平面机构运动简图

合集下载

第一节平面机构运动简图及自由度计算ppt课件

第一节平面机构运动简图及自由度计算ppt课件

b)常见类型:凸轮机构中的滚子从动件及类似滑动摩擦改为滚 动摩擦处。
c)处理方法:自由度计算时应将局部自由度除去,可设想把滚 子与从动件固成一体。
d)自由度计算实例
d)实例:计算下列图示机构自由度。
3C 2 B 1
A
实例
a)概念:机构中与其他运动副所起的限制作用重复,对机构运动 不起新的限制作用的约束,称为虚约束。
学习提要
1.了解相关基本概念:机器、机构、构件、零件、机械、 平面机构、运动副、低副、高副、约束、平面机构运动简 图、平面机构示意图、自由度。 2.掌握平面机构运动简图的绘制。 3.掌握平面机构自由度计算。 4.掌握平面机构自由度计算时几种特殊情况的处理。
(1)复合铰链 (2)局部自由度 (3)虚约束
x
F=3n-2PL-PH
A O
式中:F-机构的自由度 n-机构中活动构件数目
PL-机构中低副的数目 PH-机构中高副的数目
y
低副和高副的约束各是多少?
移动副动画
转动副动画
5)例题:计算内燃机的自由度
F 8
A2
1
3
6
B
E
4
7D
C
5
内燃机运动简图
➢2.平面机构具有确定相对运动的
平面机构只有机构自由度大于零,才可能运动。 ♥ 平面机构具有确定相对运动的条件是:
撇开实际机构中与运动无关的因素,用简单的线条和符号表 示构件和运动副,并按一定比例定出各运动副的位置,表示机构各构 件间相对运动关系的图。
➢2.机构示意图
只是定性地表示机构的组成及运动原理,而不用严格按比例绘 制的简图,通常称为机构示意图。
机构运动简图
F 8
A2

机械设计基础平面机构的运动简图及自由度

机械设计基础平面机构的运动简图及自由度

归纳起来, 在下述场合中常出现虚约束:
(1) 运动轨迹重叠时, 如图2-16所示。
(2) 两构件同步在几处接触而构成多种移动副,且各移动副 旳导路相互平行时,其中只有一种起约束作用,其他都是虚约 束,如图2-15。
(3) 两构件同步在几处配合而构成几种回转副,且各回转副 轴线相互重叠时,这时只有一种回转副起约束作用,其他都是 虚约束。例如回转轴一般都有两个或两个以上同心轴承支持, 但计算时只取一种。
F=3n-2pL-pH=3×3-2×4-0=1
此成果与实际情况一致。
图2-15 机构中旳虚约束(两构件同步在几处接触
而构成多种移动副,且各移动副旳导路相互平行)
图2-16(a)、(b)所示为机车车轮联动装置和机构运动简图。图 中旳构件长度为lAB=lCD=lEF, lBC=lAD, lCE=lDF。该机构旳自 由度为
假如一种平面机构有N个构件,其中必有一种构件是机架( 固定件),该构件受到三个约束而自由度自然为零。此时,机构 旳活动构件数为n=N-1。显然,这些活动构件在未连接构成 运动副之前总共应具有3n个自由度。而当这些构件用运动副联 接起来构成机构之后,其自由度数即随之降低。若机构中共有 pL个低副和pH个高副,则这些运动副引入旳约束总数为 2pL+pH。 所以,用活动构件总旳自由度数减去运动副引入旳约 束总数就是机构旳自由度数。机构旳自由度用F表达,即:
件作为机架,运动链相对机架旳自由度必须不小于零,且 原动件数目等于运动链旳自由度数。
图2-12 刚性桁架
对于图2-12所示旳构件组合, 其自由度为
F 2n 2 pL pH 3 2 2 3 0 0
计算成果F=0,阐明该构件组合中全部活动构件旳总自由度数 与运动副所引入旳约束总数相等,各构件间无任何相对运动旳 可能,它们与机架(固定件)构成了一种刚性桁架,因而也就不 称其为机构。但它在机构中,可作为一种构件处理。

机械设计基础第章运动简图

机械设计基础第章运动简图

平面高副
两构件通过点或线接触组成的运动副称
为高副。 图1-3a)中的车轮与钢轨、图b)中凸轮
与从动件、图c)中轮齿1与轮齿2分别在
接触点处组成高副。
第四页,编辑于星期五:十一点 三十七分。
§1-2 机械系统的运动简图设计
实际构件的外形和结构往往很复杂,在 研究机械运动时,为简化问题,有必要撇开 那些与运动无关的构件外形和运动副的具体 构造,仅用简单线条和规定符号来表示构件 和运动副,并按比例定出各运动副的位置。 这种说明机构各构件间相对运动关系的简化 图形,称为机构运动简图。
= 3×2-2×2-1=1
第二十五页,编辑于星期五:十一点 三十七分。
局部自由度
局部自由度 — 与输出构件运动无关的 自由度。
不难看出,在这个机构中,无论滚子是否 转动或转动快慢,滚子中心的运动规律 (即输出构件的运动规律)都不会受到影响。
可设想将滚子与推杆(输出构件)焊成 一体(转动副也随之消失)。
第九页,编辑于星期五:十一点 三十七分。
例:试绘制内燃机的机构运动简图
解:1)分析运动,确定构件的
类型和数量
进气阀3
2)确定运动副的类型和数

3)选取比例尺,根据机
构运动尺寸,定出各运动副间的 相对位置
活塞2 顶杆8 连杆5
曲轴6
4)画出各运动副和机构 符号,并表示出各构件
齿轮 10
排气阀 4气缸体 1
第三十页,编辑于星期五:十一点 三十七分。
例3:牛头刨床主体机构
F=3n-2Pl -Ph =3×6-2×8-1=1
第三十一页,编辑于星期五:十一点 三十七分。
小结
第三十二页,编辑于星期五:十一点 三十七分。

平面机构运动副和运动简图

平面机构运动副和运动简图

常用机构运动简图符号
在 机 架 上 的 电 机
齿 轮 齿 条 传 动




齿




链 传 动
外啮 合圆 柱齿 轮传 动
圆柱 蜗杆 蜗轮 传动
凸 轮 传 动
内啮

合圆

柱齿

轮传


机构运动简图应满足的条件: 1.简图中构件数目与实际相同
2.简图中运动副的性质、数目与实际相符
3.简图中运动副之间的相对位置以及构件尺寸与实际 机构成比例。
举例: 1、活塞泵的机构运动简图
见版图/仿真动画
曲柄、连杆、齿扇、 齿条活塞、机架。
曲柄为原动件, 其余为从动件, 当曲柄匀速转动时, 活塞在汽缸中往复移 动。
2、自卸货车
见版图/仿真动画(连杆/演化/摇块)
3、抽水机构
见版图/仿真动画(连杆/演化/摇块)
习题2-3
4、偏心轮机构
见版图/仿真动画(连杆/演化/摇块)
空间运动副 平面运动副
低副 (面)
根据两构件的 接触部分
移动副(直线运动) 回转副(转动)
高副 (点或线)
1.低副 (面) 移动副- 两构件间的相对运动为直线运动 回转副-两构件间的相对运动为转动
见仿真动画 举例-见版图动画
轴的结构
2.高副 (点或线) 凸轮高副
齿轮高副
见仿真动画
空间运动副-两构件的相对运动为空间运动。
如内燃机中的活塞。
(3)从动件 —机构中随着原动件的运动而运动的其 余活动构件。如内燃机中的连杆和曲轴都
是从动件。
注:任何一个机构中,必有一个构件相对地看作固定构件。 即在任一机构中有且只有一个固定件。

平面机构运动副和运动简图

平面机构运动副和运动简图

构件的表示方法
可以组成两个运动副的构件
构件的表示方法
可以组成三个运动副的构件
运动副的表示方法:
(1)a、b、c是由两个构件组成转动副的表示方法。用圆圈表示转动 副.其圆心代表相对转动轴线。


(2)d、e、f是两构件组成移动副的表示方法,移动副的导路 必须与相对移动方向一致。图中画阴影线的构件表示机架。 (3)两构件组成高副时,在简图中应当画出两构件接触处的 曲线轮廓.
见版图/仿真动画
曲柄、连杆、齿扇、 齿条活塞、机架。 曲柄为原动件, 其余为从动件, 当曲柄匀速转动时, 活塞在汽缸中往复移 动。
2、自卸货车
见版图/仿真动画(连杆/演化/摇块)
3、抽水机构
见版图/仿真动画(连杆/演化/摇块)
习题2-3
4、偏心轮机构
见版图/仿真动画(连杆/演化/摇块)
机构运动简图/颚式破碎机
2 B
A
1
3 D
C
4 注意!
插入flash
内燃机机构运动简图
作业
Hale Waihona Puke 2-52、绘制图示偏心轮油泵的运动 简图
3
2 1 4
偏心泵
习题2-5d

2-5b手动冲床
连杆/演化/多杆机构
空间运动副-两构件的相对运动为空间运动。
球面副
球销副
螺旋副
见仿真动画
本节主要应解决的问题:
如何用简单线条和符号绘制的机构运动简图来表示实际机械 ?
2.2 平面机构运动简图
机构运动简图:
实际构件的外形和结构往往很复杂,为使问题 简化,用简单线条和符号来表示构件和运动副,按 比例定出各运动副的位置。这种说明机构各构件间 相对运动关系的简化图形.称为~。

机械设计-运动副和平面机构运动简图

机械设计-运动副和平面机构运动简图
图4-1.1 点、线、面接触
运动副按两个构件的运动关系分为平面运动副和空间运动副;按其接触形式分为点、 线接触的高副和面接触的低副;按其相对运动形式分为转动副(回转副或铰链)、移动副、 螺旋副和球面副。
图4-1.1 点、线、面接触
在平面机构中,两个构件之间通过面 接触而组成的运动副称为低副。根据两个构 件之间的相对运动形式,低副又可分为转动 副和移动副。
运动副和平面机构运 动简图
01 转动副
运动副和平面 机构运动简图
02 移动副 03 齿轮副
04 凸轮副
05 平面机构运动简图
从运动的角度看,机器、机构是由 构件组成的,机器中做独立运动的单元 称为构件,各构件之间具有确定的相对 运动,如图中的构件1、2、3、4。这种 具有确定相对运动的连接叫做运动副, 1-2、2-3、3-4分别构成一个运动副。
例、绘制图4-11所示颚式破碎机的机构运动简图
(1)分析机构的组成及运动情况。偏心轴1跟带轮5 连成一体为主动件,动颚板2和肘板3为从动件, 定颚板和D 固定处为机架,该机构由机架和三个活 动构件组成。
(2)确定运动副的类型及其数目。偏心轴1与机架组 成转动副A;偏心轴1与动颚板2组成转动副B;肘 板3与动颚板2组成转动副C;肘板3与机架组成转 动副D。可见该机构共有四个转动副。
外啮合 圆柱齿 轮传动
图4-1.8 移动副的表示方法
2. 构件的表示方法
构件用直线或小方块等来表示,画有斜线的表示机架,如图4-1.10所示。
图4-1.10 齿轮副和 凸轮副的 表示方法
3. 绘制平面机构运动简图的步骤
(1)分析机构的组成和运动情况。观察机构的运动情况,找出主动件、从动件和机架。从主 动件开始,沿着传动路线分析各构件间的相对运动关系,确定机构中构件的数目。 (2)确定运动副的类型及其数目。 (3)选择视图平面。 (4)选取适当的比例尺,绘制机构运动简图。 (5)从原动件开始,按传动顺序标出各构件的编号和运动副代号。在原动件上标出箭头表示 其运动方向。

《机械设计基础》平面机构运动简图及自由度

《机械设计基础》平面机构运动简图及自由度

一、铰链四杆机构
铰链四杆机构:以铰 链连接的四杆机构。 AD为机架,AB、DC为 连架杆,BC为连杆。
1、曲柄摇杆机构
曲柄:能做360°整周转动的连架杆。 摇杆:只能做小于360°摆动连架杆。
1为曲柄, 3为摇杆, 2为连杆, 4为机架。
2、双曲柄机构
两个连架杆均为曲柄(均可作整周转动)。
振动筛机构
例3-3
已知lBC=120mm,lCD=90mm,lAD=70mm,AD为机架。 (1)若该机构能成为曲柄摇杆机构,且AB为曲柄,求lAB. (2)若该机构能成为双曲柄机构,求lAB. (3)若该机构能成为双摇杆机构,求lAB.
则lAB ≤40mm. (2) 有两种情况:lBC最长,或lAB最长;100mm ≤ lAB ≤140mm (3)有三种情况; Ⅰ、AB最短、BC最长 40mm< lAB <70mm
第二章
平面机构运动简图及 自由度
机构由构件组成. 平面机构:所有构件都在同一平面或相互 平行的平面内运动的机构.
二、运动副及其分类
运动副:两构件直接接触并能保持一定形 式相对连接。 如:活塞与缸体 ,活塞与连杆的连接。 不同的运动副对运动的影响不同。 运动副分类: 按接触形式分: 低副和高副。
1、低副
步骤:按给定K 算出 置几何关系 + 辅助条件 寸参数。 按极限位 确定机构尺
例:3-1 已知曲柄摇杆机构的摇杆CD的长度,摆 角 和行程速比系数K,设计该机构。
k 1 步骤:(1)求 : k 1 (2)任选D点,选比例,按CD长度和摆角, 作出摇杆的两极限位置C1D、C2D 。 (3)连接C1C2,并作C1C2的垂线C1M 。
本例 实质是确定曲柄转动中心A(有无穷多解)

第二章平面机构的运动简图及自由度

第二章平面机构的运动简图及自由度

错误
F=3n-2PL-PH= 3*3-2*(2+1)-1=2
正确
F=3n-2PL-PH= 3*2-2*2-1=1
2 局部自由度
• 对整个机构运动无关 的自由度称为局部自 由度。在计算机构自 由度时,局部自由度 应当舍弃不计。如凸 轮机构中的滚子带来 一个局部自由度
3 虚约束
• 不起独立限制作 用的约束称为虚 约束。如图所示 的平行四边形机 构中,加上一个 构件5,便形成具 有一个虚约束的 平行四边形机构。
出机构预期运动规律的从动件为输出构 件
• 绘制机构运动简图的步骤 • 1)确定机构中的原动部分和工作部分,然后
再把两者之间的传动搞清楚,从而找出组成机
构的所有构件并确定构件间的运动副类型。
• 2)恰当地选择投影面。一般选择机构中与多
数构件的运动平面相平行的面为投影面。
• 3)选择适当的比例尺,绘制出机构的运动简
高副两构件通过点或线接触组成的运动副?空间运动副球面副螺旋副等yz平面内有两个自由度即平面高副提供1个约束球面低副球面高副螺旋副22平面机构运动简图?用简单的线条和符号来表示构件和运动副按比例尺寸画出机构中各构件间相对运动关系的简单图形?运动副的表示方法转动副移动副?机架abcd?构件的表示方法构件的分类
8
9 10
H
C:复合铰链
G
E
F
C B
A
滚子为局部 自由度
E'
E:虚约束
D
F=3n-2PL-PH=3*6-2*8-1=1
推土机机构 •F=3*5-2*7=1


机 机
•F=3*8-2*11-1=1


•F=3*6-2*8-1=1 平 炉 渣 口 堵 塞 机 构
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
2
3
F=3n-2PL-PH =3 3-2 3-2 =1
5 4
2019/9/22
行星轮系 33
虚约束——结论
3
机构中的虚约束都是在一定的几何条件下出
2
现的,如果这些几何条件不满足,则虚约束
将变成有效约束,而使机构不能运动
1
采用虚约束是为了:改善构件的受力情况;传递较大功率; 或满足某种特殊需要
1.转动副 (或铰链)
两构件只能在一个平面内作相对转动
限制两个自由度:(两个移动) 保留一个自由度(转动)
2019/9/22
5
2.移动副 两构件只能沿某一方向线作相对移动的运动副称为移动副。
2019/9/22
限制两个自由度:(一个移动,一个转动) 保留一个自由度(移动 )
6
(二)高副 两构件通过点或线接触组成的运动副称为高副。
分清原动件、机架和从动件
2)确定所有运动副的类型和数目,测量各运动副之间位置;
3)选择合理的位置(即能充分反映机构的特性),确定视图方向;
4)确定比例;
l

作图尺寸 mm
实际尺寸(mm)
5)用规定的符号和线条绘制成简图。(从原动件开始画))
2019/9/22
13
例: 试绘制内燃机的机构运动简图
用简单线条表示构件 规定符号代表运动副 按比例定出运动副的相对位置 与原机械具有完全相同的运动特性
机构示意图:只需表明机构运动传递情况和构造特征,不必按 严格比例所画的图形
2019/9/22
8
2、常用机构 和运动副的 表示方法:
2019/9/22
9
(1)运动副的符号
转动副: 移动副:
2019/9/22
F =3n-2pl-ph = 3 4-2 5- 1 = 1
21
二、平面机构具有确定相对运动的条件
机构要能运动,它的自由度必须大于零。机构的自由度表明机 构具有的独立运动数。由于每一个原动件只可从外界接受一个独立 运动规律(如内燃机的活塞具有一个独立的移动)因此,当机构的 自由度为1时,只需有一个原动件;当机构的自由度为2时,则需有 两个原动件。
2
2
2
1
1
1
1 1
2
2
1
1
2
2
2
2 1
1 2
1 2
2019/9/22
10
齿轮副:
凸轮副:
2019/9/22
2
2
1
1
11
(2)构件(杆):
杆、轴类构件 机架 同一构件 两副构件 三副构件
2019/9/22
12
3、绘制机构运动简图的步骤
1)分析机构,观察相对运动,数清所有构件的数目;
(F=0,刚性桁架)
2
原动件数=F,运动确定
1 1
3 4
F>0,
原动件数<F,运动不确定
C 3
2
C'
B 1
1
A
5
D' D
4 4
E
原动件数>F,机构破坏
结论:机构具有确定运动的条件:
1 机构自由度 >0
2 原动件数 = 机构自由度数
2019/9/22
23
试计算图示挖土机的自由度,并说明为什么要配置三个油缸。
29
例子分析:
F=3n- 2PL-PH =3*3-2*5-0 =-1
F=3n- 2PL-PH =3*3-2*4-0 =1
讨论: 两构件构成多个导路平行的移动副
2019/9/22
30
B、 两构件某两点之间的距离在运动中保持不变时
在这两个例子中,加与不加红色构件MN效果完全一样,为 虚约束
解决方法:计算时应将构件MN及其引入的约束去掉
37Βιβλιοθήκη 例:图示为一简易冲床的设计图。试分析设计方案是否合理。 如不合理,则绘出修改后的机构运动简图。
n=2,PL=3 F=0
2019/9/22
减少一个约束 增加一个自由度
n=2 , PL=2, PH=1 F=1
n=3,PL=4, F=1
38
四、计算平面机构自由度的实用意义
1 判定机构的运动设计方案是否合理 2 判定机构运动简图是否正确
2019/9/22
28
A、 两构件之间构成多个运动副时
两构件组合成多个转动副,且其轴线重合 两构件组合成多个移动副,其导路平行或重合 两构件组合成若干个高副,但接触点之间的距离为常数
3
3
2
2 1
目的:为了改善构件的受力情况
2019/9/22
1
F=3n-2PL-PH =3 2-2 2-1 =1
2019/9/22
14
例题1:内燃机
2019/9/22
15
3
C23 4
2
B12
1
A14
C234
2
34
B12
1
4
A14
2019/9/22
16
例题2:破碎机
2019/9/22
A B
E
DC
F
G
17
§1-3 平面机构的自由度
一、平面机构的自由度的计算
机构的自由度:机构中活动构件相对于机架所具有的独立运 动的数目。(与构件数目,运动副的类型和数目有关)
如果:活动构件数:n 低副数: pl 高副数: ph
连接前总自由度: 3n
连接后引入的总约束数: 2pl+ph
机构自由度F: F=3n - ( 2pl + ph ) =3n - 2pl - ph
2019/9/22
18
机构自由度计算举例:
2019/9/22
牛头刨床
19
机构自由度计算举例:
解:n=6,PL=8,PH=1 F=3n- 2PL-PH=3×6-2×8-1=1
修改设计方案 (1) F=0:增加一构件带进一个平面低副 (2) F>原动件数目:增加一构件带进两个平面 低副或增加原动件数目
2019/9/22
39
动画演示
2019/9/22
2
2、组成:机架:固定不动的构件 原动件:输入运动规律的构件 从动件:其它的活动构件
3、平面机构:各构件在同一平面或相互平行的平面内运动
空间机构:各构件不完全在同一平面或相互平行的平面内运动
蜗杆传动
2019/9/22
曲柄滑块机构
3
二、自由度
一个作平面运动的自由构件有三个独立运动的可能性。构件所 具有的这种独立运动的数目称为构件的自由度。所以一个作平面运 动的自由构件有3个自由度,作空间运动的自由构件有 6个 自由度。
M
N
F=3n-2PL-PH =3 3-2 4-0 =1
2019/9/22
F=3n-2PL-PH =3 4-2 6-0
=0 错
F=3n-2PL-PH =3 3-2 4-0
=1 对
31
C、 两构件上联接点的轨迹重合
在该机构中,构件2上的C点C2与构 件3上的C点C3轨迹重合,为虚约束
解决方法:计算时应将构件3及其引 入的约束去掉来计算
在设计机械时,若为了某种需要而必须使用虚约束时,则 必须严格保证设计、加工、装配的精度,以满足虚约束所 需要的几何条件
2019/9/22
34
例子分析:
C处为复合铰链,计算时为(3-1)=2个铰链; E、E'为虚约束应去掉一个; F处为局部自由度应去掉。
F=3n-2PL-PH
=37-2 9-1 =2
同理,也可将构件4当作虚约束,将 构件4及其引入的约束去掉来计算, 效果完全一样
3
C(C2,C3)
2B
1
D
A 4
F=3n-2PL-PH =3 3-2 4-0 =1
2019/9/22
32
D、 机构中对运动不起作用的对称部分
在该机构中,齿轮3是齿轮2的对称部分,为虚约束 解决方法:计算时应将齿轮3及其引入的约束去掉 同理,将齿轮2当作虚约束去掉,完全一样 目的:为了改善构件的受力情况
=3*3-2*3-1
=3*2-2*2-1
=2
=1
2019/9/22
27
3、虚约束 —排除
重复而不起独立限制作用的约束称为虚约束。 计算机构的自由度时,虚约束应除去不计。
虚约束经常发生的场合:
A 两构件之间构成多个运动副时 B 两构件某两点之间的距离在运动过程中始终保持不变时 C 联接构件与被联接构件上联接点的轨迹重合时 D 机构中对运动不起作用的对称部分
2019/9/22
当这些构件之间 以一定的方式联接起 来成为机构时,各个 构件不再是自由构件。 两相互接触的构件间 只能作一定的相对运 动,自由度减少。这 种对构件独立运动所 施加的限制称为约束。
4
三、运动副及其分类
概念:两构件直接接触又存在一定相对运动的可动联接。 类型:低副和高副 (一) 低副 两构件通过面接触而构成的运动副称为低副。 根据两构件间的相对运动形式,低副又可分为转动副和移动副。
第一章 平面机构的运动简图及自由度
1.平面机构的组成 2.平面机构自由度及其计算 3.平面机构运动简图及绘制画法 4.平面机构具有确定相对运动的条件
2019/9/22
1
§1-1 平面机构的组成
一、机构的组成与分类
1、概念: 机构:是具有确定相对运动的构件的组合 构件:机构中的(最小)运动单元 由一个或若干个零件刚性联接而成
2019/9/22
24
缝纫机刺布机构
2019/9/22
油泵
相关文档
最新文档