六年级上册奥数题及答案
六年级上册奥数及答案

六年级上册奥数及答案【篇一:小学六年级奥数题及答案】t>工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率1-45/80=35/80表示还要的进水量答:5小时后还要35小时就能将水池注满。
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效甲的工效乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。
只有这样才能“两队合作的天数尽可能少”。
设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
所以1-9/10=1/10表示乙做6-4=2小时的工作量。
答:乙单独完成需要20小时。
4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
六年级奥数题及答案.

六年级奥数题及答案.题目一:数字问题小明在计算一个数加上5,再减去3,最后乘以4的结果时,得到了48。
请问这个数是多少?解答:设这个数为x。
根据题意,我们有:4x = 48x = 48 ÷ 4x = 12所以这个数是12。
题目二:几何问题一个长方形的长是宽的两倍,如果将这个长方形的长和宽都增加5厘米,那么面积增加了85平方厘米。
求原来长方形的长和宽。
解答:设原来长方形的宽为w,那么长为2w。
根据题意,我们有:(2w + 5)(w + 5) - 2w * w = 852w^2 + 5w + 10w + 25 - 2w^2 = 8515w + 25 = 8515w = 60w = 4所以原来的宽是4厘米,长是2 * 4 = 8厘米。
题目三:逻辑问题有5个盒子,每个盒子里分别装有1个、2个、3个、8个和13个乒乓球。
现在需要将这些盒子重新组合,使得每个盒子里的乒乓球数都是奇数,且每个盒子里的乒乓球数都不相同。
请问如何组合?解答:首先,我们知道奇数加奇数等于偶数,奇数加偶数等于奇数。
由于1、3、8、13都是奇数,2是偶数,我们需要将2个乒乓球与另一个奇数组合,以保持总数为奇数。
我们可以尝试以下组合:- 第一个盒子:1个乒乓球(奇数)- 第二个盒子:2 + 3 = 5个乒乓球(奇数)- 第三个盒子:8个乒乓球(奇数)- 第四个盒子:13个乒乓球(奇数)这样每个盒子里的乒乓球数都是奇数,并且各不相同。
题目四:时间问题小华从家到学校需要30分钟,如果他加快速度,每分钟走的距离增加25%,那么他需要多少时间到达学校?解答:设原来每分钟走的距离为d,那么30分钟内走的总距离为30d。
加快速度后,每分钟走的距离为1.25d。
由于总距离不变,我们有:30d = 时间 * 1.25d解这个方程,我们得到:时间 = 30 / 1.25时间 = 24分钟所以,加快速度后,小华需要24分钟到达学校。
题目五:比例问题一个班级有男生和女生,男生人数是女生人数的1.5倍。
(完整)小学六年级奥数题100道带答案有解题过程

(完整)小学六年级奥数题100道带答案有解题过程姓名:__________班级:__________学号:__________1.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的工程由乙单独完成,还需要几天?解:设工程总量为单位“1”,甲的工作效率是1/10,乙的工作效率是1/15,两人合作4天完成的工作量是(1/10+1/15)×4=2/3,剩下的工作量是1-2/3=1/3,那么乙单独完成需要的时间是1/3÷1/15=5天。
思路:先求出合作完成的工作量,再求剩余工作量以及乙完成剩余工作所需时间。
2.一个数的20%比它的3/5少30,这个数是多少?解:设这个数为x,则3/5x-20%x=30,即0.6x-0.2x=30,0.4x=30,解得x=75。
思路:根据数量关系列方程求解。
3.甲乙两车分别从A、B两地同时出发,相向而行,甲车每小时行60千米,乙车每小时行80千米,3小时后两车相距40千米,A、B两地相距多少千米?解:两车3小时行驶的路程之和再加上相距的40千米就是A、B两地的距离,(60+80)×3+40=460千米。
思路:先求两车行驶的路程和,再加上相距距离。
4.一个圆柱的底面半径是2厘米,高是5厘米,求它的侧面积和体积。
解:侧面积=2πrh=2×3.14×2×5=62.8平方厘米,体积=πr²h=3.14×2²×5=62.8立方厘米。
思路:根据圆柱侧面积和体积公式计算。
5.有浓度为20%的盐水80克,要把它变成浓度为40%的盐水,需要加盐多少克?解:设需要加盐x克,根据盐的质量关系可列方程,(80×20%+x)÷(80+x)=40%,即(16+x)÷(80+x)=0.4,16+x=0.4×(80+x),16+x=32+0.4x,0.6x=16,解得x=80/3。
小学六年级上册数学奥数题带答案图文百度文库

小学六年级上册数学奥数题带答案图文百度文库一、拓展提优试题1.张阿姨和李阿姨每月的工资相同,张阿姨每月把工资的30%存入银行,其余的钱用于日常开支,李阿姨每月的日常开支比张阿姨多10%,余下的钱也存入银行,这样过了一年,李阿姨发现,她12个月存入银行的总额比张阿姨少了5880元,则李阿姨的月工资是元.2.图中阴影部分的两段圆弧所对应的圆心分别为点A和点C,AE=4m,点B 是AE的中点,那么阴影部分的周长是m,面积是m2(圆周率π取3).3.把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯书数”如:27=3×3×3.3+3+3=2+7,即27是史密斯数,那么,在4,32,58,65,94中,史密斯数有个.4.12013+22013+32013+42013+52013除以5,余数是.(a2013表示2013个a 相乘)5.若A、B、C三种文具分别有38个,78和128个,将每种文具都平均分给学生,分完后剩下2个A,6个B,20个C,则学生最多有人.6.(15分)欢欢、乐乐、洋洋参加希望之星决赛,有200位评委为他们投了票,每位评委只投一票.如果欢欢与乐乐所得票数的比是3:2,乐乐与洋洋所得票数的比是6:5,那么欢欢、乐乐、洋洋各得多少票?7.一列快车从甲地开往乙地需要5小时,一列慢车从乙地开往甲地所需时间比快车多,两车同时从甲乙两地相对开出2小时后,慢车停止前进,快车继续行驶40千米后恰与慢车相遇,则甲乙两地相距千米.8.对任意两个数x,y规定运算“*”的含义是:x*y=(其中m是一个确定的数),如果1*2=1,那么m=,3*12=.9.如图所示的容器中放入底面相等并且高都是3分米的圆柱和圆锥形铁块,根据图1和图2的变化知,圆柱形铁块的体积是立方分米.10.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大;最小的数被3除余1,且尽可能的小,求这三个三位数.11.如图,已知AB=2,BG=3,GE=4,DE=5,△BCG和△EFG的面积和是24,△AGF和△CDG的面积和是51.那么,△ABC和△DEF的面积和是.12.甲、乙两人分别从A、B两地同时出发,相向而行.甲、乙的速度比是5:3.两人相遇后继续行进,甲到达B地,乙到达A地后都立即沿原路返回.若两人第二次相遇的地点距第一次相遇的地点50千米,则A、B两地相距千米.13.已知A是B的,B是C的,若A+C=55,则A=.14.甲、乙两人分别从A、B两地同时出发,相向而行,在C点相遇,若在出发时,甲将速度提高,乙将速度每小时提高10千米,二人依然在C点相遇,则乙原来每小时行千米.15.(15分)一个棱长为6的正方体被切割成若干个棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的倍,求切割成小正方体中,棱长为1的小正方体的个数?【参考答案】一、拓展提优试题1.解:(1﹣30%)×(1+10%)=70%×110%,=77%;5880÷12÷[30%﹣(1﹣77%)]=490÷[30%﹣23%],=490÷7%,=7000(元).即李阿姨的月工资是 7000元.故答案为:7000.2.解:阴影部分的周长:4+3×4×2÷4+3×2×2÷4,=4+6+3,=13(米);阴影部分的面积:3×42÷4+3×22÷4﹣2×4,=12+3﹣8,=7(平方米);答:阴影部分的周长是13米,面积是7平方米.故答案为:13、7.3.解:4=2×2,2+2=4,所以4是史密斯数;32=2×2×2×2×2;2+2+2+2+2=10,而3+2=5;10≠5,32不是史密斯数;58=2×29,2+2+9=13=13;所以58是史密斯数;65=5×13;5+1+3=9;6+5=11;9≠11,65不是史密斯数;94=2×472+4+7=13=9+4;所以94是史密斯数.史密斯数有4,58,94一共是3个.故答案为:3.4.解:多个2相乘结果个位数字有一个规律:2、4、8、6每4个2相乘一个循环,多个3相乘结果个位数字有一个规律:3、9、7、1每4个3相乘一个循环,2013÷4=503…1,所以2013个2相乘后个位数字是2,2013个3相乘后个位数字是3,2013个4相乘后个位数字是4,1的任何次方都是1,5的任何次方的个位数字都是5,1+2+3+4+5=15所以12013+22013+32013+42013+52013的个位数字是5,所以除以5的余数是0;故答案为:0.5.解:38﹣2=36(个)78﹣6=72(个)128﹣20=108(个)36、48和108的最大公约数是36,所以学生最多有36人.故答案为:36.6.解:根据欢欢与乐乐所得票数的比是3:2,乐乐与洋洋所得票数的比是6:5,可以求出欢欢、乐乐、洋洋所得票数的比9:6:5,200×=90(票)200×=60(票)200×=50(票)答:欢欢所得票数是90票,乐乐所得票数是60票,洋洋所得票数是50票.7.解:慢车行完全程需要:5×(1+),=5×,=6(小时);全程为:40÷[1﹣(+)×2],=40÷[1﹣],=40÷,=40×,=150(千米);答:甲乙两地相距150千米.故答案为:150.8.解:①因为:x*y=(其中m是一个确定的数)且1*2=1所以:=18=m+6m+6=8m+6﹣6=8m=2②3*12===故答案为:2,.9.解:25.7÷(1+1+3)=25.7÷5=5.14(立方分米)5.14×3=15.42(立方分米)答:圆柱形铁块的体积是15.42立方分米.故答案为:15.42.10.解:根据分析,最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是1,次大的数倍3除余2,且要尽可能的大,则次大的三位数为:875;最小的数被3除余1,且要尽可能的小,则最小的三位数为:124;剩下的三个数字只有,3,6,9,故最大的三位数为:963.故答案是:963、875、124.11.解:作CM⊥AD,垂足为M,作FN⊥AD,垂足为N,设CM=x,FN=y.由题意得方程组,解方程组得,所以△ABC与△DEF的面积和是:AB•CM+DE•FN=×2×8+×5×6=8+15=23.故答案为:23.12.解:因为,甲乙的速度比为 5:3;总路程是:5+3=8;第一次相遇时,两人一共行了AB两地的距离,其中甲行了全程的,相遇地点离A地的距离为AB两地距离的,第二次相遇时,两人一共行了AB两地距离的3倍,则甲行了全程的=,相遇地点离A地的距离为AB两地距离的2﹣=,所以,AB两地的距离为:50÷()=50÷=100(千米)答:A、B两地相距100千米.故答案为:100.13.解:A是C的×=,即A=C,A+C=55,则:C+C=55C=55C=55÷C=40A=40×=15故答案为:15.14.解:依题意可知:根据甲乙两人的相遇点相同,那么他们的速度比例是不变的.当甲提高时,乙也同样需要提高,而乙提高的是每小时10千米.即10÷=40千米/小时.故答案为:4015.解:大正方体表面积:6×6×6=216,体积是:6×6×6=216,切割后小正方体表面积总和是:216×=720,假设棱长为5的小正方体有1个,那么剩下的小正方体的棱长只能是1,个数是:(63﹣53)÷13=91(个),这时表面积总和是:52×6+12×6×91=696≠720,所以不可能有棱长为5的小正方体.(1)同理,棱长为4的小正方体最多为1个,此时,不可能有棱长为3的小正方体,剩下的只能是切割成棱长为2的小正方体或棱长为1的小正方体,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,则解得:(2)棱长为3的小正方体要少于(6÷3)×(6÷3)×(6÷3)=8个,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,棱长为3的小正方体有c个,化简:由上式可得:b=9c+24,a=,当c=0时,b24=,a=24,当c=1时,b=33,a=19.5,(不合题意舍去)当c=2时,b=42,a=15,当c=3时,b=51,a=10.5,(不合题意舍去)当c=4时,b=60,a=6,当c=5时,b=69,a=28.5,(不合题意舍去)当c=6时,b=78,a=﹣3,(不合题意舍去)当c=7时,a=负数,(不合题意舍去)所以,棱长为1的小正方体的个数只能是:56或24或42或60个.答:棱长为1的小正方体的个数只能是:56或24或42或60个.。
小学六年级数学上册奥数题100道及答案

小学六年级数学上册奥数题100道及答案1. 甲、乙两数的和是120,甲数是乙数的3 倍,求甲、乙两数各是多少?答案:乙数= 120÷(3 + 1) = 30,甲数= 3×30 = 902. 某工厂有三个车间,第一车间人数是第二、三车间人数和的1/2,第二车间人数是第一、三车间人数和的1/3,第三车间有105 人,求该厂总人数。
答案:第一车间人数占总人数的1/(1 + 2) = 1/3,第二车间人数占总人数的1/(1 + 3) = 1/4,所以第三车间人数占总人数的1 - 1/3 - 1/4 = 5/12,总人数= 105÷5/12 = 252 人3. 一筐苹果,连筐重56 千克,先卖出苹果的一半,再卖出剩下苹果的一半,这时连筐重17 千克,原来这筐苹果重多少千克?答案:一共卖出的苹果占总苹果的1/2 + 1/2×1/2 = 3/4,卖出的苹果重56 - 17 = 39 千克,原来苹果重39÷3/4 = 52 千克4. 修一条路,第一天修了全长的1/3,第二天修了余下的1/3,还剩180 米没修,这条路全长多少米?答案:第二天修了全长的(1 - 1/3)×1/3 = 2/9,剩下的占全长的1 - 1/3 - 2/9 = 4/9,全长= 180÷4/9 = 405 米5. 有一堆煤,第一天运走全部的1/4,第二天运走剩下的1/3,第三天运走50 吨,正好运完,这堆煤有多少吨?答案:第二天运走全部的(1 - 1/4)×1/3 = 1/4,所以第三天运走全部的1 - 1/4 - 1/4 = 1/2,这堆煤有50÷1/2 = 100 吨6. 三个连续奇数的和是15,它们的积是多少?答案:中间的奇数= 15÷3 = 5,这三个奇数是3、5、7,它们的积是3×5×7 = 1057. 一个数除以8 余5,除以7 也余5,这个数最小是多少?答案:这个数减去5 能同时被8 和7 整除,8 和7 的最小公倍数是56,所以这个数最小是56 + 5 = 618. 一个长方形的周长是48 厘米,长是宽的3 倍,求这个长方形的面积。
六年级上奥数题及答案

六年级奥数练试题及答案1.小明买了一辆二手山地车,支付了山地车原价的90%,没过几天,他的朋友看中了这辆山地车,并表示愿意支付高出原价25%的价格买下。
小明答应了,只经过简单一转手,这辆山地车就让小明赚了105元。
那么,小明这辆山地车的原价是________元。
【分析】把这辆山地车的原价看成单位1,那么小明赚的钱对应的分率为1+25%-90%=35%2.瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100克和400克的两种酒精溶液A、B,瓶里的酒精溶液浓度变成了14%。
已知A种酒精溶液是B种酒精溶液浓度的2倍,那么,A种酒精溶液的浓度是%。
【分析】方法一:方程。
设B种酒精的浓度为x,则A种酒精的浓度为2x,于是可以得到:故A的浓度为。
方法二:比例。
1000×15%=150(克),混合后溶液中纯酒精为(1000+400+100)×14%=210(克),210-150=60(克),A和B共含酒精60克,已知A和B的重量比为1:4,浓度比为2:1,那么含酒精的量比1:2,那么A中含酒精60÷3=20(克),则A的浓度为20%. 3.A、B两杯食盐水各有40克,浓度比是3:2.在B中加入60克水,然后倒入A中____克.再在A、B中加入水,使它们均为100克,这时浓度比为7:3.【分析】比例思想。
两杯中的食盐水总量相同,浓度比为3:2,则含盐量也是3:2,向B杯中加水不会改变两杯中的含盐量。
倒入后A和B的含盐量改变,比例变为7:3,但是倒入前后两杯盐水的含盐的总和是不变的,3+2=5,7+3=10,统一份数。
3:2=6:4,这时总含盐量看成10份,原来A、B各含6份和4份,倒入后各含7份和3份,说明B 向A倒入了刚好1份的盐,从100克中倒出25克刚好含1份的盐。
4.经测算,地球上的资源可供100亿人生活100年,或可供80亿人生活300年.假设地球上新生资源的生长速度是一定的,那么为了使人类有不断发展的潜力,地球上最多能养活多少亿人?【分析】每亿人每年消耗资源量为1份。
六年级上册奥数题大全及答案

六年级上册奥数题大全及答案六年级上册奥数题大全及答案 11、李明的爸爸经营个水果店,按开始的定价,每买出1千克水果,可获利0.2元。
后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。
问:每千克水果降价多少元?答案:设以前卖出X千克降价a元。
那么0.2X×(1+0.5)=(0.2-a)×2x则0.1X=2aXa=0.05答:每千克水果降价0.05元2、有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
解析与答案:首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉。
把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果。
把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉。
由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。
六年级上册奥数题大全及答案 2猎狗发现在离它10米的前方有一只奔跑着的兔子,马上追上去,兔跑9步的路程狗只需跑5步,但狗跑2步的时间,兔却跑3步。
问狗追上兔时,共跑了多少米路程?答案与解析:60米对于追及问题,我们知道:10米=速度差×追及时间狗追上兔时,所跑路程应为:总路程=狗的速度×追及时间这就是要弄清狗的速度与兔的速度差之间的倍数关系。
另一方面,在分析速度时,一定是相同时间内狗与兔的速度之间的倍数,而不是相同的步数或相同的路程。
只要分析清楚这些,就可以解出本题了。
详解1:为了看相同时间的路程关系,也就是速度关系,我们进行如下处理:狗跑2步的时间兔跑3步,则狗跑6步的时间兔子跑了9步,也就是兔子跑了狗的5步,那么在这段时间内,狗追上了兔子,狗的一步或狗兔间的距离缩短了狗的1步,而狗跑了6步,所以狗的速度是速度差的6倍。
六年级上册奥数题及答案

六年级上册奥数题及答案【篇一:小学六年级奥数题及答案(全面)】t>1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?解:设不低于80分的为a人,则80分以下的人数是(a-2)/4,及格的就是a+22,不及格的就是a+(a-2)/4-(a+22)=(a-90)/4,而6*(a-90)/4=a+22,则a=314,80分以下的人数是(a-2)/4,也即是78,参赛的总人数314+78=3922.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(1+1/5)x这一步是什么意思,为什么这么做左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}如此计算后得到总收入,使方程左右相等3.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款答案取40%后,存款有4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。
再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,巧克力是奶糖的60/40=1。
5倍再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍增加了3-1.5=1.5倍,说明30颗占1.5倍奶糖=30/1.5=20颗巧克力=1.5*20=30颗奶糖=20-10=10颗5.小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级上册奥数题及答案【篇一:小学六年级奥数题及答案(全面)】t>1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?解:设不低于80分的为a人,则80分以下的人数是(a-2)/4,及格的就是a+22,不及格的就是a+(a-2)/4-(a+22)=(a-90)/4,而6*(a-90)/4=a+22,则a=314,80分以下的人数是(a-2)/4,也即是78,参赛的总人数314+78=3922.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(1+1/5)x这一步是什么意思,为什么这么做左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}如此计算后得到总收入,使方程左右相等3.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款答案取40%后,存款有4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。
再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,巧克力是奶糖的60/40=1。
5倍再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍增加了3-1.5=1.5倍,说明30颗占1.5倍奶糖=30/1.5=20颗巧克力=1.5*20=30颗奶糖=20-10=10颗5.小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。
”小明原有玻璃球多少个?答案小明说:“你有球的个数比我少1/4!”,则想成小明的球的个数为4份,则小亮的球的个数为3份4*1/6=2/3 (小明要给小亮2/3份玻璃球)小明还剩:4-2/3=3又1/3(份)小亮现有:3+2/3=3又2/3(份)这多出来的1/3份对应的量为2,则一份里有:3*2=6(个)小明原有4份玻璃球,又知每份玻璃球为6个,则小明原有玻璃球4*6=24(个)6.搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库a和b,甲在a仓库、乙在b仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?解:设搬运一个仓库的货物的工作量是1.现在相当于三人共同完成工作量2,所需时间是答:丙帮助甲搬运3小时,帮助乙搬运5小时解本题的关键,是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化,设搬运一个仓库全部工作量为60.甲每小时搬运6,乙每小时搬运 5,丙每小时搬运4三人共同搬完,需要甲需丙帮助搬运乙需丙帮助搬运7.一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?答案甲乙丙3人8天完成 :5/6-1/3=1/2则甲做一天后乙做2天要做 :1/3-1/4=1/12则丙一天做 :1/16-1/72-1/48=1/36答:还需要6天8.股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。
老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?答案10.65*1%=0.1065(元) 10.65*2%=0.213(元)10.1065+0.213=0.3195(元) 0.3195+10.65=10.9695(元)13.86*1%=0.1386(元) 13.86*2%=0.2772(元)0.1386+0.2772=0.4158 13.86+0.4158=14.2758(元)14.2758-10.9695=3.3063(元)答:老王卖出这种股票一共赚了3.3063元.9.某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2.8元出售,很快售完。
第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。
试问该老板第二次售书是赔钱还是赚钱,若赔,赔多少,若赚,赚多少答案(100+40)/2.8=50本100/50=2150/(2+0.5)=60本60*80%=48本48*2.8+2.8*50*12-150=1.2 盈利1.2元对我有帮助一件工程原计划40人做,15天完成.如果要提前3天完成,需要增加多少人解: 设需要增加x人(40+x)(15-3)=40*15x=10所以需要增加10人10.仓库有一批货物,运走的货物与剩下的货物的质量比为2:7.如果又运走64吨,那么剩下的货物只有仓库原有货物的五分之三。
仓库原有货物多少吨?解:第1次运走:2/(2+7)=2/9.64/(1-2/9-3/5)=360吨。
答:原仓库有360吨货物。
11.育才小学原来体育达标人数与未达标人数比是3:5,后来又有60名同学达标,这时达标人数是未达标人数的9/11,育才小学共有学生多少人?答案原来达标人数占总人数的现在达标人数占总人数的育才小学共有学生12.小王,小李,小张三人做数学练习题,小王做的题数的一半等于小李的1/3,等于小张的1/8,而且小张比小王多做了72道,小王,小张,小李各做多少道?答案设小王做了a道,小李做了b道,小张做了c道由题意1/2a=1/3b=1/8cc-a=72解得a=24 b=36 c=9613.甲乙二人共同完成242个机器零件。
甲做一个零件要6分钟,乙做一个零件要5分钟。
完成这批零件时,两人各做了多少个零件?答案设甲做了x个,则乙做了(242-x)个6x=5(242-x)x=110242-110=132(个)答:甲做了110个,乙做了132个14.某工会男女会员的人数之比是3:2,分为甲乙丙三组,已知甲乙丙三组人数之比是10:8:7,甲组中男女比是3:1,乙组中男女比是5:3。
求丙组男女人数之比答案设男会员是3n,则女会员是2n,总人是:5n甲组有:5n*10/[10+8+7]=2n,其中:男:2n*3/4=3n/2,女:2n*1/4=n/2乙级有:5n*8/25=8/5n,其中男:8/5n*5/8=n,女:8/5n*3/8=3/5n丙级有:5n*7/25=7/5n丙级中男有:3n-3n/2-n=n/2,女有:2n-n/2-3/5n=9/10n那么丙组中男女之比是:n/2:9/10n=5:915.甲乙丙三个村合修一条水渠,修完后,甲乙丙村可灌溉的面积比是8:7:5原来三个村计划按可灌溉的面积比派出劳力,后来因为丙村抽不出劳力,经协商,丙村应抽出的劳力由甲乙两村分担,丙村付给甲乙两村工钱1350元,结果,甲村共派出60人,乙村共派出40人,问甲乙两村各应分得工钱多少元?答案根据甲乙丙村可灌溉的面积比算出总份数:8+7+5=20份p16619题16.李明的爸爸经营已个水果店,按开始的定价,每买出1千克水果,可获利0.2元。
后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。
问:每千克水果降价多少元?答案设以前卖出x降价a 那么0.2x * (1+0.5)=(0.2-a) * 2x则0.1x=2ax a=0.05.哈利.波特参加数学竞赛,他一共得了68分。
评分的标准是:每做对一道得20分,每做错一道倒扣6分。
已知他做对题的数量是做错题的两倍,并且所有的题他都做了,请问这套试卷共有多少道题?解:设哈利波特答对2x题,答错x题40x-6x=6834x=68x=2共有:4+2=6题17.爸爸妈妈和奶奶乘飞机去旅行,三人所带行李的质量都超过了可免费携带行李的质量,要另付行李费,三人共付了4元,而三人行李共重150千克,如果这些行李让一个人带,那么除了免费部分,应另付行李费8元,求每人可免费携带行李的质量。
答案设可免费携带的重量为x kg,则:(150-3x)/4=(150-x)/8 //等式两边非免费部分单价相同;解方程:x=3018.一队少先队员乘船过河,如果每船坐15人,还剩9人,如果每船坐18人,刚好剩余1只船,求有多少只船?答案解法一:设船数为x,则(15x+9)/18=x-115x+9=18x-1827=3xx=9答:有9只船。
解法二:8+1=9只船19.建筑工地有两堆沙子,一堆比2堆多85吨,两堆沙子各用去30吨后,一堆剩的是2堆的2倍,两堆沙子原来各有多少吨?答案设2堆为x吨,则一堆为x+85吨x+85-30=2(x-30)x=115(2堆)x+85=115+85=200(1堆)自然数1-100排列,用长方形框出二行六个数,六个数和为432,问这六个数最小的是几【篇二:小学六年级奥数题及答案】t>工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率1-45/80=35/80表示还要的进水量答:5小时后还要35小时就能将水池注满。
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效甲的工效乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。
只有这样才能“两队合作的天数尽可能少”。
设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。