条件概率知识点总结

合集下载

古典概率类型知识点总结

古典概率类型知识点总结

古典概率类型知识点总结一、概率空间概率空间是指由一个样本空间和一个概率度量构成的。

样本空间(Ω)是一个元素的集合,每个元素称作样本点。

概率度量P是样本空间上的一个映射,其值域是[0,1],且满足以下三个性质:1. 非负性:对于样本空间中的每个事件A,P(A) ≥ 02. 规范性:P(Ω) = 13. 可列可加性:若事件A1,A2,...是不相容的,则P(A1 ∪ A2 ∪ ...) = P(A1) + P(A2) + ...二、事件及概率函数在概率空间中,事件是指样本空间的一个子集。

概率函数P是定义在样本空间上的,对于每个事件A,它满足以下性质:1. 非负性:对于任意事件A,P(A) ≥ 02. 规范性:P(Ω) = 13. 可列可加性:若事件A1,A2,...是不相容的,则P(A1 ∪ A2 ∪ ...) = P(A1) + P(A2) + ...根据这些性质,我们可以计算事件发生的概率。

三、概率的性质在概率的计算过程中,有一些特性是非常重要的,例如:1. 若事件A包含在事件B中,则P(A) ≤ P(B)2. 对于任意事件A,有P(Ω - A) = 1 - P(A)3. 互补事件:对于任意事件A,有P(A) + P(A的补集) = 14. 事件的并、交以及差:P(A ∪ B) = P(A) + P(B) - P(A ∩ B),P(A ∩ B) = P(A)P(B|A)四、条件概率条件概率是指在事件B发生的条件下,事件A发生的概率,记作P(A|B)。

条件概率满足以下性质:1. P(A|B) = P(A ∩ B) / P(B)2. 若事件A和B独立,则P(A|B) = P(A)五、独立事件事件A和B独立是指事件A的发生不受事件B的影响,反之亦然。

事件A和B独立的充分必要条件是P(A ∩ B) = P(A)P(B)。

当A和B不独立时,我们可以使用条件概率来进行概率的计算。

六、贝叶斯定理贝叶斯定理是概率论中的一个重要定理,它将条件概率P(A|B)和P(B|A)联系了起来。

高中概率知识点总结文库

高中概率知识点总结文库

高中概率知识点总结文库高中概率知识是数学课程中的重要内容,也是数学应用领域中不可或缺的一部分。

掌握概率知识不仅有助于理论研究,还能够应用于真实生活中的各种问题中。

因此,掌握高中概率知识对学生来说非常重要。

高中概率知识主要包括基本概率原理、古典概率、条件概率、独立事件、贝叶斯定理等内容。

以下将逐一对这些内容进行详细介绍。

1.基本概率原理概率是指某一随机现象在相同条件下发生的可能性大小。

基本概率原理是概率论的基础,它包括等可能原理和相加原理。

等可能原理:如果一个随机试验总共有n个等可能结果,而事件A包含m个结果,那么事件A发生的概率P(A)等于m/n。

相加原理:如果随机试验的样本空间S可以被划分为互不相容的事件A1、A2、…An,那么事件B发生的概率P(B)等于各事件发生概率之和,即P(B) = P(A1) + P(A2) + … + P(An)。

基本概率原理是概率论的基础,它为概率的计算提供了基本操作方法。

2.古典概率古典概率是指在等可能情况下,通过统计方法计算某一事件发生的概率。

古典概率主要适用于有限事件和等可能事件的情况。

古典概率计算公式为:P(A) = n(A)/n(S),其中n(A)表示事件A发生的结果数,n(S)表示样本空间S中结果总数。

古典概率的计算方法简单直观,但是只适用于特定的情况。

在实际应用中,往往需要考虑更为复杂的情况,因此需要更高级的概率方法进行计算。

3.条件概率条件概率是指在事件B已经发生的条件下,事件A发生的概率。

条件概率的计算公式为P(A|B) = P(AB)/P(B),其中P(AB)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。

条件概率的概念是概率论中的重要内容,它在实际应用中有着广泛的应用。

比如在医学诊断中,就需要根据已知的病情条件来计算患病的概率,这就是一个典型的条件概率问题。

4.独立事件独立事件是指两个事件A和B,如果它们的发生不相互影响,即P(AB) = P(A)P(B),那么就称事件A和事件B是独立事件。

条件概率知识点、例题、练习题

条件概率知识点、例题、练习题

条件概率专题一、知识点① 只须将无条件概率()P B 替换为条件概率)(A B P ,即可类比套用概率满足的三条公理及其它性质 ② 在古典概型中 ---)()()()()(A B A A P B A P A B P μμ==A B A =事件包括的基本事件(样本点)数事件包括的基本事件(样本点)数③ 在几何概型中 ---)()()()()(A B A A P B A P A B P μμ==(,,)(,,)A B A =区域的几何度量长度面积体积等区域的几何度量长度面积体积等条件概率及全概率公式3.1.对任意两个事件A 、B , 是否恒有P (A )≥P (A |B ).答:不是. 有人以为附加了一个B 已发生的条件, 就必然缩小了样本空间, 也就缩小了概率, 从而就一定有P (A )≥P (A |B ), 这种猜测是错误的. 事实上,可能P (A )≥P (A |B ), 也可能P (A )≤P (A |B ), 下面举例说明. 在0,1,…,9这十个数字中, 任意抽取一个数字,令A ={抽到一数字是3的倍数};B 1={抽到一数字是偶数}; B 2={抽到一数字大于8}, 那么P (A )=3/10, P (A |B 1)=1/5, P (A |B 2)=1. 因此有 P (A )>P (A |B 1), P (A )<P (A |B 2).3.2.以下两个定义是否是等价的.定义1. 若事件A 、B 满足P (AB )=P (A )P (B ), 则称A 、B 相互独立. 定义2. 若事件A 、B 满足P (A |B )=P (A )或P (B |A )=P (B ), 则称A 、B 相互独立.答:不是的.因为条件概率的定义为P (A |B )=P (AB )/P (B ) 或 P (B |A )=P (AB )/P (A )自然要求P (A )≠0, P (B )≠0, 而定义1不存在这个附加条件, 也就是说,P (AB )=P (A )P (B )对于P (A )=0或P (B )=0也是成立的. 事实上, 若P (A )=0由0≤P (AB )≤P (A )=0可知P (AB )=0故 P (AB )=P (A )P (B ).因此定义1与定义2不等价, 更确切地说由定义2可推出定义1, 但定义1不能推出定义2, 因此一般采用定义1更一般化.3.3.对任意事件A、B, 是否都有 P(AB)≤P(A)≤P(A+B)≤P(A)+P(B).答:是的.由于P(A+B)=P(A)+P(B)-P(AB) (*)因为 P(AB)≥0, 故P(A+B)≤P(A)+P(B).由P(AB)=P(A)P(B|A), 因为0≤P(B|A)≤1,故P(AB)≤P(A);同理P(AB)≤P(B), 从而 P(B)-P(AB)≥0, 由(*)知P(A+B)≥P(A).原命题得证.3.4.在引入条件概率的讨论中, 曾出现过三个概率: P(A|B), P(B|A), P(AB). 从事件的角度去考察, 在A、B相容的情况下, 它们都是下图中标有阴影的部分, 然而从概率计算的角度看, 它们却是不同的. 这究竟是为什么?答:概率的不同主要在于计算时所取的样本空间的差别:P(A|B)的计算基于附加样本空间ΩB;P(B|A)的计算基于附加样本空间ΩA;P(AB)的计算基于原有样本空间Ω.3.5.在n个事件的乘法公式:P(A1A2…A n)=P(A1)P(A2|A1)P(A3|A1A2)…P(A n|A1A2…A n-1)中,涉及那么多条件概率, 为什么在给出上述乘法公式时只提及P(A1A2…A n-1)>0呢?答:按条件概率的本意, 应要求P(A1)>0, P(A1A2)>0, …,P(A1A2…A n-2)>0, P(A1A2…A n-1)>0.事实上, 由于A 1A2A3…A n-2A1A2A3…A n-2A n-1, 从而便有P(A1A2…A n-2)≥P(A1A2…A n-1)>0. 这样, 除P(A1A2…A n-1)>0作为题设外, 其余条件概率所要求的正概率, 如P(A1A2…A n-2) >0, …,P(A1A2) >0, P(A1)>0便是题设条件P(A1A2…A n-1)>0的自然结论了.3.6.计算P(B)时, 如果事件B的表达式中有积又有和, 是否就必定要用全概率公式.答:不是. 这是对全概率公式的形式主义的认识, 完全把它作为一个”公式”来理解是不对的. 其实, 我们没有必要去背这个公式, 应着眼于A1,A2,…,A n的结构. 事实上, 对于具体问题, 若能设出n个事件A i, 使之满足(*)就可得.(**) 这样就便于应用概率的加法公式和乘法公式.因此, 能否使用全概率公式, 关键在于(**)式, 而要有(**)式, 关键又在于适当地对Ω进行一个分割, 即有(*)式.3.7.设P(A)≠0,P(B)≠0, 因为有(1)若A、B互不相容, 则A、B一定不独立.(2)若A、B独立, 则A、B一定不互不相容.故既不互不相容又不独立的事件是不存在的. 上述结论是否正确.答:不正确. 原命题中的结论(1)(2)都是正确的. 但是由(1)(2)(它们互为逆否命题, 有其一就可以了)只能推出在P(A)≠0,P(B)≠0的前提下, 事件A、B既互不相容又独立是不存在的, 并不能推出“A、B既不独立又不互不相容是不存在的”. 事实上, 恰恰相反, 既不互不相容又不独立的事件组是存在的, 下面举一例.5个乒乓球(4新1旧), 每次取一个, 无放回抽取三次, 记A i={第i次取到新球}, i=1, 2, 3. 因为是无放回抽取, 故A1、A2、A3互相不独立, 又A 1A2A3={三次都取到新球}, 显然是可能发生的, 即A1、A2、A3可能同时发生, 因此A1、A2、A3不互不相容.3.8.事件A、B的“对立”与“互不相容”有什么区别和联系? 事件A、B“独立”与“互不相容”又有什么区别和联系?答:“对立”与“互不相容”区别和联系, 从它们的定义看是十分清楚的, 大体上可由如下的命题概括: “对立” →“互不相容”,反之未必成立.至于“独立”与“互不相容”的区别和联系, 并非一目了然.事件的互不相容性只考虑它们是否同时发生,是纯粹的事件的关系, 丝毫未涉及它们的概率, 其关系可借助图直观显示.事件的独立性是由概率表述的, 即当存在概率关系P(A|B)=P(A)或P(B|A)=P(B)时, 称A、B是相互独立的.它们的联系可由下述命题概括: 对于两个非不可能事件A、B, 则有“A、B 互不相容” →“A、B不独立”.其等价命题是: 在P(A)>0与P(B)>0下, 则有“A、B独立” →“A、B不互不相容”(相容). 注意, 上述命题的逆命题不成立.3.9.设A、B为两个事件,若0<P(A)<1, 0<P(B)<1. (*)则A、B相互独立, A、B互不相容, , 这三种情形中的任何两种不能同时成立.答:在条件(*)下当A、B相互独立时, 有P(AB)=P(A)P(B);当A、B互不相容时, 有P(AB)<P(A)P(B);当时, 有P(AB)>P(A)P(B).在条件(*)下, 上述三式中的任何两个不能同时成立. 因此, A、B相互独立, A、B互不相容,这三种情形中的任何两种不能同时成立.此结论表明: 在条件(*)下,若两个事件相互独立时, 必不互不相容,也不一个包含另一个,而只能是相容了.3.10.证明: 若P(A)=0或P(A)=1, 则A与任何事件B相互独立.答:若P(A)=0, 又, 故0≤P(AB)≤P(A)=0.于是P(AB)=0=P(A)P(B),所以A与任何事件B相互独立.若P(A)=1, 则.由前面所证知,与任何事件B相互独立. 再由事件独立性的性质知, 与B相互独立, 即A与B相互独立.另种方法证明: 由P(A)=1知, 进而有.又且AB与互不相容, 故.即A与B相互独立.3.11.设A、B是两个基本事件, 且0<P(A)<1,P(B)>0, , 问事件A与B是什么关系?[解1]由已知条件可得.由比例性质, 得.所以P(AB)=P(A)P(B).因此事件A与B相互独立.[解2]由得.因而.又,所以P(B|A)=P(B).因此事件A与B相互独立.3.12.是不是无论什么情况, 小概率事件决不会成为必然事件.答:不是的. 我们可以证明, 随机试验中, 若A为小概率事件, 不妨设P(A)=ε(0<ε<1为不论多么小的实数 ), 只要不断地独立地重复做此试验, 则A迟早要发生的概率为1.事实上, 设A k={A在第k次试验中发生}, 则P(A k)=ε,, 在前n次试验中A都不发生的概率为:.于是在前n次试验中, A至少发生一次的概率为.如果把试验一次接一次地做下去, 即让n→∞, 由于0<ε<1, 则当n→∞时, 有p→1.n以上事实在生活中是常见的, 例如在森林中吸烟, 一次引起火灾的可能性是很小的, 但如果很多人这样做, 则迟早会引起火灾.3.13.只要不是重复试验, 小概率事件就可以忽视.答:不正确. 小概率事件可不可以忽视, 要由事件的性质来决定, 例如在森林中擦火柴有1%的可能性将导致火灾是不能忽视的, 但火柴有1%的可能性擦不燃是不必在意的.3.14.重复试验一定是独立试验, 理由是: 既然是重复试验就是说每次试验的条件完全相同, 从而试验的结果就不会互相影响, 上述说法对吗?答:不对. 我们举一个反例就可以证明上述结论是错误的.一个罐子中装有4个黑球和3个红球, 随机地抽取一个之后, 再加进2个与抽出的球具有相同颜色的球, 这种手续反复进行, 显然每次试验的条件是相同的. 每抽取一次以后, 这时与取出球有相同颜色的球的数目增加,而与取出球颜色不同的球的数目保持不变,从效果上看,每一次取出的球是什么颜色增加了下一次也取到这种颜色球的概率,因此这不是独立试验,此例是一个如同传染病现象的模型,每一次传染后都增加再传染的概率.3.15.伯努利概型的随机变量是不是都服从二项分布.答:不一定. 例如某射手每次击中目标的概率是p,现在连续向一目标进行射击,直到射中为止. 此试验只有两个可能的结果:A={命中}; ={未命中},且P(A)=p.并且是重复独立试验,因此它是伯努利试验(伯努利概型),设X k={第k次射中},X显然是一个随机变量,但kP(X=k)=q k-1p,k=1,2,…,其中q=p-1,k可见X k是服从参数为p的几何分布,而不是二项分布.3.16.某人想买某本书, 决定到3个新华书店去买, 每个书店有无此书是等可能的. 如有, 是否卖完也是等可能的. 设3个书店有无此书, 是否卖完是相互独立的. 求此人买到此本书的概率.答:(37/64).3.17.在空战中, 甲机先向乙机开火, 击落乙机的概率是0.2; 若乙机未被击落, 就进行还击, 击落甲机的概率是0.3, 则再进攻乙机, 击落乙机的概率是0.4. 在这几个回合中,(1) 甲机被击落的概率是多少?(2) 乙机被击落的概率是多少?答:以A表示事件“第一次攻击中甲击落乙”, 以B表示事件“第二次攻击中乙击落甲”, 以C表示事件“第三次攻击中甲击落乙”.(1)甲机被击落只有在第一次攻击中甲未击落乙才有可能, 故甲机被击落的概率为.(2)乙机被击落有两种情况. 一是第一次攻击中甲击落乙, 二是第三次攻击中甲击落乙, 故乙机被击落的概率是=0.2+(1-0.2)(1-0.3)×0.4=0.424.3.18.某个问题, 若甲先答, 答对的概率为0.4; 若甲答错, 由乙答, 答对的概率为0.5. 求问题由乙答出的概率.答:(0.3)3.19.有5个人在一星期内都要到图书馆借书一次, 一周内某天借书的可能性相同, 求(1)5个人都在星期天借书的概率;(2)5个人都不在星期天借书的概率;(3)5个人不都在星期天借书的概率.答:(1)(1/75);(2)(65/77);(3)(1-1/75).1.从1, 2, 3,…, 15中,甲、乙两人各任取一数(不重复),已知甲取到的数是5的倍数,求甲数大于乙数的概率. 二、例题解.设事件A表示“甲取到的数比乙大”,设事件B表示“甲取到的数是5的倍数”. 则显然所要求的概率为P(A|B).根据公式而P(B)=3/15=1/5 ,,∴P(A|B)=9/14.2. 掷三颗骰子,已知所得三个数都不一样,求含有1点的概率. 解.设事件A表示“掷出含有1的点数”, 设事件B表示“掷出的三个点数都不一样”.则显然所要求的概率为P(A|B).根据公式,,P(A|B)=1/2.3.袋中有一个白球和一个黑球,一次次地从袋中摸球,如果取出白球,则除把白球放回外再加进一个白球,直至取出黑球为止,求取了N次都没有取到黑球的概率. 1解.设事件A i表示“第i次取到白球”. (i=1,2,…,N)则根据题意P(A1)=1/2 , P(A2|A1)=2/3,由乘法公式可知:P(A1A2)=P(A2|A1)P(A1)=1/3.而P(A3|A1A2)=3/4 ,P(A1A2A3)=P(A3|A1A2)P(A1A2)=1 /4 .由数学归纳法可以知道P(A1A2…A N)=1/(N+1).4. 甲袋中有5只白球, 7 只红球;乙袋中有4只白球, 2只红球.从两个袋子中任取一袋, 然后从所取到的袋子中任取一球,求取到的球是白球的概率. 解.设事件A表示“取到的是甲袋”, 则表示“取到的是乙袋”,事件B表示“最后取到的是白球”.根据题意: P(B|A)=5/12 ,,P(A)=1/2.∴.5.有甲、乙两袋,甲袋中有3只白球,2只黑球;乙袋中有4只白球,4只黑球.现从甲袋中任取2个球放入乙袋,然后再从乙袋中任取一球,求此球为白球的概率. 解.设事件A i表示“从甲袋取的2个球中有i个白球”,其中i=0,1,2 .事件B表示“从乙袋中取到的是白球”.显然A0, A1, A2构成一完备事件组,且根据题意P(A)=1/10 , P(A1)=3/5 ,P(A2)=3/10 ;P(B|A)=2/5 , P(B|A1)=1/2 ,P(B|A2)=3/5 ;由全概率公式P(B)=P(B|A0)P(A0)+P(B|A1)P(A1)+P(B|A2)P(A2)=2/5×1/10+1/2×3/5+3/5×3/10=13/25.6.袋中装有编号为1, 2,…, N的N个球,先从袋中任取一球,如该球不是1号球就放回袋中,是1号球就不放回,然后再摸一次,求取到2号球的概率. 解.设事件A表示“第一次取到的是1号球”,则表示“第一次取到的是非1号球”;事件B表示“最后取到的是2号球”.显然P(A)=1/N,,且P(B|A)=1/(N-1),;∴=1/(N-1)×1/N+1/N ×(N-1)/N=(N2-N+1)/N2(N-1).7. 袋中装有8只红球, 2只黑球,每次从中任取一球, 不放回地连续取两次, 求下列事件的概率.(1)取出的两只球都是红球;(2)取出的两只球都是黑球;(3)取出的两只球一只是红球,一只是黑球;(4)第二次取出的是红球. 解.设事件A1表示“第一次取到的是红球”,设事件A2表示“第二次取到的是红球”.(1)要求的是事件A1A2的概率.根据题意P(A1)=4/5,,P(A2|A1)=7/9,∴P(A1A2)=P(A1)P(A2|A1)=4/5×7/9=28/45.(2)要求的是事件的概率.根据题意:,,∴.(3)要求的是取出一只红球一只黑球,它包括两种情形,即求事件的概率.,,,,∴.(4)要求第二次取出红球,即求事件A2的概率.由全概率公式:=7/9×4/5+8/9×1/5=4/5.8. 某射击小组共有20名射手,其中一级射手4人, 二级射手8人, 三级射手7人, 四级射手1人.一、二、三、四级射手能通过选拔进入比赛的概率分别是0.9、0.7、0.5、0.2 . 求任选一名射手能通过选拔进入比赛的概率.解.设事件A表示“射手能通过选拔进入比赛”,设事件B i表示“射手是第i级射手”.(i=1,2,3,4)显然, B1、B2、B3、B4构成一完备事件组,且P(B1)=4/20, P(B2)=8/20, P(B3)=7/20, P(B4)=1/20;P(A|B1)=0.9, P(A|B2)=0.7, P(A|B3)=0.5, P(A|B4)=0.2.由全概率公式得到P(A)=P(A|B1)P(B1)+P(A|B2)P(B2)+P(A|B3)P(B3)+P(A|B4 )P(B4)=0.9×4/20+0.7×8/20+0.5×7/20+0.2×1/20=0.645.9.轰炸机轰炸某目标,它能飞到距目标400、200、100(米)的概率分别是0.5、0.3、0.2,又设它在距目标400、200、100(米)时的命中率分别是0.01、0.02、解.设事件A1表示“飞机能飞到距目标400米处”,设事件A2表示“飞机能飞到距目标200米处”,设事件A3表示“飞机能飞到距目标100米处”, 用事件B表示“目标被击中”.由题意, P(A1)=0.5, P(A2)=0.3, P(A3)=0.2,0.1 .求目标被命中的概率为多少?且A1、A2、A3构成一完备事件组.又已知P(B|A1)=0.01, P(B|A2)=0.02, P(B|A3)=0.1.由全概率公式得到:P(B)=P(B|A1)P(A1)+P(B|A2)P(A2)+P(B|A3)P(A3)=0.01×0.5+0.02×0.3+0.1×0.2=0.031.10. 加工某一零件共需要4道工序,设第一﹑第二﹑第三﹑第四道工序的次品率分别为2%﹑3%﹑5%﹑3%, 假定各道工序的加工互不影响,求加工出零件的次品率是多少?解.设事件A i表示“第i道工序出次品”,i=1,2,3,4因为各道工序的加工互不影响,因此A i是相互独立的事件.P(A1)=0.02, P(A2)=0.03,P(A3)=0.05, P(A4)=0.03,只要任一道工序出次品,则加工出来的零件就是次品.所以要求的是(A1+A2+A3+A4)这个事件的概率.为了运算简便,我们求其对立事件的概率=(1-0.02)(1-0.03)(1-0.05)(1-0.03)=0.876.∴P(A1+A2+A3+A4)=1-0.876=0.124.11. 某人过去射击的成绩是每射5次总有4次命中目标, 根据这一成绩, 求(1)射击三次皆中目标的概率;(2)射击三次有且只有2解.设事件A i表示“第i次命中目标”, i=1,2,3根据已知条件P(A i)=0.8,,i=1,2,3 某人每次射击是否命中目标是相互独立的,因此事件A i是相互独立的.(1)射击三次皆中目标的概率即求P(A1A2A3).次命中目标的概率;(3)射击三次至少有二次命中目标的概率.由独立性:P (A 1A 2A 3)=P (A 1)P (A 2)P (A 3)=0.83=0.512.(2)“射击三次有且只有2次命中目标”这个事件用B表示. 显然,又根据独立性得到:.(3)“射击三次至少有2次命中目标”这个事件用C 表示.至少有2次命中目标包括2次和3次命中目标,所以C =B +A 1A 2A 3P (C )=P (B )+P (A 1A 2A 3)=0.384+0.512=0.896.12. 三人独立译某一密码, 他们能译出的概率分别为1/3, 1/4,1/5, 求能将密码译出的概率.解.设事件A i 表示“第i 人能译出密码”, i =1,2,3.由于每一人是否能译出密码是相互独立的,最后只要三人中至少有一人能将密码译出,则密码被译出,因此所求的概率为P (A 1+A 2+A 3).已知P (A 1)=1/3, P (A 2)=1/4, P (A 3)=1/5, 而=(1-1/3)(1-1/4)(1-1/5)=0.4.∴P (A 1+A 2+A 3)=1-0.4=0.6.13. 用一门大炮对某目标进行三次独立射击, 第一、二、三次的命中率分别为0.4、0.5、0.7, 若命中此目标一、二、三弹, 该目标被摧毁的概率分别为解.设事件A i 表示“第i 次命中目标”, i =1,2,3.设事件B i 表示“目标被命中i 弹”, i =0,1,2,3. 设事件C 表示“目标被摧毁”.由已知P (A 1)=0.4, P (A 2)=0.5, P (A 3)=0.7; P (C |B 0)=0, P (C |B 1)=0.2, P (C |B 2)=0.6, P (C |B 3)=0.8.0.2、0.6和0.8, 试求此目标被摧毁的概率.又由于三次射击是相互独立的,所以 ,=0.6×0.5×0.7+0.6×0.5×0.3+0.4×0.5×0.3=0.36,=0.6×0.5×0.7+0.4×0.5×0.3+0.4×0.5×0.7=0.41,.由全概率公式得到P (C )=P (C |B 0)P (B 0)+P (C |B 1)P (B 1)+P (C |B 2)P (B 2)+P (C |B 3)P (B 3)=0×0.09+0.2×0.36+0.6×0.41+0.8×0.14=0.43.三、练习题1.已知P(B|A)=103,P(A)=51,则P(AB)=( ) A .21 B.23 C .32 D.5032.由“0”、“1” 组成的三位数码组中,若用A 表示“第二位数字为0”的事件,用B 表示“第一位数字为0”的事件,则P(A|B)=( )A.21B.31C.41D.813.某地区气象台统计,该地区下雨的概率是154,刮三级以上风的概率为152,既刮风又下雨的概率为101,则在下雨天里,刮风的概率为( ) A.2258B.21C.83D.434.设某种动物有出生算起活20岁以上的概率为0.8,活到25岁以上的概率为0.4.现有一个20岁的这种动物,问它能活到25岁以上的概率是 .5.一个口袋内装有2个白球,3个黑球,则(1)先摸出1个白球后放回,再摸出1个白球的概率? (2)先摸出1个白球后不放回,再摸出1个白球的概率?6.某种元件用满6000小时未坏的概率是43,用满10000小时未坏的概率是21,现有一个此种元件,已经用过6000小时未坏,求它能用到10000小时的概率7.某个班级共有学生40人,其中有团员15人,全班分成四个小组,第一小组有学生10人,其中团员4人。

九上 概率知识点总结

九上 概率知识点总结

九上概率知识点总结一、基本概念1.1概率的概念概率是描述随机现象发生可能性大小的数学工具,它用来描述事件发生的可能性大小,并且是一个介于0和1之间的实数。

1.2随机试验和随机事件随机试验是指每次都可能得到不同结果的试验,而随机事件是指随机试验的结果。

1.3样本空间和事件样本空间是指随机试验所有可能结果的集合,而事件是指样本空间中的某些结果的集合。

1.4事件的概率事件的概率是指该事件发生的可能性大小,通常用P(A)来表示,其中A是事件的名称。

二、基本概率公式2.1概率的基本性质概率的基本性质包括非负性、规范性和可列可加性三个方面。

2.2概率的加法公式对于两个事件A和B,它们的并的概率用P(A∪B)表示,而对于互斥事件A和B,P(A∪B) = P(A) + P(B)。

2.3概率的乘法公式对于两个事件A和B,它们的交的概率用P(A∩B)表示,而对于相互独立的事件A和B,P(A∩B) = P(A) * P(B)。

2.4全概率公式和贝叶斯公式全概率公式和贝叶斯公式用于描述条件概率的计算,它们分别为P(A) = ΣP(A|B) * P(B)和P(B|A) = P(A|B) * P(B) / P(A)。

2.5概率的计算方法概率的计算方法包括频率法、古典概率法和几何概率法三种。

三、条件概率3.1条件概率的概念条件概率是指在给定某一条件下某事件发生的可能性大小,通常用P(A|B)表示,其中A 是事件的名称,B是条件事件的名称。

3.2独立事件和相关事件如果事件A的发生不受事件B的影响,那么事件A和事件B就是相互独立的,否则就是相关的。

3.3贝叶斯概率贝叶斯概率是通过计算事件的条件概率来形成对事件发生可能性的估计,其计算方法为P(B|A) = P(A|B) * P(B) / P(A)。

四、随机变量和概率分布4.1随机变量的概念随机变量是指随机试验结果的数值化表达,它可以是离散型随机变量或连续型随机变量。

4.2概率质量函数和概率密度函数对于离散型随机变量,它们的概率分布用概率质量函数来描述,而对于连续型随机变量,它们的概率分布用概率密度函数来描述。

大学概率论知识点总结

大学概率论知识点总结

大学概率论知识点总结概率论是研究随机现象数量规律的数学分支,在大学数学中占据着重要的地位。

以下是对大学概率论中一些重要知识点的总结。

一、随机事件与概率1、随机事件随机事件是指在一定条件下,可能出现也可能不出现的事件。

例如,抛一枚硬币,正面朝上就是一个随机事件。

2、样本空间样本空间是随机试验的所有可能结果组成的集合。

3、事件的关系与运算包括包含、相等、并、交、差、互斥(互不相容)和对立等关系。

4、概率的定义概率是对随机事件发生可能性大小的度量。

古典概型中,概率等于有利事件的个数除以总事件的个数;几何概型中,概率等于几何度量(如长度、面积、体积等)的比值。

5、概率的性质包括非负性、规范性和可加性等。

二、条件概率与乘法公式1、条件概率在已知某个事件发生的条件下,另一个事件发生的概率称为条件概率,记作 P(B|A)。

2、乘法公式P(AB) = P(A)P(B|A)三、全概率公式与贝叶斯公式1、全概率公式如果事件组 B1,B2,,Bn 是样本空间的一个划分,且 P(Bi) > 0(i = 1, 2,, n),则对任意事件 A 有 P(A) =ΣP(Bi)P(A|Bi)2、贝叶斯公式在全概率公式的基础上,如果已知 P(A),P(Bi) 和 P(A|Bi),可以计算在事件 A 发生的条件下,事件 Bi 发生的概率 P(Bi|A)四、随机变量及其分布1、随机变量是定义在样本空间上的实值函数。

2、离散型随机变量其取值为有限个或可列个。

常见的离散型随机变量分布有:二项分布、泊松分布等。

3、连续型随机变量其取值可以是某个区间内的任意实数。

常见的连续型随机变量分布有:均匀分布、正态分布、指数分布等。

4、随机变量的分布函数F(x) = P(X <= x),具有单调不减、右连续等性质。

五、多维随机变量及其分布1、二维随机变量由两个随机变量组成。

2、联合分布函数F(x, y) = P(X <= x, Y <= y)3、边缘分布包括边缘分布函数和边缘概率密度(离散型为边缘概率分布)。

条件概率知识点

条件概率知识点

条件概率知识点一、条件概率的定义。

1. 概念。

- 设A、B为两个事件,且P(A)>0,称P(BA)=(P(AB))/(P(A))为在事件A发生的条件下事件B发生的条件概率。

- 例如,扔一个骰子,事件A为“骰子的点数为偶数”,P(A)=(3)/(6)=(1)/(2),事件B为“骰子的点数小于4”,AB表示“骰子的点数为2”,P(AB)=(1)/(6)。

那么在A发生的条件下B发生的条件概率P(BA)=(P(AB))/(P(A))=(frac{1)/(6)}{(1)/(2)}=(1)/(3)。

2. 性质。

- 非负性:对于任意事件B,A(P(A)>0),有P(BA)≥slant0。

- 规范性:P(ΩA) = 1,这里Ω是样本空间。

- 可列可加性:如果B_1,B_2,·s是两两互不相容的事件,则P(bigcup_i =1^∞B_iA)=∑_i = 1^∞P(B_iA)。

二、条件概率的计算方法。

1. 公式法。

- 直接根据定义P(BA)=(P(AB))/(P(A))计算。

- 例如,有一批产品共100件,其中次品10件,从中不放回地抽取两次,每次取一件。

设事件A为“第一次取到次品”,P(A)=(10)/(100)=(1)/(10);事件B为“第二次取到次品”。

AB表示“第一次和第二次都取到次品”,P(AB)=(10)/(100)×(9)/(99)=(1)/(110)。

那么P(BA)=(P(AB))/(P(A))=(frac{1)/(110)}{(1)/(10)}=(1)/(11)。

2. 缩减样本空间法。

- 当直接计算P(AB)和P(A)比较复杂时,可以考虑缩减样本空间。

- 还是以上面抽取产品的例子,在A发生的条件下,即第一次已经取到了次品,此时样本空间就缩减为99件产品,其中次品还有9件,所以P(BA)=(9)/(99)=(1)/(11)。

三、条件概率的乘法公式。

1. 公式。

- 由P(BA)=(P(AB))/(P(A))可得P(AB)=P(A)P(BA)(P(A)>0)。

可能性数学知识点

可能性数学知识点
1. 条件概率:某事件发生的条件概率是指当某个条件成立时,该事件发生的概率。

2. 独立性:两个事件的独立性是指这两个事件发生的概率是否受到彼此的影响。

3. 乘法定理:乘法定理认为,事件A和事件B是相互独立,那么事件A发生的概率乘以事件B发生的概率等于这两个事件同时发生的概率。

4. 拉普拉斯公式:拉普拉斯公式是一个用于计算事件空间中不同元素之间关系的表示式,也称概率空间归纳公理。

5. 概率分布:概率分布是一个描述一个随机变量值在一定范围内按某一确定的函数分布的手段。

6. 均值:均值指数据集或总体中各数值出现概率大小的平均值,通常用于判断数据集或总体的分布特征。

7. 方差:方差用于衡量平均值分布的离散程度,表示偏离正态分布的程度,数值越大说明越不符合正态分布。

8. 二项分布:二项分布是一种二项过程,可以用来描述连续相互独立随机试验中成功结果出现次数的概率分布。

9. 几何分布:几何分布是以定义了任意次数随机实验中第一次发生成功结果的概率分布。

10. 泊松分布:泊松分布又称为出现频率分布,是一种描述长期看来某一现象在某一单位时间内出现次数的分布。

概率论知识点总结归纳

概率论知识点总结归纳概率论是一门研究随机现象数量规律的数学学科,它在许多领域都有着广泛的应用,如统计学、物理学、工程学、经济学等。

下面将对概率论中的一些重要知识点进行总结归纳。

一、随机事件与概率1、随机事件随机事件是指在一定条件下,可能出现也可能不出现的事件。

例如,掷骰子出现的点数就是一个随机事件。

2、样本空间样本空间是指随机试验的所有可能结果组成的集合。

3、事件的关系与运算包括包含、相等、和事件、积事件、差事件、互斥事件、对立事件等。

4、概率的定义概率是对随机事件发生可能性大小的度量。

概率的古典定义适用于等可能概型,几何概型则通过几何度量来计算概率。

5、概率的性质包括非负性、规范性和可加性。

二、条件概率与乘法公式1、条件概率在已知某个事件发生的条件下,另一个事件发生的概率称为条件概率。

2、乘法公式用于计算两个事件同时发生的概率。

三、全概率公式与贝叶斯公式1、全概率公式如果事件组构成一个完备事件组,那么对于任意一个事件,可以通过全概率公式计算其概率。

2、贝叶斯公式在已知结果的情况下,反推导致这个结果的某个原因的概率。

四、随机变量及其分布1、随机变量用来表示随机现象结果的变量。

2、离散型随机变量取值可以一一列举的随机变量,常见的离散型随机变量分布有二项分布、泊松分布等。

3、连续型随机变量取值充满某个区间的随机变量,其概率通过概率密度函数来描述。

常见的连续型随机变量分布有正态分布、均匀分布等。

五、期望与方差1、期望反映随机变量取值的平均水平。

2、方差描述随机变量取值的离散程度。

六、协方差与相关系数1、协方差衡量两个随机变量之间的线性关系程度。

2、相关系数是标准化后的协方差,取值范围在-1 到 1 之间。

七、大数定律与中心极限定理1、大数定律说明在大量重复试验中,随机变量的平均值趋近于其期望值。

2、中心极限定理当样本量足够大时,独立同分布的随机变量之和近似服从正态分布。

在学习概率论的过程中,需要理解各个概念的含义,掌握相关的公式和定理,并通过大量的练习来加深对知识点的理解和应用。

初中概率知识点总结大全

初中概率知识点总结大全一、概率基础知识1. 随机试验:指条件具备,结果不确定的实验,比如掷骰子、抛硬币等。

2. 样本空间:随机试验的所有可能结果组成的集合。

3. 事件:样本空间的子集称为事件,包含了我们关心的一些结果。

4. 必然事件和不可能事件:必然事件是指一定会出现的事件,比如抛硬币一定会出现正反面其中之一;不可能事件是指一定不会出现的事件,比如抛硬币会出现正反面之外的结果。

5. 等可能事件:指所有事件发生的可能性相等。

6. 概率:事件发生的可能性大小。

用符号 P(A) 表示事件 A 的概率。

二、概率计算1. 古典概型计算当样本空间中的元素个数有限且每个基本事件发生的可能性相等时,可使用古典概型计算概率。

例如:掷一枚骰子,求点数为偶数的概率。

样本空间 S = {1, 2, 3, 4, 5, 6},事件A是点数为偶数的结果,即 A = {2, 4, 6}。

所以 P(A) = n(A) / n(S) = 3 / 6 = 1/2。

2. 几何概型计算当事件的发生是与随机试验的空间几何结构有关时,可使用几何概型计算概率。

例如:在一个圆形的靶子上打靶,求打在靶心的概率。

由于靶心只有一个点,而靶子的面积是一个圆,所以 P(A) = 0。

3. 频率法计算当样本空间中的元素个数非常大,无法通过统计来确定每个基本事件的发生概率时,可使用频率法计算概率。

例如:抛掷硬币,实验多次后计算正面朝上的频率来估算正面朝上的概率。

4. 排列和组合排列和组合是概率计算中常用的计算方法。

排列是指从n 个不同元素中任取m(m ≤ n)个元素按照一定顺序排成一列的不同排列数。

排列数用 P(n, m) 或 n!/(n-m)! 表示。

组合是指从 n 个不同元素中任取 m(m ≤ n)个元素并成一组的不同组合数。

组合数用 C(n, m) 或 n!/m!(n-m)! 表示。

三、概率的运算1. 事件的关系事件的关系包括事件的和、差、积和余事件。

事件的独立性、条件概率和全概率公式(精讲)【2024一轮复习讲义】(新高考通用)解析版

【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)第53讲事件的独立性、条件概率和全概率公式(精讲)题型目录一览①事件的相互独立性②条件概率③全概率公式④贝叶斯公式一、条件概率1.定义:一般地,设A ,B 为两个事件,且()0P A >,称()()()|P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率.注:(1)条件概率|()P B A 中“|”后面就是条件;(2)若()0P A =,表示条件A 不可能发生,此时用条件概率公式计算|()P B A 就没有意义了,所以条件概率计算必须在()0P A >的情况下进行.2.性质(1)条件概率具有概率的性质,任何事件的条件概率都在0和1之间,即1|0()P B A ≤≤.(2)必然事件的条件概率为1,不可能事件的条件概率为0.(3)如果B 与C 互斥,则(||()(|))P B C A P B A P C A =+ .注:已知A 发生,在此条件下B 发生,相当于AB 发生,要求|()P B A ,相当于把A 看作新的基本事件空间计算AB 发生的概率,即()()()()()()()()|()n AB n AB n P AB P B A n A n A P A n Ω===Ω.二、相互独立与条件概率的关系1.相互独立事件的概念及性质(1)相互独立事件的概念对于两个事件A ,B ,如果)(|)(P B A P B =,则意味着事件A 的发生不影响事件B 发生的概率.设()0P A >,一、知识点梳理根据条件概率的计算公式,()()()()|P AB P B P B A P A ==,从而()()()P AB P A P B =.由此我们可得:设A ,B 为两个事件,若()()()P AB P A P B =,则称事件A 与事件B 相互独立.(2)概率的乘法公式由条件概率的定义,对于任意两个事件A 与B ,若()0P A >,则()|)()(P AB P A P B A =.我们称上式为概率的乘法公式.(3)相互独立事件的性质如果事件A ,B 互相独立,那么A 与B ,A 与B ,A 与B 也都相互独立.(4)两个事件的相互独立性的推广两个事件的相互独立性可以推广到(2)n n n >∈*N ,个事件的相互独立性,即若事件1A ,2A ,…,n A 相互独立,则这n 个事件同时发生的概率1212()()()()n n P A A A P A A P A = .2.事件的独立性(1)事件A 与B 相互独立的充要条件是()()()P AB P A P B =⋅.(2)当()0P B >时,A 与B 独立的充要条件是()()|P A B P A =.(3)如果()0P A >,A 与B 独立,则()()()()()()()|P AB P A P B P B A P B P A P A ⋅===成立.三、全概率公式1.全概率公式(1)|()()()()(|)P B P A P B A P A P B A =+;(2)定理1若样本空间Ω中的事件1A ,2A ,…,n A 满足:①任意两个事件均互斥,即i j A A =∅,12i j n = ,,,,,i j ≠;②12n A A A +++=Ω ;③()0i P A >,12i n = ,,,.则对Ω中的任意事件B ,都有12n B BA BA BA =+++ ,且11()()()()|nni i i i i P B P BA P A P B A ====∑∑.2.贝叶斯公式(1)一般地,当0()1P A <<且()0P B >时,有()()()()()()()()()()||||P A P B A P A P B A P A B P B P A P B A P A P B A ==+(2)定理2若样本空间Ω中的事件12n A A A ,,,满足:①任意两个事件均互斥,即i j A A =∅,12i j n = ,,,,,i j ≠;②12n A A A +++=Ω ;③()01i P A <<,12i n = ,,,.则对Ω中的任意概率非零的事件B ,都有12n B BA BA BA =+++ ,且1()()()()()()()()|||j j j j j niii P A P B A P A P B A P A B P B P A P B A ===∑注:贝叶斯公式体现了|()P A B ,()P A ,()P B ,|()P B A ,|()P B A ,()P AB 之间的关系,即()()()|P AB P A B P B =,()()()()()||P AB P A B P B P B A P A ==,|()()()()(|)P B P A P B A P A P B A =+.题型一事件的相互独立性1.判断事件是否相互独立的方法(1)定义法:事件(2)由事件本身的性质直接判定两个事件发生是否相互影响.二、题型分类精讲A.332B.【答案】D【题型训练】一、单选题,从乙口袋内摸出一个白球的概率是6【分析】根据题意,求得事件甲、乙、丙、丁的概率,结合相互独立事件的概念及判定方法,逐项判定,不相互独立,所以本序号说法不正确;二、多选题不能同时发生,但能同时不发生,所以不是对立事件,所以三、填空题四、解答题.一题多解是由多种途径获得同一数学问题的最终结论,一题多解不但达到了解题的目标要求,而且让情.某市举行了一场射击表演赛,规定如下:表演赛由甲、乙两位选手进行,每次只能有一位选手射击,题型二条件概率1.判断所求概率为条件概率的主要依据是题目中的知事件的发生影响了所求事件的概率,也认为是条件概率问题.运用条件概率的关键是求出【题型训练】一、单选题1.核酸检测是目前确认新型冠状病毒感染最可靠的依据.经大量病例调查发现,试剂盒的质量、抽取标本的部位和取得的标本数量,对检测结果的准确性有一定影响.已知国外某地新冠病毒感染率为d二、多选题、表示事件错误;三、填空题个红球,从中任意取出一球,已知它不是白题型三全概率公式全概率公式复杂的概率计算分解为一些较为容易的情况分别进行考虑.【题型训练】一、单选题小时的学生中任意调查一名学生,则(二、多选题,所以表示买到的口罩分别为甲品牌、乙品牌、其他品牌,,对;三、填空题记任选一人去桂林旅游的事件为B ,则123()0.4,()()0.3P A P A P A ===,123(|)0.1,(|)0.2,(|)0.15P B A P B A P B A ===,由全概率公式得112233()(|)()(|)()(5|)30.15014P P A P B A P A P B A P A P B B A =⨯⨯++==++⨯.故答案为:0.145四、解答题附:()2P K k≥0.150.100.05k 2.072 2.706 3.841 (2)将甲乙生产的产品各自进行包装,每来自甲生产的概率为3,来自乙生产的概率为(1)假设四人实力旗鼓相当,即各比赛每人的胜率均为①A获得季军的概率;②D成为亚军的概率;,其余三人实力旗鼓相当,求题型四贝叶斯公式1.利用贝叶斯公式求概率的步骤第一步:利用全概率公式计算【题型训练】一、单选题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

条件概率知识点总结
概率论是研究随机事件发生的规律性和可能性的一个数学分支。

而条件概率则是概率论中一个重要的概念。

它将一个事件在另一
个事件发生条件下的概率计算为其相应的基本概率的比率。

在实
际应用中,条件概率有着广泛的应用。

理解和掌握条件概率知识
点对于正确地进行数据分析、概率计算等领域至关重要。

本文将
对条件概率进行总结和探讨。

一、条件概率的定义和公式
设A和B是两个事件,且P(B)>0,那么我们可以定义事件A
在事件B发生的条件下的概率为:
P(A|B) = P(A ⋂ B)/P(B)
其中,A ⋂ B是事件A和B的交集。

如果A和B互不相交,则有P(A ⋂ B) = 0。

根据上面的公式,可以得到以下的两条重要的性质:
1、P(A ⋂ B) = P(A|B)P(B)
2、P(B ⋂ A) = P(B|A)P(A)
以上两式表达了条件概率的互逆性。

二、条件概率的思想
条件概率的思想是建立在贝叶斯定理及全概率公式的基础之上。

全概率公式是指,如果事件B1,B2,...,Bn互不相交、组成了样本空间,并且每个事件的概率均大于0,则对于任意事件A有:
P(A) = Σi=1到n P(A|Bi)P(Bi)
贝叶斯定理是指,对于对于任意两个事件A和B,有:
P(A|B) = P(B|A)P(A)/P(B)
这是逆向概率的计算,通常被用来求解概率A在已知B的情况下发生的概率。

三、条件概率的应用
1、医学领域
在医学领域中,条件概率被广泛应用于疾病的诊断和治疗。

以乳腺癌为例,医生通过乳腺肿块的体检找到患者,而在这个基础上再利用脉冲声或乳腺钼靶摄影、核磁共振等方法进一步诊断患者是否患上乳腺癌。

利用条件概率,医生可以更加精准地诊断病情。

2、金融风险评估
在金融领域中,条件概率的应用使得金融机构可以更准确地评估潜在的金融风险。

例如,通过分析历史数据,金融机构可以预测借款人无法按时偿还贷款的概率。

这种分析方法称为信用风险评估。

通过使用条件概率,金融机构可以在合理的风险范围内提供贷款。

3、人工智能
在人工智能领域中也有大量的条件概率的应用。

例如,在图像识别中,人工智能系统评估输入图像的特征,然后基于这些特征计算出输入图像是某个物体的概率。

在语音识别或自然语言处理中,条件概率被用于分类、排序、过滤等方面。

四、总结
条件概率的应用非常广泛。

它是概率论中的一个重要概念,是进行数据分析、金融风险预测、医学诊断、以及人工智能等领域中必不可少的数学基础知识。

深入理解条件概率的概念和应用,有助于我们更好地应用它们解决问题。

相关文档
最新文档