中科院 现代数字信号处理课件-完全版

合集下载

数字信号处理课件ppt

数字信号处理课件ppt


| rws (k ) |2
2 w
1 dz 1 C Sss ( z) H opt ( z)S xs ( z ) z 2πj
通过前面的分析, 因果维纳滤波器设计的一般方法可以按 下面的步骤进行:
(1) 根据观测信号x(n)的功率谱求出它所对应的信号模型的
传输函数,即采用谱分解的方法得到B(z)。 S xs ( z) (2) 求 B( z 1 ) 的Z反变换,取其因果部分再做Z变换,即 S xs ( z ) 舍掉单位圆外的极点,得 B( z 1 ) (3) 积分曲线取单位圆,应用(2.3.38)式和(2.3.39)式,计 算Hopt(z), E[|e(n)|2]min。
1 ˆ' rxx (m) N
N |m|1

n 0
x ( n ) x ( n m)
平稳随机序列通过线性系统:
y (n)
k
h( k ) x ( n k )
k

m y E[ y (n )]
h(k ) E[ x(n k )]
k

ryy (m)
m0

k=0, 1, 2, …
利用白化x(n)的方法求解维纳-霍夫方程:
x(n)=s(n)+υ (n)
H(z) (a)
ˆ y ( n) s ( n)
x(
x(n)
1 B( z )
w(n)
G(z) (b)
ˆ y ( n) s ( n)
x(
图2.3.5 利用白化x(n)的方法求解维纳-霍夫方程
D (m)
2 x
rxx (m)
2 x (m)

现代数字信号处理ch推荐优秀PPT

现代数字信号处理ch推荐优秀PPT
结构如图所示。这种接收机称为相关接收机。此外还 有一种基于匹配滤波器的概念设计的最佳接收机,如 图所示。
18
19
三、相关接收系统模型
假定信号码元宽度为T,接收信号

,相关器输出的相关值为:

离散时间模型为:
,其中
为脉冲能量,
为零均值加性高斯
白噪声,

代表发射的数
字信号序列。
20
此时检测变量是一个均值为 ,方差为 的
12
五、角度分集
接收端使用方向天线,不同接收方向对准不同 多径来波,这样每个方向天线接收信号互不相 关,从而实现分集。
13
2 相关接收机
在二进制通信系统中,接收信号处理问题在数学上归 结为一个二元假设检验问题:
设计最佳接收机意味着使接收系统总的错误概率为最 小
为假定 H0为真、检测结果为 H1的错误概率,
3
1 分集接收
分集接收是指对信号进行不同的接收,通过选择多条 信号传输路径,改善接收端瞬时信噪比和平均信噪比。 分集(diversity)是一种有效的通信接收方式,突出 优点是低投入、高性能由于多径信号是相关信号甚至 是相干信号,分集技术的主要任务就是如何将这种多 径信号变成互不相干信号,分集处理不同于信道均衡, 无需训练信号就可以实现信号分离。
衰落分为大尺寸衰落和小尺寸衰落,相应的分集有宏 分集技术(macroscopic diversity techniques) 和微分 集技术(microscopic diversity techniques) 。
4
一、空间分集
空间分集(space diversity)也就是天线分集 (antenna diversity) ,通过天线阵列实现信 号分集。空间分集接收信号的方法分为(1) 选择分集; (2)反馈分集; (3)最大合并 比分集; (4)等增益合并比分集。在移动通 信系统中,移动用户考虑用一个天线,基站才 用天线阵列,而且要求各个阵元之间距离足够 大,以保证各个阵元输出信号的衰落特性相互 独立,一般地, d ≥λ/2。

数字信号处理ppt课件

数字信号处理ppt课件
23
三.自相关函数与 自协方差函数的性质
24
性质1 :相关函数与协方差函数的关系
Cxx m rxx m mx 2
Cxy m rxy m m*xmy
当 mx 0
Cxx m rxx m Cxy m rxy m
25
性质2:均方值、方差与相关函数和协方差函数
rxx
0
E
xn
2
Cxx 0 rxx 0 mx 2
五、功率谱密度
44
维纳——辛钦定理
1. 复频域
rxx
(m)
1
2
j
c Sxx (z)zm1dz,
Sxx
(z)
m
rxx
(m)z
m
C (Rx , Rx )
45
2. 频域
{ rxx(m)
1
2
Pxx (e j )e jm d
2
Pxx (e j ) rxx (m)e jm
m
46
3.性质
实平稳随机信号 rxx m rxx m
rxx m E x x n1 n1m
x1x2 p x1 , x2 ; m dx1dx2
18
自协方差函数
Cxx (m) E (xn1 mx )*(xn2 mx ) E (xn1 mx )*(xn1m mx )
rxx m mx 2
19
对于均值为零的随机过程 rxx m Cxx m
①偶函数
Pxx e j Pxx e j
②实函数
Pxx e j Pxx e j
③极点互为倒数出现
Sxx
z
Sxx
1 z
47
④功率谱在单位圆上的积分等于平均功率
E
x2

最新现代信号处理第1章ppt课件

最新现代信号处理第1章ppt课件
信号是传载信息的物理量,是信息的表现形式。
信号处理的本质是信息的变换和提取。
信息的提取就要借助各种信号获取方法以及信号处理 技术。
信号测量系统和信号处理的工作内容的成本已达到装 备系统总成本的50%-70%。
1.1 现代信号处理的内容和意义
信号处理技术的应用领域:
电子通讯; 机械振动信号的分析与处理; 自动测量与控制工程领域; 语音分析、图像处理与声纳探测; 生物医学工程。
(1.4.4)
R x(y ) x ( t)y ( t)d t x ( t)y ( ,t)
(1.4.5)
内积可视为 x (t与) “基函数”关系紧密度或相似性的一种度量。
1.4 信号处理的内积与基函数
信号的内积与基函数
傅里叶变换是应用最为广泛的信号处理方法,函数 x (t ) 的傅里叶变换为
cn
1 T
T/2 x(t)eintdt
T/ 2
(1.3.6)
1.3 非平稳信号处理和信号的正交分解
1.3.2 信号的正交分解
傅里叶级数具有两个独特的性质:
1、函数 x (t ) 可分解为无限多个互相正交的分量 gn(t):cneint 的和,其中正交是指 g m 与 g n 的内积对所有 mn成立, 即
gm,gn:T 1 T T //2 2gm (t)gn(t)d t0
mn
2、正交分量 或 可用一个简单的基函数
的整数m
或n的膨胀g生m 成,g 线n 性累加逼近任何函数 g1(。t)
x(t) 小波变换中,通过母小波的伸缩和平移生成小波族。
1.3 非平稳信号处理和信号的正交分解
1.3.2 信号的正交分解
第一章 绪论
1.1 现代信号处理的内容和意义 1.2 信号的分类 1.3 非平稳信号处理和信号的正交分解 1.4 信号处理的内积与基函数 1.5 现代信号处理的应用现状与进展

中科院课件---《现代信号处理的理论与方法》课程回顾祥解

中科院课件---《现代信号处理的理论与方法》课程回顾祥解
随机信号 x(t)的k阶矩:
, xk t xt k1
mkx 1, ,k1 Ext xt 1 xt k1
随机信号 x(t)的k阶累积量:
ckx 1, ,k1 cumxt, xt 1, , xt k1
矩和累积量的估计
矩的估计:
mˆ k1
累积量的估计:
谱、双谱和三谱的BBR公式:
Py
2 x
H
H
*
2 x
H 2
By 1,2 3xH 1 H 2 H * 1 2
Ty 1,2,3 4xH 1 H 2 H 3 H * 1 2 3
FIR系统辨识
n
L1
2
2
2
30 1
1
4
6
Lm
5
1
2 c3y n1, n2 3x h k h k n1 h k n2
二次叠加原理

z(t) c1z1(t) c2 z2 (t)

Pz (t,) | c1 |2 Pz1 (t,) | c2 |2 Pz2 (t,) c1c2*Pz1,z2 (t,) c1*c2Pz2,z1 (t,)
式中: Pz1 Pz2
z1(t)和z2(t)的自时频分布;
P 和 分 z1,z2
幅值和相位分别为:
at s2 t sˆ2 t
t
arctan
sˆt st
瞬时频率
❖ 瞬时频率:表征了信号在局部时间点上的瞬态频 率特性,整个持续期上的瞬时频率反映了信号频 率的时变规律。
fi
t
1
2
d dt
arg
zt
1
0 E
'(t) | x(t) |2 dt
➢ 信号的中心频率是其瞬时频率在整个时间轴上的加 权平均。

中科院课件--《现代信号处理的理论和方法》Chapter+2

中科院课件--《现代信号处理的理论和方法》Chapter+2
满足各子集合的并集 I p I,即 I1, I2, , I p 1, 2, , k
mx I 随机信号x t 的k阶矩
cx I 随机信号x t 的k阶累积量
mx
Ip
符号集为I
的矩
p
cx
Ip
符号集为I
的累积量
p
❖ 矩与累积量之间的相互关系:
q
mx I E x1 , , xk cx I p qp1 I p I p1
ln 22
2
由于 ' 2, '' 2, k 0, k 3, 4,
可得高斯变量的各阶累积量为:
0
ckx 2
0
k 1 k 2 k 3, 4,
矩与累积量的转换关系
❖ 集合I={1,2,…,k}的无序、非空、无交连分割
令{ x1,…, xk}是k个随机变量组成的集合,其符号集为I={1,2,…,k}。
cum x1 , , xk cum xi1 , , xik i 1
,ik 是1, , k 的一个排列.
例: c3x m, n c3x n, m c3x n, m n c3x n m, m
c3x m n, n c3x m, n m
c3x m, n m cum x t , x t m, x t n m
第二章 高阶统计和高阶谱方法
❖ 2.1 矩与累积量 ❖ 2.2 矩与累积量的性质 ❖ 2.3 高阶谱 ❖ 2.4 非高斯信号与线性系统 ❖ 2.5 相位估计 ❖ 2.6 系统辨识
2.1 矩与累积量
❖ 引言 ❖ 高阶矩与高阶累积量的定义 ❖ 高斯信号的高阶矩与高阶累积量 ❖ 矩与累积量的转换关系
引言
ln
dk
0
jk

中科院课件--《现代信号处理的理论和方法》Chapter+1

中科院课件--《现代信号处理的理论和方法》Chapter+1

d3
0 -5 0 1 100 200 300 400
a4
0 -5 0 100 200 300 400
d4
0 -1 0 100 200 300 400
4、 盲信号处理技术


利用系统的输出观测数据,通过某种信号处 理的手段,获取我们感兴趣的有关信息。 盲源分离、盲均衡、盲系统辨识
第一章 信号分析基础
x(n)
↓2
d3(n)
H0(z)
↓2
H1(z)
↓2
H0(z)
↓2
a3(n)
j=1 j=2
H0(z) a2(n)
↓2
信号的二进制分解
j=3
x(t ) sin(2 f1t ) sin(2 f 2t ) sin(2 f3t ) s1 (t ) s2 (t ) s3 (t ) f1 1Hz, f 2 20Hz, f3 40Hz, f s 200 Hz, N 400
x ( n)
v0 (n)
↑M
u0 ( n )
G0(z)
x1 (n)
H1(z) ↓M
v1 (n)
↑M
u1 (n)
G1(z)
xM 1 (n)
HM-1(z) ↓M
vM 1 (n)
↑M
uM 1 (n)
GM-1(z)
ˆ ( n) x
M 通道滤波器组

例 假定要传输如图所示信号x(t),它由两个正弦信号加白噪 声组成。若用数字方法,其传输过程包括对x(t)的数字化、 量化、编码及调制等步骤。若对信号用抽样率fs进行抽样, 每一个抽样数据为16bit,那么其1s数据所需bit数是16fs。对 其抽样信号x(n)作傅里叶变换,频谱如图所示。

现代数字信号处理-第三章-3-2016PPT课件

现代数字信号处理-第三章-3-2016PPT课件

.
27
等同于线性预测
p
xˆ n k x n k k 1 p
e n x n xˆ n k x n k , 0 1 k 0
E e2 n min k
.
28
AR模型参数与线性预测器参数相同
等同于最优白化滤波
AR模型参数也可以通过最大化预测误差滤波器Prediction Error Filter (PEF)输出信号的谱平坦度spectral flatness来获得。
.
12
Levision-Durbin算法
❖ Levision算法的推导
利用系数矩阵的Toeplitz性质,将扩大方程的行倒序,同 时列也倒序,得到下列“预备方程”
将待求解的k+1阶Y-W方程的解表示成扩大方程的解和预 备方程的解的线性组合形式
.
13
Levision-Durbin算法
❖ Levision算法的推导
x
exp
1 2 1 2
ln
S xx
f
df
1 2 1 2
S xx
f
df
the geometric mean of Sxx f , the arithmetic mean of Sxx f
0 1
max e
x
Rxx Ree
(0) (0)
PEF
min Ree (0)
.
预测误差谱平坦度
AR模型谱估计方法,既要估计AR模型参数,又要估计模 型的阶。
一种简单而直观的确定AR模型的阶的方法,是不断增 加模型的阶,同时观察预测误差功率,当其下降到最小 时,对应的阶便可选定为模型的阶。
另一种简单方法是观察各阶模型预测误差序列的周期图,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程主要内容
第一章 时域离散随机信号的分析 第二章 维纳滤波和卡尔曼滤波 第三章 自适应数字滤波器 第四章 功率谱估计 第五章 时频分析
成绩评定
课堂成绩 闭卷考试
教材及参考书
教材:
张贤达,《现代信号处理》第二版,清华大学出版社,北京,2002。 丁玉美,《数字信号处理—时域离散随机信号处理》,西安电子科技

一维概率密度函数:
fXn
(xn,n)
FXn (xn,n) xn
上述两式只描述随机序列在某一时刻n的统计特性,而 对于随机序列,不同n的随机变量之间并不是孤立的。
二维概率分布函数:
F X n ,X m ( x n ,n ,x m ,m ) P ( X n x n ,X m x m )
其中,[x1,x2,
,
]T
xN
E[(X )(X )T]
cov[x122, x1]
cov[xN, x1]
cov[x1, x2]
22
cov[xN, x2]
cov[x1, cov[x2,
xxNN]]
N2
1.1.3 随机信号
实际应用中,常常把随时间变化而变化的随机变量 ,称为随机过程。
随机信号的特点: 在任何时间的取值都是随机的(不能确切已知) 取值服从概率分布规律(统计特性确定,但未知)
现代数字信号处理
第一章
预修课程
概率论与数理统计 信号与系统 数字信号处理1 随机过程
课程讨论的主要问题-1
对信号特性的分析
➢ 研究对象:确定性信号->随机信号;
➢ 研究目的:提取信号中的有用信息;
➢ 主要内容:
➢ 随机信号的统计特性; ➢ 随机信号的参数建模; ➢ 功率谱估计(经典谱估计和现代谱估计); ➢ 时频分析(短时傅立叶变换、维格纳变换、小波变换)
xf(x)dx
➢ 均方值(二阶原点矩 ):
D 2E [X2]x2f(x)dx
➢ 方差(二阶中心矩 ):
2 E [X 2 ] x2f(x )d x
➢ 协方差:
c o v [ X , Y ] E [ ( X X ) ( Y Y ) * ] E [ X Y * ] E [ X ] E [ Y ] *
课程特点
现代数字信号处理的基本概念、基本理论和 分析方法;结合有关问题,介绍其在相关领 域的应用。
课程讲述线索
本课程采用对不同处理对象的线索来讲解:
确定性信号->随机信号; 平稳信号处理->非平稳信号处理; 时域->频域->时频分析;
根据处理对象和应用背景的不同而选择相应 的处理方法
大学出版社,2002。
参考书:
胡广书,《数字信号处理-理论、算法与实现》第二版,清华大学出 版社,北京,2003。
Roberto Cristi, Modern Digital Signal Processing, ThomsonBrooks/Cole,2004。
Dimitris G. Manolakis, etc, Statistical and Adaptive Signal Processing, Mc Graw Hill, 2000。
X(t)是所有可能样本函数的集合
t t
t1
tn
t
图 1.1.1 n部接收机的输出噪声
如果对随机信号X(t)进行等间隔采样,或者说将 X(t) 进行时域离散化, 得到随机变量X(t1), X(t2), X(t3), …, 所构成的集合称为时域离散随机信号。
用n取代tn,随机序列用X(n)表示,即随机序列是 随n变化的随机变量序列。
第一章 时域离散随机信号的分析
1.1 随机信号 1.2 时域统计表达 1.3 Z域及频域的统计表达 1.4 随机序列数字特征的估计 1.5 平稳随机序列通过线性系统 1.6 时间序列信号模型
1.1 随机信号
信号的分类 随机变量及其统计描述 随机信号及其统计描述
1.1.1 信号的分类
几种特殊分布的随机变量的概率密度:
➢ 均匀分布: f (x) 1
a x b
ba
➢ 高斯分布: f(x) 212exp[2 12(x)2]
➢ N个实随机变量 Xx1,x2, ,xNT 的联合高斯分布的概率
密度: f(X ) [ ( 2)N ] 1 2 e x p [ 1 (X ) T 1 (X ) ] 2
信号的分类:
➢ 确1.1.2 随机变量
随机变量的统计描述:
➢ 概率分布函数:
x
F (x ) P ro b a b ility (X x ) f(x )d x
➢ 概率密度函数:
f(x)dF(x) dx
➢ 均值(一阶矩):
E[X]
随机信号定义:一个随机信号X(t)是依赖时间t的一 族随机变量,或者说它是所有可能的样本函数的集 合。
X(t1)= {xi(t1), i=1, 2, 3,…} X(t)= {X(t1), X(t2), X(t3), …} x1 (t)
X(t)是依赖时间t的一族随机变量 x2(t)
xn(t)
X(t)= {xi(t), i=1, 2, 3,…}
0.4 0.3 0.2 0.1
0 159517975 0
Frequency [Hz]
50 100 150 200 250 300 350 Time [s]
课程讨论的主要问题-2
信号处理技术
➢ 研究目的:提高信号质量; ➢ 主要内容:
➢ 维纳滤波理论(平稳条件下); ➢ 卡尔曼滤波理论(非平稳条件下); ➢ 自适应滤波理论;
x(n)
ssiinn((12nn)),,
0nN1 1 N1 nN2 1
sin(3n), N2 nN1
Linear scale
Real part
Signal in time 1
0
-1 |STFT|2, Lh=48, Nf=192, lin. scale, contour, Thld=5%
Energy spectral density
x1(n) x2(n) xn(n)
X(n)是依赖时间n的一族随机变量
n n
n
图 1.1.2 n部接收机输出噪声的时域离散化
样本函数xi(t)或样本序列xi(n)
特定时刻
随机变量{X(t1), X(t2), X(t3), …}
随机信号X(t)或X(n)
随机信号的统计描述:
➢ 一维概率分布函数: F X n(xn,n)P (X nxn)
相关文档
最新文档