六年级数学奥数题竞赛

合集下载

{精品}小学六年级奥数题200道及答案

{精品}小学六年级奥数题200道及答案

小学六年级奥数题200道及答案Part 1 warm up1.甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。

2. 小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。

如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。

问:小明家到学校多远?(第六届《小数报》数学竞赛初赛题第1题)解:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟。

这时每分钟必须多走25米,所以总共多走了24×25=600米,而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600÷6=100米。

总路程就是=100×30=3000米。

3. 小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?解:画示意图如下.第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了3.5×3=10.5(千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是10.5-2=8.5(千米).每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离(3+2+2)倍的行程.其中张走了3.5×7=24.5(千米),24.5=8.5+8.5+7.5(千米).就知道第四次相遇处,离乙村8.5-7.5=1(千米).答:第四次相遇地点离乙村1千米.4. 哥哥有12枚5分硬币,妹妹有10枚2分硬币,哥哥给妹妹几枚5分硬币,两人的钱数相等?解答:5×12=60(分) 2×10=20(分) (60-20)÷2=20(分) 20÷5=4(枚)5.阿香去吃午饭,发现附近的中餐厅有9个,西餐厅有3个,日式餐厅有2个,他准备找一家餐厅吃饭,一共有多少种不同的选择?解答:9+3+2=14(种)6.用400个棋子摆放了5层空心方阵,最内层每边有几个棋子?解答:400÷5=80(个) 80-8-8=64(个) 64÷4+1=17(个)7.用棋子摆方阵恰好摆成每边为20的实心方阵,若改为4层空心方阵,最外层每边应放几枚?解答:20×20=400(个) 400+8×(1+2+3)=448(个)448÷4=112(个) 112÷4+1=29(个)8.一把钥匙只能开一把锁,现有10把钥匙和10把锁,最少要试验多少次就一定能使全部的钥匙和锁相匹配?解答:从最不利的情形考虑。

六年级能学的奥数题及答案

六年级能学的奥数题及答案

六年级能学的奥数题及答案奥数,即奥林匹克数学竞赛,是一种旨在培养学生数学思维和解决问题能力的竞赛形式。

六年级学生学习奥数,不仅可以锻炼他们的数学能力,还能提高逻辑推理和创新思维。

以下是一些适合六年级学生的奥数题目及答案:题目1:小明有3个红球和2个蓝球,他随机从袋子里拿出一个球,然后放回袋子里再拿一次。

请问小明两次都拿到红球的概率是多少?答案:第一次拿到红球的概率是3/5,因为总共有5个球,其中3个是红球。

由于每次拿球后都放回,第二次拿到红球的概率也是3/5。

两次都拿到红球的概率是两个独立事件同时发生的概率,所以是(3/5) * (3/5) = 9/25。

题目2:一个数字钟的时针和分针在12点整重合。

请问在接下来的12小时内,时针和分针会再次重合多少次?答案:在12小时内,时针和分针会重合11次。

因为时针每小时走30度(360度/12小时),而分针每分钟走6度(360度/60分钟)。

每小时分针都会超过时针,除了12点整之外,它们会在每个小时的某个时刻再次重合。

题目3:一个长方形的长是宽的两倍,如果长和宽都增加10厘米,新的长方形的面积比原来的长方形面积大300平方厘米,求原来的长方形的长和宽。

答案:设原来的长方形宽为x厘米,那么长就是2x厘米。

原来的面积是x * 2x = 2x^2平方厘米。

增加后的长为2x + 10厘米,宽为x +10厘米,面积为(2x + 10) * (x + 10)平方厘米。

根据题意,我们有方程:(2x + 10) * (x + 10) - 2x^2 = 300。

解这个方程,我们可以得到x = 5厘米,所以原来的长方形的长是10厘米,宽是5厘米。

题目4:一个数字序列如下:2, 4, 7, 11, ...。

这个序列的第20项是多少?答案:这个序列是一个等差数列,第一项a1=2,公差d=2。

根据等差数列的通项公式an = a1 + (n - 1) * d,我们可以计算出第20项的值:a20 = 2 + (20 - 1) * 2 = 2 + 19 * 2 = 2 + 38 = 40。

小学六年级奥数题及答案(全)

小学六年级奥数题及答案(全)

小学六年级奥数题及答案1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?解:设不低于80分的为A人,则80分以下的人数是(A-2)/4,及格的就是A+22,不及格的就是A+(A-2)/4-(A+22)=(A-90)/4,而6*(A-90)/4=A+22,则A=314,80分以下的人数是(A-2)/4,也即是78,参赛的总人数314+78=3922.电影票原价每若干元,现在每降低3元出售,观众增加一半,收入增加五分之一,一电影票原价多少元?解:设一电影票价x元(x-3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思,为什么这么做(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)}左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x 元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}如此计算后得到总收入,使方程左右相等3.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。

这时两人钱相等,求乙的存款.解答:解:设乙存款x元,则甲存款是9600-x元,由题意得:(9600-x)(1-40%)x=(1-40%)x+2×120,5760-60%x=60%x+240,60%x+60%x=5760-240,1.2x=5520,x=4600;答:乙的存款4600元.点评:解答此题的关键是根据题意设出未知数,另一个未知数用设出的字母表示,再根据数量关系等式:甲存款的(1-40%)等于乙存款的(1-40%)加上2个120元,列出方程解决问题.4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。

六年级上册数学竞赛试题-奥数题习题(含答案)

六年级上册数学竞赛试题-奥数题习题(含答案)

六年级上册数学竞赛试题-奥数题习题(含答案)1.一辆汽车以60km/h的速度行驶4小时,再以40km/h的速度行驶2小时,求它行驶的总路程。

解:根据路程等于速度乘以时间的公式,第一段路程为60km/h×4h=240km,第二段路程为40km/h×2h=80km,总路程为240km+80km=320km。

答:该汽车行驶的总路程为320km。

2.甲、乙两人相向而行,甲的速度是每小时5km,乙的速度是每小时7km,如果他们相距60km,问他们多长时间能相遇?解:根据相遇公式,时间等于距离除以速度之和,即60km÷(5km/h+7km/h)=6h。

答:甲、乙两人相遇需要6小时。

3.甲、乙两人相向而行,甲的速度是每小时5km,乙的速度是每小时7km,他们相遇后,甲又行驶了2小时,问甲、乙两人分别行驶了多少路程?解:根据相遇公式,他们相遇时的路程之和等于他们分别行驶的路程之和,即(5km/h+7km/h)×t=60km,解XXX。

甲行驶的路程为5km/h×8h=40km,乙行驶的路程为7km/h×8h=56km。

答:甲行驶了40km,乙行驶了56km。

4.一辆汽车以每小时60km的速度行驶,行驶了2小时后,因故障而减速为每小时40km,又行驶了3小时,问它行驶的总路程。

解:前两小时行驶的路程为60km/h×2h=120km,后三小时行驶的路程为40km/h×3h=120km,总路程为120km+120km=240km。

答:该汽车行驶的总路程为240km。

1.根据题目给出的条件,可以得出马每步长为7/4倍狗的步长。

因为狗已经跑出了30米,所以马需要追赶的距离是30米。

根据速度比可以得出马与狗相差的路程份额为1,所以马需要跑21倍狗才能追上它,即21/20倍狗已经跑的距离,计算得出马需要跑630米才能追上狗。

2.根据题目给出的信息,可以得出甲、乙两车相遇时,甲车行驶了10份路程,乙车行驶了8份路程,两车的路程差是80千米。

青少年奥赛数学试题六年级

青少年奥赛数学试题六年级

青少年奥赛数学试题六年级
以下是部分六年级青少年奥数试题:
1. 题目:已知A、B、C、D为四个互不重合的点,任选其中两个点,以选
中的两点和线段AB的中点为顶点能构成一个三角形(要求三角形的边不再直线AB上)的概率为多少?
2. 题目:在边长为1的正方形ABCD中,E是CD的中点,P是ABCD内
部或边界上的一动点,则PE的长度最小值是____。

3. 题目:小刚参加``一站到底''节目,现场有AB两个大门,A门有2/3的几率通向成功,B门有1/3的几率通向成功,现小刚任意选择一扇门并走过去,节目组要求他从另一扇未选择的大门中再选择一次,现问:小刚两次都选中成功之门的机会是多大?
4. 题目:甲乙丙丁四支足球队进行单循环比赛(每两个球队都要进行一场),每场比赛的计分方法是:胜者得3分,负者得0分,平局两队各得1分。

全部比赛结束后,四队的得分为:甲6分,乙5分,丙4分,丁1分,则
_______。

A.甲胜乙
B.乙胜丙
C.乙平丁
D.丙平丁
5. 题目:甲、乙、丙、丁四支足球队进行单循环比赛(每两个球队都要进行一场),每场比赛的计分方法是:胜者得3分,负者得0分,平局两队各得1分。

全部比赛结束后,四队的得分为:甲6分,乙5分,丙4分,丁1分,则 _______。

A.甲胜乙
B.乙胜丙
C.乙平丁
D.丙平丁
希望这些试题能帮助你更好地理解和掌握相关知识。

如需更多信息,建议查阅相关教辅练习。

【人教新课标】六年级上册数学竞赛试题-奥数题习题(含答案)

【人教新课标】六年级上册数学竞赛试题-奥数题习题(含答案)

六.抽屉原理、奇偶性问题1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的?副同色的?解:解:可以把四种不同的颜色看成是可以把四种不同的颜色看成是4个抽屉,个抽屉,把手套看成是元素,把手套看成是元素,把手套看成是元素,要保证有一副要保证有一副同色的,就是1个抽屉里至少有2只手套,根据抽屉原理,最少要摸出5只手套。

这时拿出1副同色的后4个抽屉中还剩3只手套。

再根据抽屉原理,只要再摸出2只手套,又能保证有一副手套是同色的,以此类推。

把四种颜色看做4个抽屉,要保证有3副同色的,先考虑保证有1副就要摸出5只手套。

这时拿出1副同色的后,副同色的后,44个抽屉中还剩下3只手套。

根据抽屉原理,只要再摸出2只手套,只手套,又能保证有又能保证有1副是同色的。

副是同色的。

以此类推,以此类推,以此类推,要保证有要保证有3副同色的,共摸出的手套有:的,共摸出的手套有:5+2+2=95+2+2=95+2+2=9(只)(只)(只)答:最少要摸出9只手套,才能保证有3副同色的。

副同色的。

2.有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样?人能取得完全一样?答案为21解:解:每人取1件时有4种不同的取法种不同的取法,,每人取2件时件时,,有6种不同的取法种不同的取法. . 当有11人时人时,,能保证至少有2人取得完全一样人取得完全一样: :当有21人时人时,,才能保证到少有3人取得完全一样人取得完全一样. .3.某盒子内装50只球,其中10只是红色,只是红色,1010只是绿色,只是绿色,1010只是黄色,只是黄色,1010只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球?最少必须从袋中取出多少只球?解:需要分情况讨论,因为无法确定其中黑球与白球的个数。

当黑球或白球其中没有大于或等于7个的,那么就是:个的,那么就是:6*4+10+1=35(6*4+10+1=35(个个)如果黑球或白球其中有等于7个的,那么就是:个的,那么就是:6*5+3+16*5+3+1==3434(个)(个)(个)如果黑球或白球其中有等于8个的,那么就是:个的,那么就是:6*5+2+16*5+2+1==33如果黑球或白球其中有等于9个的,那么就是:个的,那么就是:6*5+1+16*5+1+1==324.地上有四堆石子,石子数分别是1、9、1515、、31如果每次从其中的三堆同时各取出1个,然后都放入第四堆中,那么,能否经过若干次操作,使得这四堆石子的个数都相同的个数都相同??(如果能请说明具体操作,不能则要说明理由) 不可能。

小学六年级下册最难奥数题及答案

小学六年级下册最难奥数题及答案

小学六年级下册最难奥数题及答案
据研究表明,奥数只适合少数对数学有兴趣、有特长、有天分的学生,只有大约 5%的智力超常儿童适合学习奥数。

下面是六年级奥数题及答案,为大家提供参考。

1.有名学生参加竞赛,共有20道竞赛题,每个学生有基础分25分,此外,答对一题得3分,不答题得1分,答错1题扣1分。

那么,所有参赛学生的得分总和是奇数还是偶数?
2.存有n个同样大小的正方体,将它们堆积成一个长方体,这个长方体的底面就是原正方体的底面。

如果这么长方体的表面积就是平方厘米,当从这个长方体的顶部拎回去一个正方体后,代莱长方体的.表面积比原来的表面积增加平方厘米,那么n等同于多少?
1.每个学生的基础分为奇数,无论题目的答题情况,每一题都将是总分加上或减去一个奇数,所以20题之后,总分相当于21个奇数做加减法,所以每个学生的总分肯定是奇数,而学生有名,奇数和奇数的和还是奇数,所以所有学生的分数一定是奇数。

2.正方体一个面的面积就是÷4=36平方厘米,根据长方体的表面积可以得:
36×(4n+2)=
n+72=
n=21
请问:n就是21。

六年级奥数题及答案

六年级奥数题及答案

六年级奥数题及答案:图形(高等难度)1、如图,长方形ABCD中,E为的AD中点,AF与BE、B D分别交于G、H,OE垂直AD于E,交AF于O,已知A H=5cm,HF=3cm,求AG.2阴影面积:(高等难度)如右图,在以AB为直径的半圆上取一点C,分别以AC 和BC为直径在△ABC外作半圆AEC和BFC.当C点在什么位置时,图中两个弯月型(阴影部分)AEC和BFC的面积和最大。

3、巧克力豆:(高等难度)甲、乙、丙三人各有巧克力豆若干粒,要求互相赠送.先由甲给乙、丙,甲给乙、丙的豆数依次等于乙、丙原来各人所有豆数.依同办法,再由乙给甲、丙,所给豆数依次等于甲、丙各人现有的豆数.最后由丙给甲、乙,所给的豆数依次等于甲、乙各人现有的豆数.互赠后每人恰好各有豆32粒,问原来三人各有豆多少粒?4、得奖人数:(高等难度)六年级举行一次数学竞赛,共有若干名同学得奖,其中得一等奖的同学比余下的得奖人数的五分之一少三名,得二等奖的占领奖人数的三分之一,得三等奖的人数比二等奖的人数同学多21名,问得奖人数是多少?粮食问题:(高等难度)5、甲仓有粮80吨,乙仓有粮120吨,如果把乙仓的一部分粮调入甲仓,使乙仓存粮是甲仓的60%,需要从乙仓调入甲仓多少吨粮食?6、分苹果:(高等难度)有一堆苹果平均分给幼儿园大、小班小朋友,每人可得6个,如果只分给大班每人可得10个,问只分给小班时,每人可得几个?、7、巧算:(中等难度)计算:8、四位数:(中等难度)某个四位数有如下特点:①这个数加1之后是15的倍数;②这个数减去3是38的倍数;③把这个数各数位上的数左右倒过来所得的数与原数之和能被10整除,求这个四位数.9跑步狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。

问:狗再跑多远,马可以追上它?、10排队有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有()、11路程A,B,C三地的距离(单位:千米)如左下图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级数学奥数题竞赛 This manuscript was revised on November 28, 2020
2017-2018年大沥镇黄岐第二小学六年级
数学思维竞赛
班别:姓名:学号:成绩:
一、填空(第8题4分,其他每小题均为2分共20分)
1、改成数值比例尺是( )。

2、式子a×b=c×d中,外项是()和()。

3、圆的周长是半径的()倍。

4、六年(1)班女生占男生的3/5,则男生占全班的()。

5、甲比乙多1/5 ,乙比丙少25%,则甲是丙的()%。

6、一个半圆中最大的三角形面积与半圆面积的比是():()。

7、把1650本书按2∶3∶10分给四、五、六、年级,分得最多的年级比分得最少的年级多()%。

8、在一张长12厘米,宽5厘米的长方形纸上,剪下两个最大的圆,那么每个圆的周长是(),剩下的面积是()。

9、两个互质数的倒数相加,和是7/12,这个分数是()。

二、判断题:(10分)
1、半径是2cm的两个圆,它的周长和面积数值相等。

()
2、圆的周长与它的直径成正比例。

()
3、分数单位是1
5
的最小假分数是
6
5。

()
4、一个正方形按3:1放大后,周长和面积都扩大到原来的3倍。

()
5、速度和时间成反比例。

()
三、选择题。

(10分)
1、做一个零件,甲需要5分钟,乙需要7分钟,丙每分钟做一个零件的1
4
,三人中
()的工效最高。

A、甲
B、乙
C、丙
D、不能确定
2、a×1
2
与b×
1
3
相等,那么b:a等于()。

A、 6:5
B、1
2
:
1
3
C、 3:2
D、 2:3
3、一个长方体和一个圆锥等底等高,圆锥的体积是长方体体积的()
A、 3倍
B、1
3
C、一样大
D、无法确定
4、正方形的面积一定,它的边长和边长()
A、成正比例
B、成反比例
C、不成比例 D无法确定
5、如图,一张桌子可以坐8人,两张桌子并起来可以坐12人,
像这样10张桌子并起来可以坐()人。

A、80
B、44
C、60
四、解决问题。

(每题5分,共80分)
1、小明出生月份与31的积加上出生日期与12的乘积是189,他是几月几日出生的
2、
3、修一条公路,总长千米,前8天修了千米。

照这样计算,要修完这条路还要多少天
4、甲车从A地行驶到B地需要6小时,乙车从B地到A地要9小时。

现在两车分别从A|B两地同时出发,相对而行,相遇时,甲车比乙车多行了108千米,A、B两地的路程是多少千米
5、一根钢丝,先用去35米,又用去余下的9/13,这时余下的钢丝正好是原来总长度的1/5,这根钢丝长多少米
6、一个长方体,它的高是7分米,横截面是一个20平方厘米的正方形。

要把它截成一个最大的圆柱体,圆柱体的体积是多少
7、潜水艇的海拔高度是-50米,一条海蛇的高拔高度比它低30米,一条游鱼的高拔高度又比海蛇高72米,游鱼的海拔高度是多少
8、王师傅加工一批零件,他每小时加工80个,加工了5/8小时后还剩下126个没有完成,这批零件有多少个
9、六三班44人,男生人数的3/5与女生人数的1/2相等,六三班有男生、女生各多少人
10、一个平行四边形的面积不变,它的低是9cm,相对应的高是,如果它的底增加厘米,那么对应的高应减少多少厘米
11、车过河交渡费3元,马过河交渡费2元,人过河交费1元,某天过河的车和马数目之比为2:9,马和人数目之比为3:7,共收渡费315元。

求这天过河的车、马和人的数目各是多少
12、一个圆柱体的高是10厘米,若高减少3厘米,则表面积比原来减少平方厘米,求原来圆柱体的体积。

13、一个圆柱形水桶的侧面积是它一个底面积的3倍,已知水桶的底面半径是2分米,这个水桶能装多少升水
14、一个圆柱形水桶,如果将高改为原来的一半,底面直径改为原来的2倍,可装水40千克,那么,原来的水桶可装水多少千克
15、一列快车从甲地开往乙地需要5小时,一列慢车从乙地开往甲地所需的时间比快车
多1
5
,两车同时从甲、乙两地相对开出2小时后,慢车停止前进,快车继续行驶40千
米后恰好与慢车相遇,甲乙两天相距多少千米
16、把一张长分米,宽分米的长方形纸卷成一个圆柱体,并且将这个圆柱体直立在桌面,它的最小容积是多少。

相关文档
最新文档