8.4 因式分解——平方差公式(公开课)
用平方差公式因式分解公开课教案

用平方差公式因式分解公开课教案一、教学目标:1. 让学生掌握平方差公式的概念和应用。
2. 培养学生运用平方差公式进行因式分解的能力。
3. 提高学生解决实际问题的能力。
二、教学内容:1. 平方差公式的定义和特点。
2. 平方差公式的记忆方法。
3. 运用平方差公式进行因式分解的方法和步骤。
三、教学重点:1. 平方差公式的记忆和应用。
2. 运用平方差公式进行因式分解的方法和技巧。
四、教学难点:1. 平方差公式的灵活运用。
2. 因式分解中的特殊情况的处理。
五、教学方法:1. 采用讲解、演示、练习、讨论等多种教学方法,引导学生主动参与、积极思考。
2. 通过例题和练习题,让学生巩固所学知识,提高解题能力。
3. 鼓励学生提问和发表自己的观点,培养学生的思维能力和创新能力。
一、平方差公式的定义和特点1. 引入平方差公式:a^2 b^2 = (a + b)(a b)2. 解释平方差公式的概念和特点3. 让学生熟记平方差公式二、平方差公式的记忆方法1. 平方差公式记忆口诀:平方差,加减号,乘积不变性质牢2. 讲解记忆方法,引导学生自主记忆3. 进行记忆测试,检查学生掌握情况三、运用平方差公式进行因式分解的方法和步骤1. 讲解因式分解的方法和步骤2. 示例题:因式分解ax^2 + bx + c3. 让学生独立完成练习题,巩固所学知识四、平方差公式的灵活运用1. 讲解平方差公式的灵活运用方法2. 示例题:解决实际问题中的应用3. 让学生尝试解决实际问题,提高应用能力五、因式分解中的特殊情况1. 讲解特殊情况:完全平方公式和平方差公式的结合2. 示例题:因式分解中含有完全平方项的题目3. 让学生练习特殊情况下的因式分解,巩固知识点六、练习题讲解和分析1. 讲解练习题,分析解题思路和方法2. 引导学生总结解题规律,提高解题能力3. 鼓励学生提问和发表自己的观点,培养思维能力七、课堂小结1. 总结本节课所学知识:平方差公式、因式分解的方法和步骤2. 强调平方差公式的记忆和应用重要性3. 布置课后作业,巩固所学知识八、课后作业布置1. 布置练习题:因式分解和应用平方差公式2. 提醒学生按时完成作业,加强练习3. 鼓励学生自主学习,提高解题能力九、作业讲解和反馈1. 讲解作业题目,分析学生解题情况2. 针对学生错误进行讲解和指导3. 给予学生鼓励和反馈,提高学习积极性十、课程总结和反思1. 总结本节课的教学目标和内容2. 反思教学过程中的优点和不足3. 提出改进措施,为下一节课做好准备六、教学活动设计:1. 导入新课:通过复习完全平方公式,引导学生发现平方差公式的规律。
《利用平方差公式进行因式分解》教案 (公开课)2022年湘教版数学

第1课时 利用平方差公式进行因式分解1.理解平方差公式,弄清平方差公式的形式和特点;(重点)2.掌握运用平方差公式分解因式的方法,能正确运用平方差公式把多项式分解因式.(难点)一、情境导入1.同学们,你能很快知道992-1是100的倍数吗?你是怎么想出来的?请与大家交流.2.你能将a 2-b 2分解因式吗?你是如何思考的?二、合作探究探究点一:用平方差公式因式分解【类型一】 判定能否利用平方差公式分解因式以下多项式中能用平方差公式分解因式的是( )A .a 2+(-b )2B .5m 2-20mnC .-x 2-y 2D .-x 2+9解析:A 中a 2+(-b )2符号相同,不能用平方差公式分解因式,错误;B 中5m 2-20mn 两项都不是平方项,不能用平方差公式分解因式,错误;C 中-x 2-y 2符号相同,不能用平方差公式分解因式,错误;D 中-x 2+9=-x 2+32,两项符号相反,能用平方差公式分解因式,正确.应选D.方法总结:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.【类型二】 利用平方差公式分解因式分解因式:(1)a 4-116b 4;(2)x 3y 2-xy 4. 解析:(1)a 4-116b 4可以写成(a 2)2-(14b 2)2的形式,这样可以用平方差公式分解因式,而其中有一个因式a 2-14b 2仍可以继续用平方差公式分解因式;(2)x 3y 2-xy 4有公因式xy 2,应先提公因式再进一步分解因式.解:(1)原式=(a 2+14b 2)(a 2-14b 2)=(a 2+14b 2)(a -12b )(a +12b ); (2)原式=xy 2(x 2-y 2)=xy 2(x +y )(x -y ).方法总结:分解因式前应先分析多项式的特点,一般先提公因式,再套用公式.分解因式必须进行到每一个多项式都不能再分解因式为止.【类型三】 利用因式分解整体代换求值x 2-y 2=-1,x +y =12,求x -y 的值.解析:第一个等式左边利用平方差公式化简,将x +y 的值代入计算即可求出x -y 的值.解:∵x 2-y 2=(x +y )(x -y )=-1,x +y =12,∴x -y =-2. 方法总结:有时给出的条件不是字母的具体值,就需要先进行化简,求出字母的值,但有时很难或者根本就求不出字母的值,根据题目特点,将一个代数式的值整体代入可使运算简便.探究点二:用平方差公式因式分解的应用【类型一】 利用因式分解解决整除问题248-1可以被60和70之间某两个自然数整除,求这两个数.解析:先利用平方差公式分解因式,再找出范围内的解即可.解:248-1=(224+1)(224-1)=(224+1)(212+1)(212-1)=(224+1)(212+1)(26+1)(26-1).∵26=64,∴26-1=63,26+1=65,∴这两个数是65和63.方法总结:解决整除的根本思路就是将代数式化为整式乘积的形式,然后分析被哪些数或式子整除.【类型二】 利用平方差公式进行简便运算利用因式分解计算:(1)1012-992;(2)5722×14-4282×14. 解析:(1)根据平方差公式进行计算即可;(2)先提取公因式,再根据平方差公式进行计算即可.解:(1)1012-992=(101+99)(101-99)=400;(2)5722×14-4282×14=(5722-4282)×14=(572+428)(572-428)×14=1000×144×14=36000.方法总结:一些比较复杂的计算,如果通过变形可转化为平方差公式的形式,那么可以使运算简便.【类型三】 因式分解的实际应用如图,100个正方形由小到大套在一起,从外向里相间画上阴影,最里面一个小正方形没有画阴影,最外面一层画阴影,最外面的正方形的边长为100cm ,向里依次为99cm ,98cm ,…,1cm ,那么在这个图形中,所有画阴影局部的面积和是多少?解析:相邻两正方形面积的差表示一块阴影局部的面积,而正方形的面积是边长的平方,所以能用平方差公式进行因式分解.解:每一块阴影的面积可以表示成相邻正方形的面积的差,而正方形的面积是其边长的平方,这样就可以逆用平方差公式计算了.那么S 阴影=(1002-992)+(982-972)+…+42-32+22-12=100+99+98+97+…+2+1=5050(cm 2).答:所有阴影局部的面积和是5050cm2.方法总结:首先应找出图形中哪些局部发生了变化,是按照什么规律变化的,通过分析找到各局部的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.三、板书设计1.平方差公式:a2-b2=(a+b)(a-b);2.平方差公式的特点:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提〞得彻底,最后应注意两点:一是每个因式要化简;二是分解因式时,每个因式都要分解彻底4.5一次函数的应用第1课时利用一次函数解决实际问题1.根据问题条件找出能反映出实际问题的函数;(重点)2.能利用一次函数图象解决简单的实际问题,开展学生的应用能力;(重点)3.建立一次函数模型解决实际问题.(难点)一、情境导入联通公司 话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y 1(元),B 套餐每月话费为y 2(元),月通话时间为x 分钟.(1)分别表示出y 1与x ,y 2与x 的函数关系式;(2)月通话时间为多长时,A 、B 两种套餐收费一样?(3)什么情况下A 套餐更省钱?二、合作探究探究点:一次函数与实际问题【类型一】 利用图象(表)解决实际问题我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费:月用水10t 以内(包括10t)的用户,每吨收水费a 元;月用水超过10t 的用户,10t 水仍按每吨a 元收费,超过10t 的局部,按每吨b 元(b >a )收费.设某户居民月用水x t ,应收水费y 元,y 与x 之间的函数关系如以下列图.(1)求a 的值,并求出该户居民上月用水8t 应收的水费;(2)求b 的值,并写出当x >10时,y 与x 之间的函数表达式;(3)上月居民甲比居民乙多用4t 水,两家共收水费46元,他们上月分别用水多少吨?解析:(1)用水量不超过10t 时,设其函数表达式为y =ax ,由上图可知图象经过点(10,15),从而求得a 的值;再将x =8代入即可求得应收的水费;(2)可知图象过点(10,15)和(20,35),利用待定系数法可求得b 的值和函数表达式;(3)分别判断居民甲和居民乙用水比10t 多还是比10t 少,然后用相对应的表达式分别求出甲、乙上月用水量.解:(1)当0≤x ≤10时,图象过原点,所以设y =ax .把(10,15)代入,解得ayx (0≤x ≤10).当x =8时,y ×8=12,即该户居民的水费为12元;(2)当x >10时,设y =bx +m (b ≠0).把(10,15)和(20,35)代入,得⎩⎪⎨⎪⎧10b +m =15,20b +m =35,解得⎩⎪⎨⎪⎧b =2,m =-5,即超过10t 的局部按每吨2元收费,此时函数表达式为y =2x -5(x >10); (3)因为10×1.5+10×1.5+4×2=38<46,所以居民乙用水比10t 多.设居民乙上月用水x t ,那么居民甲上月用水(x +4)t.y 甲=2(x +4)-5,y 乙=2x ,得[2(x +4)-5]+(2x -5)=46,解得x t ,居民乙用水12t.方法总结:此题的关键是读懂图象,从图象中获取有用信息,列出二元一次方程组得出函数关系式,根据关系式再得出相关结论.广安某水果店方案购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(1)假设该水果店预计进货款为1000元,那么这两种水果各购进多少千克?(2)假设该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?解析:(1)根据方案购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,得出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.解:(1)设购进甲种水果x千克,那么购进乙种水果(140-x)千克,根据题意可得5x+9(140-x)=1000,解得x=65,∴140-x=75(千克).答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得甲种水果每千克利润为3元,乙种水果每千克利润为4元.设总利润为W,由题意可得W=3x+4(140-x)=-x+560,故W随x的增大而减小,那么x越小,W 越大.∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x≤3x,解得x≥35,∴当x=35时,W最大=-35+560=525(元),故140-35=105(千克).答:当购进甲种水果35千克,购进乙种水果105千克时,此时利润最大为525元.方法总结:利用一次函数增减性得出函数最值是解题关键.如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体〞,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答以下问题:(1)圆柱形容器的高为多少?匀速注水的水流速度(单位:cm3/s)为多少?(2)假设“几何体〞的下方圆柱的底面积为15cm2,求“几何体〞上方圆柱的高和底面积.解析:(1)根据图象,分三个局部:注满“几何体〞下方圆柱需18s;注满“几何体〞上方圆柱需24-18=6(s);注满“几何体〞上面的空圆柱形容器需42-24=18(s),再设匀速注水的水流速度为x cm3/s,根据圆柱的体积公式列方程,再解方程;(2)由图②知几何体下方圆柱的高为a cm,根据圆柱的体积公式得a·(30-15)=18×5,解得a=6,于是得到“几何体〞上方圆柱的高为5cm,设“几何体〞上方圆柱的底面积为S cm2,根据圆柱的体积公式得5×(30-S)=5×(24-18),再解方程即可.解:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体〞的高度为11cm,水从刚满过由两个实心圆柱组成的“几何体〞到注满用了42-24=18(s),这段高度为14-11=3(cm).设匀速注水的水流速度为x cm3/s,那么18·x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;(2)由图②知“几何体〞下方圆柱的高为a cm,那么a·(30-15)=18×5,解得a=6,所以“几何体〞上方圆柱的高为11-6=5(cm).设“几何体〞上方圆柱的底面积为S cm2,根据题意得5×(30-S)=5×(24-18),解得S=24,即“几何体〞上方圆柱的底面积为24cm2.方法总结:此题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.【类型二】 建立一次函数模型解决实际问题某商场欲购进A 、B 两种品牌的饮料共500箱,两种饮料每箱的进价和售价如下表所示.设购进A 种饮料x 箱,且所购进的两种饮料能全部卖出,获得的总利润为y 元.(1)求y 关于x 的函数表达式;(2)如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润.(注:利润=售价-本钱)解析:再根据它们的数量求出利润,进而利用函数的图象性质求出最大利润.解:(1)由题意,知B 种饮料有(500-x )箱,那么y =(63-55)x +(40-35)(500-x )=3xy =3x +2500(0≤x ≤500);(2)由题意,得55x +35(500-x )≤x ≤125.∴当x =125时,y 最大值=3×125+2500=2875.∴该商场购进A 、B 两种品牌的饮料分别为125箱、375箱时,能获得最大利润2875元.方法总结:此类题型往往取材于日常生活中的事件,通过分析、整理表格中的信息,得到函数表达式,并运用函数的性质解决实际问题.解题的关键是读懂题目的要求和表格中的数据,注意思考的层次性及其中蕴含的数量关系.【类型三】 两个一次函数图象在同一坐标系内的问题为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行〞活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,,如图表示自行车队、邮政车离甲地的路程y (km)与自行车队离开甲地时间x (h)的函数关系图象,请根据图象提供的信息解答以下各题:(1)自行车队行驶的速度是________km/h ;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?解析:(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a 小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B 的坐标和C 的坐标,由自行车的速度就可以D 的坐标,由待定系数法就可以求出BC ,ED 的解析式就可以求出结论.解:(1)由题意得,自行车队行驶的速度是72÷3=24km/h.(2)由题意得,邮政车的速度为24×2.5=60(km/h).设邮政车出发a 小时两车相遇,由题意得24(a +1)=60a ,解得a =23. 答:邮政车出发23小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地所需的时间为135÷60=94(h),∴邮政车从丙地出发的时间为94+2+1=214(h),∴B (214,135),C ,0).自行车队到达丙地的时间为:135÷24+0.5=458+0.5=498(h),∴D (498,135).设BC 的解析式为y 1=k 1x +b 1,由题意得⎩⎪⎨⎪⎧135=214k 1+b 1,0k 1+b 1,∴⎩⎪⎨⎪⎧k 1=-60,b 1=450,∴y 1=-60x +450,设ED 的解析式为y 2=k 2x +b 2,由题意得⎩⎪⎨⎪⎧72k 2+b 2,135=498k 2+b 2,解得⎩⎪⎨⎪⎧k 2=24,b 2=-12,∴y 2=24xy 1=y 2时,-60x +450=24x -12,解得x =5.5.y 1=-60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.方法总结:此题考查了待定系数法求一次函数的解析式,一次函数与一元一次方程的综合运用,解答时求出函数的解析式是关键.三、板书设计一次函数与实际问题1.建立一次函数模型解实际问题2.利用图象(表)解决实际问题对于分段函数的实际应用问题中,学生往往无视了自变量的取值范围,同时解决有交点的两个一次函数图象的问题还存在一定的困难,有待在以后的教学中加大训练,力争逐步提高.。
人教版八年级数学上册课件:14.3.2因式分解(公式法-平方差公式)

你学了什么方法进行分解因式?
把下列各式因式分解:
(1) ax - ay = a( x – y ) (2) 9a2 - 6ab+3a =3a(a-2b+1) (3) 3a(a+b)-5(a+b) =(a+b)(3a - 5) (4) ax2 - a3 =a(x2-a2) =a(x+a)(x-a) (5) 2xy2 - 50x =2x(y2-25) =2x(y+5)(y - 5)
个整体,加括号
熟记公式 a2 b2 (a b)(a b)
把下列式子分解因式
(x p)2 (x q)2
a² - b²= ( a + b)( a - b )
(1)a2-1
=( a )2-( 1 )2
(2)x4y2-4
=( x2y )2-( 2 )2
(3) 9 x2-0.01y2
49
=( 3
=(x+2)(x-2) =(3+y)(3-y)
(3) 1-a2
(4) 4x2-y2
=(1+a)(1-a) =(2x+y)(2x-y)
把下列各式分解因式
(1) 1-25x2
解: 1-25x2
=12-(5x)2
把两项写成平方的形式,
=(1+5x)(1-5x) 找出a和b。底数既有数
字还有字母,需要看成一
7
x )2-( 0.1y )2
(4)0.0001-121x2源自=( 0.01 )2-( 11x )2
因式分解:
1、 – a4 + 16 2、 4(a+2)2 - 9(a - 1)2 3、 (x+y+z)2 - (x-y-z)2
因式分解(2)——公式法(人教版)八年级数学上册PPT课件

13. 分解因式:n2(m-2)+(2-m).
解:原式=(m-2)(n+1)(n-1).
三级检测练
一级基础巩固练
14. 分解因式:
(1)x2-25=
(x+5)(x-5)
;
(2)4b2-a2=
(2b+a)(2b-a)
;
(3)9b2-4a2=
5. 分解因式:
(1)x2-25=
(x+5)(x-5)Biblioteka ;(2)x2-36=
(x+6)(x-6)
.
6. (例 2)分解因式:
(1)4x2-25=
(2x+5)(2x-5)
;
(2)9x2-16y2=
(3x+4y)(3x-4y)
.
7. 分解因式:
(1)16x2-1=
(4x+1)(4x-1)
;
(2)36x2-25y2=
)2.
知识点.公式法(平方差公式)
3. 平方差公式:
整式乘法:(a+b)(a-b)= a2-b2
;
分解因式:a2-b2=
(a+b)(a-b)
.
4. (例 1)分解因式:
(1)x2-4=
(x+2)(x-2)
;
(2)x2-9=
(x+3)(x-3)
.
总结:能用平方差公式分解因式的条件: ①二项式;②能化成两个平方相减.
(1)设 S1,S2 分别是图 1,图 2 的面积,若用
含 a,b 的代数式表示它们的面积,则
S1=
a2-b2
精品初中数学《因式分解-平方差公式》说课课件(人教版)

教材分析 目标分析 重、难点 学情分析 教学方法 教学流程
学情分析
(1)知识掌握上,在整式乘法中学生已经熟 练的运用了平方差公式,对于新知学生并 不陌生,把乘法公式反过来,很轻松的投 入新知的探究中。
⑵学生学习本节课的知识障碍。多项式具 有什么特征时,可以用平方差公式分解因 式;对于负号的处理;分解是否彻底,学 生会出现困难。这就要求教师利用讲学稿 设计有价值的问题让学生弄清平方差公式 的形式和特点,熟练的掌握公式。
多项式具有什么特征时,可以用平方差 公式因式分解?
(1)多项式是____项式 (2)每一项都可以写成数或式____的形式
(3)两项的符号_____,一__一__ □2-△2=(□+△)(□-△)
活动3
例1 分解因式:
(1) 4x2 – 9 = (2x)2 – 3 2 = (2x+3)(2x-3).
(1) ax - ay = a( x – y )
(2) 9a2 - 6ab+3a =3a(a-2b+1)
(3) 3a(a+b)-5(a+b)=(a+b)(3a - 5)
因式分解是把一个多项式化成几个整式的_积____ 的形式,即和差化_积_,因式分解与整式乘法的过 程__相__反_
3.运用平方差公式计算:
(二)自主探究、合作交流
活动1 1.你能将下列多项式分解因式吗?这两个多项式有 什么共同的特点?
解:原式=(X+2) (X-2) 解:原式=(y+5)(y-5)
特点:这两个多项式都可以写成是两个数_平__方__差____ 的形式,依据__平__方__差___公式来分解因式。
北师大版《平方差公式》ppt课堂课件2

2
2
(7 p mn)(7 p mn)
课堂小结
整式乘法和因式分解中的平方差公式有何关系?
整式乘法:(a b)(a b) a2 b2 因式分解: a2 b2 (a b)(a b)
互逆变形
例2.因式分解:4x2 16
解:原式 4(x2 4)
a2 b2 (a b)(a b)
2.把下列各式因式分解:
(1)3ax2 12a
(2)(5 m n)2 45n2
解:原式 3a(x2 4) 解:原式 5[(m n)2 9n2 ]
3a(x 2)(x 2)
5[(m n)2 (3n)2 ]
5(m n 3n)(m n 3n)
5(m 4n)(m 2n)
等式两边的多项式各有什么特点?
等式两边的多项式各有什么特点?
等式两边的多项式各有什么特点?
因式分解——平方差公式
(2)9a2 p2 b2q2 (4)a4 (1 挑战一下)
回 新顾知复讲习解
因式分解:(xxa2 2)42 4
a2 b2 (a b)(a b)
解 x2 : 4原式(x(2x)(x2)22) 22
y(2x y)
(3a b)(b a)
(3)16(m n)2 25n2
(4) p2 16( p q)2
解:原式 [4(m n)]2 (5n)2
解:原式 p2 [4( p q)]2
[4(m n) 5n][4(m n) 5n] [ p 4( p q)][p 4( p q)]
因式分解——平方差公式 因式分解——平方差公式
2
2
(5)2( x y ) 18( x y ) 第二步:利用平方差公式因式分解
等式两边的多项式各有什么特点?
沪科版七年级下第8章 8.4.2 因式分解 公式法课件(15张PPT)
小试牛刀
判断下列各多项式是否可以用平方差公式进 行因式分解,如果可以,指出对应公式中的 a,b分别是什么,如果不能请说明理由。
(1)、a²-2ab+b² (2)、a²+b² (3)、-a²-b² (4)、a²-b (5)、a²-1 (6)、4a²-25b²(7)-16m²+1
)
3、分解因式:
(1)、4x²+4x+1 (2)、(x-2y)²+8xy
(3)、 1 x2 1 y2 (4)、(x+1)(x-1)-35
16 25
布置作业 课堂小册子
魅力数学
1、用简便方法计算:
1 1 1 1 1 1 1 1 ...1 1 4 9 16 25 10000
因式分解
引出概念
像这样运用公式进行因式分解的方法叫做公式 法
掌握运用
那么,我们如何运用公式法进行因式分解呢? 观察刚才的等式
a²+2ab+b²=(a+b)² a²-2ab+b²=(a-b)² 等式左边的多项式具有什么特点?
特征: 项数 三项式 特点 两项能够写成完全平方数,另外 一项是它们底数积的2倍。 符号 完全平方数的两项符号相同
满足刚才三点要求就可以运用完全平方公式法来 因式分解了。
判断下列各多项式可以运用完全平方法进行分解 因式吗?
(1)x²-2x+1 (2)m²+2mn+n²(3)4a²+6ab+9b² (4)(a-b)²-2(a-b)+1(5)-a²+2ab-b²(6)2a²-b (7)x²-2xy-y ² (8)a²-ab+b²(9)m²+mn+n²
2024年《因式分解》教案公开课获奖
2024年《因式分解》教案公开课获奖一、教学内容本节课选自2024年教材《数学》八年级下册,第3章《整式的乘除与因式分解》中的第2节“因式分解”。
详细内容包括因式分解的定义、方法及应用。
通过本节课的学习,使学生掌握因式分解的基本方法,并能解决实际问题。
二、教学目标1. 知识与技能:理解因式分解的概念,掌握提公因式法、平方差公式、完全平方公式等因式分解方法,并能够熟练运用。
2. 过程与方法:培养学生观察、分析、归纳的能力,提高学生的逻辑思维能力和解决问题的能力。
3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生合作交流、自主探究的学习习惯。
三、教学难点与重点重点:因式分解的概念及提公因式法、平方差公式、完全平方公式的应用。
难点:如何找出多项式的公因式,并熟练运用公式进行因式分解。
四、教具与学具准备教具:多媒体教学设备、黑板、粉笔、直尺等。
学具:练习本、铅笔、橡皮等。
五、教学过程1. 实践情景引入(5分钟)通过一个实际生活中的问题,引出因式分解的概念。
例如:小明和小华去超市购物,小明花了3个苹果的钱,小华花了5个苹果的钱,问他们一共花了多少个苹果的钱?2. 知识讲解(15分钟)(1)因式分解的概念:把一个多项式表示成几个整式的乘积的形式,叫因式分解。
(2)因式分解的方法:a. 提公因式法:找出多项式的公因式,然后提出公因式,将多项式分解为两个或多个整式的乘积。
b. 平方差公式:a^2 b^2 = (a + b)(a b)c. 完全平方公式:a^2 + 2ab + b^2 = (a + b)^2,a^2 2ab + b^2 = (a b)^23. 例题讲解(15分钟)讲解两道例题,一道涉及提公因式法,另一道涉及平方差公式和完全平方公式。
4. 随堂练习(10分钟)布置两道练习题,让学生当堂完成,巩固所学知识。
5. 小组讨论(5分钟)将学生分成小组,讨论如何解决实际问题时应用因式分解。
六、板书设计1. 因式分解的概念2. 因式分解的方法:a. 提公因式法b. 平方差公式c. 完全平方公式3. 例题及解答七、作业设计1. 作业题目:a. 将多项式x^2 4分解因式。
七年级下册数学学沪科版 第8章 整式乘法与因式分解8.4 因式分解8.4.3 公式法——平方差公式习题课件
(2)233-2能被11至20之间的两个数整除,求这两个数.
233-2=2×(232-1) =2×(216+1)×(216-1) =2×(216+1)×(28+1)×(28-1) =2×(216+1)×(28+1)×(24+1)×(24-1) =2×(216+1)×(28+1)×17×15. 所的密码信息可能是( )
A.我爱美
B.宜昌游
C
C.爱我宜昌
D.美我宜昌
点拨 13题 返回
点拨: 因为(x2-y2)a2-(x2-y2)b2=(x2-y2)(a2-b2)=(x-
y)(x+y)(a-b)(a+b),x-y,x+y,a+b,a-b分别对 应爱、我、宜、昌,所以结果呈现的密码信息可能是 “爱我宜昌”,故选C.
返回
16.已知a,b,c为三角形ABC的三条边长, 试说明:(a-c)2-b2是负数.
解:因为a,b,c为三角形ABC的三条边长, 所以a+b>c,b+c>a, 即a-c+b>0,a-c-b<0. 所以(a-c)2-b2=(a-c+b)(a-c-b)<0. 所以(a-c)2-b2是负数.
返回
17.(1)利用因式分解说明257-512能被250整除;
() B
A.a(a-1)
B.a(a-2)
C.(a-2)(a-1)
D.(a-2)(a+1)
返回
7.两个连续奇数的平方差是( C )
A.16的倍数
B.12的倍数
C.8的倍数
D.6的倍数
返回
《平方差公式》课件精品 (公开课)2022年数学PPT
针对训练 利用平方差公式计算: (1)(3x-5)(3x+5); (2)(-2a-b)(b-2a); (3)(-7m+8n)(-8n-7m). 解:(1)原式=(3x)2-52=9x2-25;
(2)原式=(-2a)2-b2=4a2-b2;
(3)原式=(-7m)2-(8n)2=49m2-64n2;
例2 计算: (1) 102×98;
解:李大妈吃亏了.
理由:原正方形的面积为a2,
改变边长后面积为(a+4)(a-4)=a2-16, ∵a2>a2-16,
∴李大妈吃亏了.
方法总结:解决实际问题的关键是根据题意列出 算式,然后根据公式化简算式,解决问题.
当堂练习
1.下列运算中,可用平方差公式计算的是( C ) A.(x+y)(x+y) B.(-x+y)(x-y) C.(-x-y)(y-x) D.(x+y)(-x-y)
思考:数轴上到原点的距离相等的点所表示的数有什
么特点?借助数轴填一填:
1.数轴上与原点距离是2的点有_两___个,这些点表示的
数是_2_和__-_2___; 2.与原点的距离是5的点有_两___个,这些点表示的数是
__5_和__-_5__.
-5
-2 0 2
5
要点归纳
1.互为相反数的两个数分别位于原点的两侧(0除外); 2.互为相反数的两个数到原点的距离相等.
填一填: (a-b)(a+b) (1+x)(1-x) (-3+a)(-3-a)
(1+a)(-1+a) (0.3x-1)(1+0.3x)
ab
1
x
-3
a
a1
0.3x 1
a2-b2 12-x2 (-3)2-a2 a2-12 ( 0.3x)2-12
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P78 习题 8. 4 第 4、5 题
再见
2 2
2 2
我们称之为:完全平方公式法
2
a 2ab b a b
2
在横线上填上适当的式子,使等号成立: x2-25 1、(x+5) (x-5) = _____
2、(a+b) (a-b) a2-b2 = _____
x+5) 3、x2-25 = ( _____ (x-5) 4、a2-b2 =
1. 3ax2 - 3ay2 2. 1012 - 992 3.已知 a + b = 3, a – b = -5, 求 a2 - b2的
值
4.试说明:当n为整数时, (n+4)2 -n2 能 被8整除
——说说本节课你的收获
问题:
记住平方差公式了吗?它有什么特 点? 运用平方差公式要分几个步骤? 在使用过程中我们该注意什么?
=(6+5x) (6-5x)
=(4n +3m)(4n-3m)
练习 : (1) m2-25n2 (2) -0.01+9a2
பைடு நூலகம் 例 2 分解因式
9(a+b)2 - a2
= [3(a+b)]2 - a2 = [3(a+b)+a][3(a+b)-a] =(4a+3b)(2a+3b)
例 3 分解因式
x4 - y4 解:原式= (x2)2 - (y2)2 = ( x2+ y2) ( x2-y2) = ( x2+ y2) (x+y)(x-y) 注意:分解因式一定要分解到不能分解为止 练习 : 81x4 – y4
——运用平方差公式 宣城市第八中学 刘成胜
2016.04.19
a 2ab b a 2ab b
2 2 2
2
我们把以上两个式子叫做完全平方式
“首” 平方, “尾” 平方, “首”“尾” 两倍中间放. 我们可以通过以上公式把“完全平方 式”分解因式
a 2ab b a b
a2-16,64-b2能用平方差公式来分解因式吗?
⑴ a2 – 16 = a2 - ( 4 )2
= (a + 4 )(a - 4 )
⑵ 64 – b2 = ( 8 )2 - b2 = ( 8 + b)( 8 - b)
例1 把下列各式分解因式:
(1)36-25x2 解:原式= 62 - (5x)2 (2)-9m2+16n2 解:原式= 16n2 - 9m2 =(4n)2 - (3m)2
(a-b) (a+b)_____
第⑴、⑵两式从左到右是什么变形?
第⑶、⑷两式从左到右是什么变形?
a -b
2
2
= (a+b)(a-b)
1. 有2项,而且都能写成 平方的形式. 2. 它们的符号一正一负. 两个底数的和× 两个底数的差
下列各式中,能用平方差公式分解因式的有: (3)(4)
(1) a2+b2 (2) -a2-b2 (3) a2-b2 (4) -a2+b2