计量经济学 第二章 简单线性回归模型精品PPT课件
最新第二章-简单线性回归模型-计量经济学PPT课件

利用回归模型进行结构分析、经济预测、政策评价等。
16
注意几个概念
● Y 的条件分布
当解释变量 X 取某固定值时(条件),Y 的值不
确定,Y 的不同取值形成一定的分布,即Y 的条
件分布。
1966 2048 2122 2213 2315 2357 2369 2398 2452 2501 2534 2568 2610 2659 2723
4300
2197 2286 2315 2386 2467 2581 2623 2677 2710 2985 3004 3082 3119 3102
4800
由于是对总体的考察,由表2-1可求得家庭可支配收入X为某一特定数值
时家庭消费支出Y的条件分布(conditional distribution)
例如,X=2300条件下,Y=1371的条件概率等于1/11,即
P ( Y 1 3 7 1 / X 2 3 0 0 ) 1 / 1 1
由此可求得对应于家庭可支配收入X的各个水平的家庭消费支出Y的条件
u i Y i E (Y i X i) Y i12X i
或 Yi 12Xiui
•
ui
•
Xi X
23
3.如何理解总体回归函数
●实际的经济研究中总体回归函数通常是未知的, 只能根据经济理论和实践经验去设定。“计量” 的目的就是寻求PRF。
●总体回归函数中 Y与 的X 关系可是线性的,也可是
非线性的。 对线性回归模型的“线性”有两种解释
1874 1906 1068 2066 2185 2210 2289 2313 2398 2423 2453 2487 2586
庞皓计量经济学简单线性回归模型教学ppt

中国旅游业成为国民经济战略性支柱产业
“国务院印发的《“十三五”旅游业发展规划》提出, 改革开放以来,中国实现了从旅游短缺型国家到旅游大 国的历史性跨越。中国已经成为世界第一大出境旅游客 源国和全国第四大入境旅游接待国。“十三五”旅游业 发展的主要目标是:到2020年,旅游市场总规模达到67 亿人次,旅游投资总额2万亿元,旅游业总收入达到7万 亿元。旅游业综合贡献度达12%”。
相关关系的类型
● 从所涉及的变量数量看
简单相关 —— 两个变量之间的相关关系 多重相关—— 多个变量之间的复相关关系
●从变量相关关系的表现形式看
线性相关——散布图接近一条直线 非线性相关——散布图接近一条曲线
●从变量相关关系变化的方向看
正相关——变量同方向变化,同增同减 负相关——变量反方向变化,一增一减
相关系数 rXY 为:
rXY
__
__
( Xi X )(Yi Y )
__
__
( Xi X )2 (Yi Y )2
其中:X i 和 Yi 分别是变量X和Y的样本观测值,
__ __
X 和 Y 分别是变量 X 和Y 样本值的平均值
注意 : 每一组样本观测值都可以计算一个 rXY , 所以 rXY 是随
只是相关分析还不能达到计量经济分析的目的
相关分析的局限:
相关系数只能反映变量间的线性相关程度,不能确 定变量间的因果关系。
相关系数只能说明两个变量线性相关的方向和程度, 不能说明相关关系具体接近哪条直线,也就不能说明一个 变量的变动会导致另一个变量变动的具体数量规律。
计量经济学关心的问题:
是经济变量间的因果关系以及隐藏在随机性后面的具体 统计规律性 在这方面回归分析方法可以发挥更为重要的作用。
最新《计量经济学》第二章-简单线性回归模型PPT课件

总体线性相关系数:
Cov(X,Y)
Var(X)Var(Y)
其中:Var( X ) ——X 的方差;V ar (Y ) ——Y的方差
Cov(X,Y) ——X和Y的协方差
样本线性相关系数:
__Байду номын сангаас
__
XY
(Xi X)(Yi Y)
__
__
(Xi X)2 (Yi Y)2
其中:X
Y 和
i
_ _i
分别是变量 X
E(Y Xi)f(Xi) 这个函数称为回归函数。 回归函数分为:总体回归函数和样本回归函数
举例:假如已知60个家庭构成的总体。
13
二、总体回归函数(PRF)
1. 总体回归函数的概念
前提:假如已知所研究的经济现象的总体应变
量 Y 和解释变量 X 的每个观测值, 可以计算出总体 应变量 Y 的条件均值 E (Y X i ) ,并将其表现为解释 变量 X 的某种函数
●回归线:
对于每一个 X
的取值, Y
都有 Y 的条件期望
E (Y X i ) 与之对应,
代表这些 Y 的条件期
望的点的轨迹所形成
的直线或曲线,称为
回归线。
Xi
X
12
回归线与回归函数
回归函数:应变量 Y 的条件期望 E (Y X i ) 随解 释变量 X 的的变化而有规律的变化,如果把 Y 的条件期望 E (Y X i ) 表现为 X 的某种函数
因素对 Y 的影响。
•
u
•
Xi
X
◆性质:u i 是期望为0有一定分布的随机变量
重要性:随机扰动项的性质决定着计量经济方
法的选择
18
第二章二计量经济学-一元线性回归分析.ppt课件

2
1 n
2 n
X
ki X 2
xi
x
2 i
2
2
1 n
X2
x
2 i
2
x
2 i
nX
2
2
X
2 i
2
n
x
2 i
n
x
2 i
(2.2.11)
精选
34
(2)证明最小方差性
假设ˆ1* 是其他方法得到的关于1 的线性无偏估计量: ˆ1* ciYi
其中,ci ki di ,di 为不全为零的常数。 E(ˆ1* ) E( ciYi ) ci E(Yi ) ci (0 1 X i ) 0 ci 1 ci X i
由ˆ1* 的无偏性,即E(ˆ1* ) 1 可知: 0 ci 1 ci X i 1
从而有: ci 0 ,ci Xi 1
精选
35
的 ˆ
* 1
方
差
var(
ˆ
* 1
)
var(
ciYi )
c
2 i
var(
Yi)
c
2 i
var(
i)
c
2 i
2
= ( k i d i ) 2 2
变量置换得到
Z 0 1 X 1 2 X 2 3 X 3
精选
9
结论:
• 实际经济活动中的许多问题,都可以最终化为线 性问题,所以,线性回归模型有其普遍意义。
• 即使对于无法采取任何变换方法使之变成线性 的非线性模型,目前使用得较多的参数估计方 法——非线性最小二乘法,其原理仍然是以线 性估计方法为基础。
(Gauss-Markov theorem) 在给定经典线性回归的假定下,最小二乘
第2章计量经济学回归分析的性质ppt课件

§2.4 数据
一、数据的分类 按照数据与时间的关系,可以分为: ❖ 时间序列数据(time series data) ❖ 横截面数据(cross-section data) ❖ 面板数据(panel data/ pooling data)
实例:我国地区的生产总值
二、数据的来源和质量
❖ 社会科学数据都是非实验所得,存在测量误 差,或出于疏漏或差错 ;
cov(Xt,Yt)
Var(Xt) Var(Yt)
样本相关系数r
rXYˆ
1 T1
(Xt X)(Yt Y)
1 T1
(Xt X)2
1 T1
(Yt Y)2
(Xt X)(Yt Y)
(Xt X)2 (Yt Y)2
性质: (1)r具有对称性 (2)r与原点和尺度都无关
400
200
0 0
X
10
20
30
40
50
完全相关
Y 2
1
X
0
10
20
30
40
50
高度相关
3.0
2.5
Y
2.0
1.5
1.0
0.5
2.0
2.5
3.0
3.5
弱相关
X
4.0
4.5
4
Y 2
0
-2
X -4
-4
-2
0
2
4
零相关
2、按变量个数
200 150 100
50 0 0
Y
X
50
100
150
200
250
非线性相关/负相关
Y 2
1
庞浩计量经济学第二章简单线性回归模型

最小二乘法的应用
在统计学和计量经济学中,最 小二乘法广泛应用于估计线性 回归模型,以探索解释变量与 被解释变量之间的关系。
通过最小二乘法,可以估计出 解释变量的系数,从而了解各 解释变量对被解释变量的影响 程度。
最小二乘法还可以用于时间序 列分析、预测和数据拟合等场 景。
最小二乘法的局限性
最小二乘法假设误差项是独立同分布 的,且服从正态分布,这在实际应用 中可能不成立。
最小二乘法无法处理多重共线性问题, 当解释变量之间存在高度相关关系时, 最小二乘法的估计结果可能不准确。
最小二乘法对异常值比较敏感,异常 值的存在可能导致参数估计的不稳定。
04
模型的评估与选择
R-squared
总结词
衡量模型拟合优度的指标
详细描述
R-squared,也称为确定系数,用于衡量模型对数据的拟合程度。它的值在0到1之间,越接近1表示模型拟合越 好。R-squared的计算公式为(SSreg/SStot)=(y-ybar)2 / (y-ybar)2 + (y-ybar)2,其中SSreg是回归平方和, SStot是总平方和,y是因变量,ybar是因变量的均值。
数据来源
本案例的数据来源于某大型电商 平台的销售数据,包括商品的销 售量、价格、评价等。
数据处理
对原始数据进行清洗和预处理, 包括处理缺失值、异常值和重复 值,对分类变量进行编码,对连 续变量进行必要的缩放和转换。
模型建立与评估
模型建立
基于处理后的数据,使用简单线性回 归模型进行建模,以商品销售量作为 因变量,价格和评价作为自变量。
线性回归模型是一种数学模型, 用于描述因变量与一个或多个 自变量之间的线性关系。它通 常表示为:Y = β0 + β1X1 + β2X2 + ... + ε
简单线性回归模型PPT课件
940 1030 1160 1300 1440 1520 1650
980 1080 1180 1350 1450 1570 1750
-
1130 1250 1400 -
1600 1890
-
1150 -
-
-
1620 -
2600 1500 1520 1750 1780 1800 1850 1910
y (消费)
出-
表2
1000 650 700 740 800 850 880 -
每月家庭收入支出表(元)
1200 1400 1600 1800 2000 2200 2400
790 800 1020 1100 1200 1350 1370
840 930 1070 1150 1360 1370 1450
900 950 1100 1200 1400 1400 1550
ui N (0, 2 ) (i 1,2,..., n)
或 Yi N (1 1X i , 2 ) (i 1,2,..., n)
以上假定也称高斯假定或古典假定。
二、普通最小二乘法
在不知道总体回归直线的情况下,利用样本信 息建立的样本回归函数应尽可能接近总体回归 函数,有多种方法。
普通最小二乘法(Ordinary Least Squares) 由德国数学家高斯(C.F.Gauss)提出。
Y
e1
Yˆi ˆ1 ˆ2 Xi e3
e4
e2
X1
X2
X
X3
X4
ei Yi Yˆi
Yi (ˆ1 ˆ2 Xi )
对于给定的 Y 和 X的观测值,我们希望这 样决定SRF,使得SRF上的值尽可能接近 实际的 Y。
就是使得残差平方和
计量经济学 第二章 简单线性回归模型案例分析 PPT
3. 用P值检验 α=0.05 >> p=0.0000
表明,城镇居民人均总收入对城镇居民每百户计算机拥有量确 有显著影响。
4. 经济意义检验:
所估计的参数
,说明城镇
居民家庭人均总收入每增加1元,平均说来城变量选择:被解释变量选择能代表城乡所有居民消费的 “城镇居民家庭平均每百户计算机拥有量”(单位:台) ; 解释变量选择表现城镇居民收入水平的“城镇居民平均每 人全年家庭总收入”(单位:元) 研究范围:全国各省市2011年底的城镇居民家庭平均每 百户计算机拥有量和城镇居民平均每人全年家庭总收入数 据。
3、总体回归函数(PRF)是将总体被解释变量Y的条件 均值表现为解释变量X的某种函数。 样本回归函数(SRF)是将被解释变量Y的样本条件 均值表示为解释变量X的某种函数。 总体回归函数与样本回归函数的区别与联系。
4、随机扰动项是被解释变量实际值与条件均值的偏差, 代表排除在模型以外的所有因素对Y的影响。
Yt 12Xt ut
估计参数
假定模型中随机扰动满足基本假定,可用OLS法。 具体操作:使用EViews 软件,估计结果是:
用规范的形式将参数估计和检验的结果写为: Y ˆt11.95800.002873X t
(5.6228) (0.00024) t= (2.1267) (11.9826) R2 0.8320 F=143.5836 n=31
即是说:当地区城镇居民人均总收入达到25000元时,城镇居 民每百户计算机拥有量 平均值置信度95%的预测区间为 (80.6219,86.9473)台。
12
个别值区间预测:
计量经济学课件:第二章 简单线性回归模型
第二章 简单线性回归模型第一节 回归分析与回归方程一、回归与相关 1、变量之间的关系(1)函数关系:()Y f X =,其中Y 为应变量,X 为自变量。
(2)相关关系或统计关系:当一个变量X 或若干个变量12,,,k X X X 变化时,Y 发生相应的变化(可能是不确定的),反之亦然。
在相关关系中,变量X 与变量Y 均为不确定的,并且它们之间的影响是双向的(双向因果关系)。
(3)单向因果关系:(,)Y f X u =,其中u 为随机变量。
在计量经济模型中,单一线性函数要求变量必须是单向因果关系。
在(单向)因果关系中,变量Y 是不确定的,变量X 是确定的(或可控制的)。
要注意的是,对因果关系的解释不是靠相关关系或统计关系来确定的,并且,相关关系与统计关系也给不出变量之间的具体数学形式,而是要通过其它相关理论来解释,如经济学理论。
例如,我们说消费支出依赖于实际收入是引用了消费理论的观点。
2、相关关系的类型 (1) 简单相关 (2) 复相关或多重相关 (3) 线性相关 (4) 非线性相关 (5) 正相关 (6) 负相关 (7) 不相关3、用图形法表示相关的类型上述相关类型可直观地用(EViews 软件)画图形来判断。
例如,美国个人可支配收入与个人消费支出之间的相关关系可由下列图形看出,它们为正相关关系。
15002000250030003500150020002500300035004000PDIP C E其中,PDI 为(美)个人可支配收入,PCE 为个人消费支出。
PDI 和PCE 分别对时间的折线图如下PROFIT 对STOCK 的散点图为05010015020025050100150STOCKP R O F I T其中,STOCK 为(美)公司股票利息,PROFIT 为公司税后利润,表现出明显的非线性特征。
以下是利润与股息分别对时间的序列图(或称趋势图)05010015020025020406080100120140GDP 对M2的散点图为02000040000600008000010000050000100000150000M2G D P其中M2为(中国)广义货币供应量,GDP 为国内生产总值。
第二章二计量经济学一元线性回归分析 ppt课件
第二章二计量经济学一元线性回归
22
分析
对于一元线性回归模型:
Yi 0 1Xi i
i=1,2,…n
随机抽取n 组样本观测值Yi , Xi(i=1,2,…n),假如模型的参数
估计量已经求得到,为0 和1 ,那么Yi 服从如下的正态分布:
Yi ~N(ˆ0 ˆ1Xi ,2)
于 是 , Y i的 概 率 函 数 为
由 于 ˆ0、 ˆ1 的 估 计 结 果 是 从 最 小 二 乘 原 理 得 到 的 , 故 称 为
最 小 二 乘 估 计 量 (least-sq u aresestim ators)。
第二章二计量经济学一元线性回归
28
分析
4、样本回归线的数值性质(numerical properties)
• 样本回归线通过Y和X的样本均值; • Y估计值的均值等于观测值的均值; • 残差的均值为0。
4
一、线性回归模型及其普遍性
第二章二计量经济学一元线性回归
5
分析
1、线性回归模型的特征
• 一个例子
凯恩斯绝对收入假设消费理论:消费(C)是由收 入(Y)唯一决定的,是收入的线性函数:
C = + Y 但实际上上述等式不能准确实现。
(2.2.1)
• 原因 ⑴消费除受收入影响外,还受其他因素的影响; ⑵线性关系只是一个近似描述; ⑶收入变量观测值的近似性:收入数据本身并不绝 对准确地反映收入水平。
第二章二计量经济学一元线性回归
13
分析
二、线性回归模型的基本假设
第二章二计量经济学一元线性回归
14
分析
1、技术线路
• 由于回归分析的主要目的是要通过样本回归函 数(模型)SRF尽可能准确地估计总体回归函 数(模型)PRF。即通过
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 简单线性回归模型
本章主要讨论:
●回归分析与回归函数 ●简单线性回归模型参数的估计 ●拟合优度的度量 ●回归系数的区间估计和假设检验 ●回归模型预测
3
第一节 回归分析与回归方程
本节基本内容:
●回归与相关 ●总体回归函数 ●随机扰动项 ●样本回归函数
4
一、回归与相关
(对统计学的回顾) 1. 经济变量间的相互关系
15
2.总体回归函数的表现形式
(1)条件均值表现形式 假如 Y的条件均值 E(Y 是X解i ) 释变量 的X线性函数,可表示为:
E(Yi X i ) f ( X i ) 1 2 X i (2)个别值表现形式
Y
E(Y X i )
Yi
对于一定的
X
,
i
的Y 各个别值
分Yi布
在 E(的Y 周Xi )围,若令各个 与条Y件i
E(Y X i ) f ( X i ) 这个函数称为回归函数。 回归函数分为:总体回归函数和样本回归函数
举例:假如已知100个家庭构成的总体。
13
例:100个家庭构成的总体 (单位:元)
1000 820 888 932
每 960 月 家 庭 消 费 支 出 Y
E(Y X i ) 900
1500 962 1024 1121 1210 1259有 Y 的条件期望
E(Y Xi ) 与之对应,
代表这些 Y 的条件期
望的点的轨迹所形成
的直线或曲线,称为
回归线。
Xi
X
12
回归线与回归函数
回归函数:应变量 Y 的条件期望 E(Y Xi ) 随解 释变量 X 的的变化而有规律的变化,如果把 Y 的条件期望 E(Y Xi ) 表现为 X 的某种函数
1726 1786 1835 1885 1943 2037 2078 2179 2298 2316 2387 2498 2589
1874 1906 1068 2066 2185 2210 2289 2313 2398 2423 2453 2487 2586
2110 2225 2319 2321 2365 2398 2487 2513 2538 2567 2610 2710
注意几个概念
● Y 的条件分布
当解释变量 X 取某固定值时(条件),Y 的值不 确定,Y 的不同取值形成一定的分布,即Y 的条
件分布。
Y
● Y 的条件期望
对于X 的每一个取值, 对Y 所形成的分布确
定其期望或均值,称
为Y 的条件期望或条
件均值 E(Y Xi )
Xi
X
11
回归线与回归函数
●回归线:
◆确定性的函数关系 Y f ( X )
◆不确定性的统计关系—相关关系
Y f ( X ) (ε为随机变量)
◆没有关系
5
2.相关关系
◆ 相关关系的描述 相关关系最直观的描述方式——坐标图(散布图)
Y
•
••
•
• •
•
• •
•
X
6
◆相关关系的类型 ● 从涉及的变量数量看
简单相关 多重相关(复相关)
2900 3150 14
二、总体回归函数(PRF)
1. 总体回归函数的概念
前提:假如已知所研究的经济现象的总体应变
量 Y 和解释变量 X 的每个观测值, 可以计算出总体 应变量 Y 的条件均值 E(Y Xi ) ,并将其表现为解释 变量 X 的某种函数
E(Y Xi ) = f ( X i )
这个函数称为总体回归函数(PRF)
使用相关系数时应注意
● X 和 Y都是相互对称的随机变量
● 线性相关系数只反映变量间的线性相关程度,不 能说明非 线性相关关系
● 样本相关系数是总体相关系数的样本估计值,由 于抽样波动,样本相关系数是个随机变量,其统 计显著性有待检验
● 相关系数只能反映线性相关程度,不能确定因果 关系,不能说明相关关系具体接近哪条直线
其中:Var( X ) ——X 的方差;Var(Y ) ——Y的方差
Cov( X ,Y ) ——X和Y的协方差
样本线性相关系数:
XY
__
__
( Xi X )(Yi Y )
__
__
( Xi X )2 (Yi Y )2
其中:X i和 Y__i 分别是变量 X 和 Y 的样本观测值
X 和 Y 分别是变量 X 和 Y 样本值的平均值 8
● 从变量相关关系的表现形式看
线性相关——散布图接近一条直线 非线性相关——散布图接近一条曲线
● 从变量相关关系变化的方向看
正相关——变量同方向变化,同增同减 负相关——变量反方向变化,一增一减 不相关
7
3.相关程度的度量—相关系数
总体线性相关系数:
Cov( X ,Y )
Var( X )Var(Y )
1150
2000 1108 1201 1264 1310 1340 1400 1448 1489 1538 1600 1702
1400
每月家庭可支配收入X
2500 3000 1329 1632
3500 1842
4000 2037
4500 2275
1365 1410 1432 1520 1615 1650 1712 1778 1841 1886 1900 2012
计量经济学关心:变量间的因果关系及隐藏在随 机性后面的统计规律性,这有赖于回归分析方法
9
4. 回归分析
回归的古典意义: 高尔顿遗传学的回归概念 ( 父母身高与子女身高的关系)
回归的现代意义: 一个应变量对若干解释变量 依存关系 的研究
回归的目的(实质): 由固定的解释变量去 估计应变量的平均值
10
计量经济学
第二章 简单线性回归模型
1
引子: 中国旅游业总收入将超过3000 亿美元吗?
从2004中国国际旅游交易会上获悉,到2020年,中国旅 游业总收入将超过3000亿美元,相当于国内生产总值的 8%至11%。(资料来源:国际金融报2004年11月25日 第二版) ◆是什么决定性的因素能使中国旅游业总收入到2020年达到 3000亿美元? ◆旅游业的发展与这种决定性因素的数量关系究竟是什么? ◆怎样具体测定旅游业发展与这种决定性因素的数量关系?
2388 2426 2488 2587 2650 2789 2853 2934 3110
1650 1900 2150 2400 2650
5000 2464 2589 2790 2856 2900 3021 3064 3142 3274
5500 2824 3038 3150 3201 3288 3399