.将试验结果换算成指定条件下的风机参数。

二.实验原理离心通风机是使气体流过风机时获得能量的一种机械。

气体实际所获得的能量,等于单位体积在风机出口与入口处所具有的能量差,若气体的位能忽略不计,则风机出口与进口的能量差为:2222221121212111()()()()[]222P P V P V P P V V Ps Pd mmH O ρρρ=+-+=-+-=- (1) 式中:P S =P 2-P l ——风机的静压Pd =ρ(V 22-V 11)/2——风机的动压 P =P s 十P d ——风机的全压如果风机是从静止的大气中抽取气体,即V 1≈0,P 1=P a ,则风机的静压就是风机出口静 压的表压值。

P S =P 2-P a [mmH 2O ] (2)风机的动压就是风机出口的动压。

Pd =ρV 22/2 (3)风机的性能曲线通常为流量与全压(Q-P),流量与静压(Q-Ps) ,流量与功率(Q-N),流量与效率(Q-η) 四条曲线。

若绘制这些曲线,需要测出实验状态和实验转速下的参数:静压Pst ,动压Pd 和流量Q 2。

三.测试计算1.风机的动压风机的动压是用毕托管测量得到,毕托管的直管必须垂直管壁,毕托管的弯管嘴应面对气流方向且与风管轴线平行,其平行度不大于5°。

2.风机的静压风机出口静压为静压点处静压Pst 加上从风机出口到静压点测量界面间的静压降。

出口静压 224.44[]DPst Pst Pd mmH O Dλξ=+⋅ (4)式中:λ一一测试管路沿程阻力系数,取λ=0.0253.风机出口处气体密度232013.60.359()[/]273Pst Pa kg m tρρ+=+ (5) 式中:Pa ——大气压力[mmHg]ρo ——标准状态下的空气密度ρo = 1.293 [kg/m 3] P st ——风机出口静压[mmH 2O] 4.风机的流量22222()[/]44D D Q V m s ππ=⋅=(6)式中:ξ——毕托管校正系数。

离心风机性能试验

离心风机性能试验

离心风机性能试验一.试验目的风机性能试验的目的在于掌握离心式风机性能测试的方法,求得离心式风机在给定转速下标准进气状态时的空气动力性能,并给出其特性曲线,从而提供风机合理的工作范围。

二.实验内容采用计算机自动测试的方法获取离心式风机性能曲线。

三.试验装置和仪器图1 进出气联合试验装置简图系统由风机试验台、传感器、数据采集器、PC机和打印机组成。

风机进出口静压测量采用FG300 A 06 BIN M5智能压力变送器,动压测量采用FG700 DP 3 S J1 B M3智能差压变送器,输出为4~20mA电流信号。

电机功率测量采用三相交流有功功率变送器,输出为0~+5V电压信号。

风机转速测量采用红外光电转速传感器,输出为脉冲信号。

数据采集器的任务是将传感器输出的电流、电压以及脉冲信号进行整形、滤波、放大,然后在8051单片机控制下进行A/D变换,所得的结果经RS232标准通讯接口传送给PC机,进行数据的分析、计算及显示,并可将计算结果存于硬盘或打印输出。

四.操作方法及实验步骤1.按规定要求连接传感器、数据采集器的电源线及信号线,然后开启电源。

2.在PC机上运行测试软件,从下拉式菜单上选择“数据采集”选项,此时屏幕显示风机的全压、静压、轴功率及效率坐标图,各坐标图上均有一红点,分别表示当前风机的全压、静压、轴功率及效率随流量的变化关系,当风机的工况改变时,红点亦会随之移动。

3.关闭风机出口节流锥,开启电机电源,缓慢开启节流锥,逐渐增大风机流量,同时观察计算机屏幕上四个坐标图中红点的位置,在需要采集数据的工况点,按“回车”键,此时屏幕上的红点变成白点,表示计算机已采集了该工况点处的数据。

按此方法,在0~最大流量范围内采集7~10个工况点的数据,数据采集工作即告结束。

4. 从计算机下拉式菜单上选择“特性曲线”选项,计算机立即将屏幕上全部的工况点拟合成特性曲线。

5. 通过打印机可打印出测试系统图,风机的全压、静压、轴功率及效率曲线,也可打印出原始的测试数据。

离心式风机性能测定实验总结与反思

离心式风机性能测定实验总结与反思

离心式风机性能测定实验总结与反思实验目的:本实验的目的是通过测定离心式风机的性能参数,包括风量、静压和功率,进一步了解离心式风机的工作原理和性能特点,并对风机的性能进行分析和评价。

实验内容:本实验采用了直接测量和间接测量相结合的方法来测定离心式风机的性能参数。

具体的实验内容包括:测定风机的风量、静压和功率;测定不同负载下的风机效率;绘制风机性能曲线。

实验结果:根据实验数据的测量和计算,得到了风机在不同负载下的风量、静压、功率和效率的数据。

通过绘制风机性能曲线,可以得到风机的最大风量和静压点。

实验总结:通过这次离心式风机性能测定实验,我对离心式风机的工作原理和性能有了更深入的了解。

实验中,我们使用了直接测量方法和间接测量方法相结合的方式来测定风机的性能参数。

直接测量的方法包括使用风量计来测量风量和使用压力计来测量静压;间接测量的方法是通过测量电压和电流来计算功率。

这样的综合测量不仅考虑到了风机的风量和静压,还考虑到了风机的功率和效率,可以全方位地了解风机的性能。

在实验过程中,我们还注意到了一些实验操作中可能出现的误差和问题。

首先,由于测量仪器和设备的精度有限,实际测量值与理论值存在一定的误差。

其次,风机的运行状态(如叶轮的转速、叶轮和壳体之间的间隙等)也会对性能参数的测量结果产生一定的影响。

此外,在测定风机的负载特性时,我们还发现风机的效率并不是随负载增加而增加的,而是在其中一负载点达到最大效率,然后随着负载继续增加而逐渐下降。

通过对实验结果的分析,可以得出以下结论:离心式风机的性能主要受到叶轮的设计和转速的影响,适当调整叶轮的叶片角度和叶轮的直径可以改变风机的风量和静压;风机的效率会受到负载的影响,最大效率点是在风机的额定工况下,随着负载的增加效率会下降。

实验反思:在进行这个实验的过程中,我深刻认识到了实验操作的重要性。

首先,测量仪器和设备的选择和使用要准确可靠,尽可能减小误差的产生。

其次,实验中的细节操作也十分重要,如将测量仪器与风机的连接处密封好,调整好叶轮的转速和负载等。

离心式风机性能测定实验总结与反思

离心式风机性能测定实验总结与反思

离心式风机性能测定实验总结与反思实验日期:XXXX年X月X日实验目的:测定离心式风机的性能参数,评估其风量和风压特性实验总结与反思:在本次离心式风机性能测定实验中,我们成功地测定了风机的性能参数,并对其风量和风压特性进行了评估。

以下是我们对实验的总结与反思:1.实验准备:在实验前,我们详细了解了离心式风机的工作原理和性能测定的方法。

我们正确选择了适合的实验设备,并对实验装置进行了校准和调试。

实验材料和工具准备充分,确保实验能够顺利进行。

2.实验步骤:我们按照实验计划和操作手册的指导,依次进行了实验步骤,包括启动风机、测量流量、测量风压等。

我们小心谨慎地操作,确保数据的准确性和可靠性。

3.数据记录与分析:我们仔细记录了每一组实验数据,并使用合适的工具和软件对数据进行了分析和处理。

我们绘制了风量-风压曲线图,并计算了相关的性能参数,如风机效率、功率等。

4.结果与讨论:通过对实验数据的分析,我们得出了对离心式风机性能的评估结论。

我们发现风机的风量随着风压的增加而递减,而风机效率在不同风压下具有一定的变化规律。

我们讨论了其中的原因,并与理论模型进行了比较和对照。

5.实验误差与改进:在实验过程中,我们也发现了一些误差和改进的空间。

例如,在测量流量时,由于实验条件的限制,可能存在一定的漏风和泄漏,导致结果的准确性有所影响。

下次实验中,我们将更加注意这些问题,并采取措施进行改进。

6.总结与展望:通过本次实验,我们对离心式风机的性能特性有了更深入的了解,也掌握了相应的实验技能和数据处理方法。

在以后的研究和工作中,我们将更加注重实验方法的改进和创新,以提高实验结果的可靠性和准确性。

通过这次实验的总结与反思,我们发现了实验中存在的问题,并提出了改进的方向。

我们将在以后的实验中借鉴这些经验,不断提升自己的实验能力,并取得更好的实验结果和研究成果。

离心风机性能测定实验

离心风机性能测定实验

实验报告实验项目名称:离心风机性能测定实验一、实验目的与要求1.熟悉风机各项性能参数及测试方法;2.测定固定转速下离心风机的特性曲线。

二、实验方案1.记录各项实验常数:ρ:空气密度(kg/m3),由温度计读出,查表得出'ρ:微压计内酒精密度(kg/m3)一般可取800 kg/m3α:微压倾角:( o )d:风管直径( m )A':风机出口面积(m2 )L:平均电机力臂长度L ( m )2.将阀门关闭,开启风机此时Q=0,测定零流量时的P、N值,对离心风机,此时功率最小,η=0。

3.逐渐加大阀门开度,每加大一次开度,测定一组Q,P,N值和计算一次η值,逐次加大开度可得出不同流量Q下的P,Q,η值。

4.将实验结果点绘在方格纸上,即为转速n下的P-Q,N-Q和η-Q曲线。

5.完成表2三、实验结果和数据处理表2 风机的性能参数四、结论答:离心风机转速固定不变时,由上表数据规律可得:风量与风轴功率成正比关系,随着风量的增加而增加;风量与全压成反比关系,随着风量的增加而减少;风量与风机效率成抛物线关系,随着风量的增加而先增大后减小,故选择合适的工作状态点对于充分发挥风机的效能有很大的作用,而不是风机的轴功率越大其效率越大。

这里我们可以选择风机性能曲线中的Q-η的最高点。

五、问题与讨论1.绘制所测风机的性能曲线图2.为什么离心式泵与风机性能曲线中的Q-η曲线有一个最高效率点?答:风机的全压效率η=有效功率/轴功率=PQ/N S;因为上式分子部分有效功率中全压P与风量Q成反比关系,分母部分中轴功率N S与风量Q成正比关系,所以当风量增加时性能曲线中的Q-η曲线有一个最高效率点。

泵与风机实验指导书

泵与风机实验指导书

《泵与风机实验》实验指导书及实验报告工程热物理教研室编泵与风机实验室华北电力大学(北京)二OO八年五月前言⒈实验总体目标通过学生亲自实践《泵与风机》课程的三个实验,增强学生综合分析能力、实验动手能力、数据处理及查阅资料能力,培养学生的实践与创新能力。

⒉适用专业热能与动力工程专业、核能与动力工程专业、建筑环境与设备工程专业。

⒊先修课程泵与风机、热工测量、工程流体力学。

⒋实验课时分配⒌实验环境(对实验室、机房、服务器、打印机、投影机、网络设备等配置及数量要求)泵与风机实验对实验环境有如下要求:①实验室最好安排在一层,要求实验室离教室和办公室有一定距离,以防止实验时的噪声影响正常的教学和办公。

②风机实验室安排在窗户较多的屋子,做实验时室外最好风力不要太大。

③离心泵实验室要求有自来水或离取水位置较近。

④实验室内要求有黑板。

⒍实验总体要求对于泵与风机实验,有以下几点总体要求:①在做实验前,要求学生认真学习实验指导书,并复习所学《泵与风机》、《热工测量》、《工程流体力学》等课程的相关知识。

②实验前,要求实验室向学生开放,以便学生了解实验设备和测量设备,以及对整个实验有感性认识。

③对于验证性实验,要求学生在实验前就已很好地掌握了测量设备的工作原理、使用方法以及实验步骤。

④对于综合性、设计性实验,应适当提前向学生布置任务。

学生应根据实验任务,查阅资料,进行理论分析和研究,确定实验方案,或根据规定的实验方案,确定实验步骤。

学生拟定的实验方案或实验步骤,应经过指导教师审查同意后方可进行实验。

实验后,要求学生按要求整理实验数据,撰写实验报告,并提出或回答相关问题。

⒎本实验的重点、难点及教学方法建议①本实验的重点:是对教材所讲科学规律进行验证,掌握相关参数的测量方法。

②本实验的难点:综合性设计性实验的实验方案确定、实验步骤的确定。

③教学方法建议:采用多媒体手段对实验进行必要的讲解和布置实验任务;综合性设计性实验分组进行方案论证;实验现场更多发挥学生的主动性,教师只做必要的辅导。

离心式氧化风机的性能试验分析

离心式氧化风机的性能试验分析

摘要:本文总结了在性能试验中离心式氧化风机的各项参数、能耗、脱硫效率、氧化效果等情况。

对亚硫酸钙氧化效果仍然存在的问题进行了分析,并提出了解决的建议。

关键词:FGD 氧化风机石灰石-石膏控制液位0引言本厂#2脱硫吸收塔在2006年投产时一直使用最大出力为8000Nm 3/h 的罗茨风机,根据95%的脱硫效率计算,能够处理的原烟气SO 2量的设计值为2909mg/Nm 3。

由于燃煤成本较高,各火力发电厂均进行了不同程度的掺烧,煤质变化比较频繁,入口原烟气的硫份经常超过脱硫吸收塔的设计值,最高甚至可达5000mg/Nm 3以上。

氧化风量成为阻碍SO 2吸收以及石膏品质的主要因素,因此本厂为了解决亚硫酸钙氧化率差的问题,进行了氧化风机的扩容改造,增加了一台最大出力能到达16000Nm 3/h 离心式氧化风机。

1风机改造后石膏品质状况本次性能试验的目的是找出风机的经济运行参数,在保证石膏品质的前提下控制电耗。

因此在不同负荷及原烟气含硫量下的设定氧化风入口风量,以确定石膏氧化效果最好,以及最经济的运行参数设定。

图1-4分别是2A 氧化风机试运期间每日#2发电机组平均负荷、平均原烟气硫份、石膏中亚硫酸钙残余、碳酸钙残余的变化曲线:(根据石膏取样时间,以上数据均取当天8:00至次日8:00的平均值较为准确。

)结合图1-4可看出,试验期间石膏品质与机组负荷及硫份变化关系:8月22日(试运第8天)开始经过连续两天的低负荷低硫份运行后,石膏亚硫酸钙含量已降到了2.2%,23日(试运第9天)将入口流量值降至12000m 3/h后,亚硫酸钙含量又出现回升,目测石膏在22日由飘灰状变为较大颗粒状。

由于23日出现供浆不当的情况,碳酸钙含量偏高可能对氧化反应有一定影响,导致石膏品质有变差趋势,于是在随后的24、25日(试运第10、11天)调整氧化空气的入口流量为15000Nm 3/h,石膏又呈变干好转趋势,但26日(试运第12天)降低风量至13500Nm 3/h 后亚硫酸钙再次达到9.66%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离心风机性能测试实验
一、实验目的
1、了解风机的构造,掌握风机操作和调节方法
2、测定风机在恒定转速情况下的特性曲线并确定该风机最佳工作范围
二、基本原理
1、基本概念和基本关系式 1.1、风量
风机的风量是指单位时间内从风机出口排出的气体的体积,并以风机入口处气体的状态计,用Q 表示,单位为m 3/h 。

1.2、风压
风机的风压是指单位体积的气体流过风机时获得的能量,以t P 表示,单位为J/m 3=N/m 2,由于t P 的单位与压力的单位相同,所以称为风压。

用下标1,2分别表示进口与出口的状态。

在风机的吸入口与压出口之间,列柏努力方程:
f
H g u g p z H g u g p z ∑+++=+++222
2
222111ρρ (1)
上式各项均乘以 g ρ并加以整理得:
f
H g u u p p z z g gH ∑+-+
-+-=ρρρρ2
)
()()(212
21212 (2)
对于气体,式中ρ(气体密度)值比较小,故)(12z z g -ρ可以忽略;因进口管段很短, f H g ∑ρ 也可以忽略。

当空气直接由大气进入通
风机,则2
1u 也可以忽略。

因此,上述的柏努力方程可以简化成:
2)(2
2
12u p p gH P t ρρ+
-== (3)
上式中)(12p p -称为静风压,以st P 表示。

222
u ρ 称为动风压,用d
P 表示。

离心风机出口处气体流速比较大,因此动风压不能忽略。

离心风机的风压为静风压和动风压之和,又称为全风压或全压。

风机性能表上所列的风压指的就是全风压。

2、风机实验
流体流经风机时,不可避免的会遇到种种流动阻力,产生能量损失。

由于流动的复杂性,这些能量损失无法从理论上作出精确计算,也因此无法从理论上求得实际风压的数值。

因此,一定转速下的风机的t P —Q, st P —Q ,N —Q,t η—Q ,st η—Q 之间的关系,即特性曲线,需
要实验测定。

2.1、风量Q 的测定
我们可以通过测量管路中期体的动风压来确定风量的大小。

我们在管路的适当位置(必须使气体流动的稳定管段)安装一个测量动压头的装置——皮托管。

假设皮托管测得的动风压为d P ,测量中,动风压常用水柱高度d h 表示:
d d gh P 水ρ=
则有:
22
2
u gh P d d ρρ=
=水 [Pa]
所以:ρρρ
d
d
gh P u 水222=
=
[m/s]
若假设测量位置的管径为D
则有: 3600
242
••
=
•=ρρπd
gh D u A Q 水 [m 3/h]
另外,测量风量我们还可以用孔板流量计,对于孔板流量计的原理这里略去。

下面直接给出计算公式:
gh S C V s 200••= [ m 3/s]
或者:
ρ
ρρ)
(200-•
•=r s Rg S C V [ m 3/s]
式中:
R ——U 型压差计的读数 [m]
r ρ——压差计中指示液的密度 [kg/m 3] ρ ——被测流体的密度 [kg/m 3]
C 0——孔流系数 S 0——孔口面积
2.2、静风压和全风压的测定
由前面的式(3)可以得到实验中测定静风压和全风压的方法。

)(12p p -为静风压,可以通过风机出口处的静压管测得,由于1p 为大
气压强,因此静压管的一端可以直接和大气相通;222
u ρ为动风压,可
以通过管路中安装的皮托管测量得到。

2.3、风机的有效功率和功率
由于风机在运转过程中存在种种能量损失,使得风机的实际风压比理论风压值要低,而输入风机的功率要比理论值高,所以风机的总
效率可以表示为:
轴N N e
=
η
其中e N 为风机的有效功率:
6106.3⨯•=
t
e P Q N [kw]

N 为电机输入风机的功率:
传电电轴ηη•••=N K N 以上各式中:
Q ——风量,[m 3/h]
t P ——全风压,[N/m 2]
K ——用标准功率机校正功率标的校正系数,这里取1.0 电N —— 电机的输入功率,[kw]
电η——电机效率,通常取0.90
传η——传动装置的传动效率,一般取1.0
三、装置和流程
四、实验步骤和操作要点
1、检查管路上各测量仪器是否处于正常状态,确保风量调节阀处于全开或者全闭状态。

2、点击数显仪表盘,打开风机的电机电源,开始实验。

3、点击风量调节阀,调节不同的阀门开度
4、数显仪表会显示实时测量的各个量
5、等显示值稳定后记录各个仪表的数值。

6、至少测量五组以上不同阀门开度下的转速,电机功率,气体出口温度,风机出口静压;其中必须有阀门全开和全闭情况下的数值。

五、数据处理
风机的风压有全风压和静风压之分,所以,风机的特性曲线比离心泵特性曲线多两条,即一定转速下的t P —Q, st P —Q ,N —Q,η—Q ,
st η—Q 五条曲线。

由于标准的风机的特性曲线是在20 °C 及
760mmHg 条件下测定的,在此条件下空气的密度为1.2kg/m 3,因此,我们应当对测得的数据进行换算。

风压换算:
ρρ0
0=t
t p p 式中0t p ,0ρ为规定状态下的风压和气体密度;t p 和ρ为操作状态下
的风压和气体密度。

所以:
ρρρ2.100t t
t p p p == 计算功率时,如果t p 用实际风压,则Q 用实际风量;如果t p 用校正
为规定状态下的风压0t p,则风量也需校正到规定状态。

校正方法同上。

在本仿真实验的数据处单元里面包括如下四项内容
1、原始数据
2、计算结果
3、曲线绘制
4、设备参数
提示:您可以在“参数设置”里面选择别的风机型号。

(您必须有修改参数的权限)。

相关文档
最新文档