电力电子装置
电力电子装置课程设计

电力电子装置课程设计一、教学目标本课程的教学目标旨在让学生掌握电力电子装置的基本原理、组成结构、工作特性及应用领域。
通过本课程的学习,使学生能够:1.知识目标:了解电力电子器件的类型、特性及工作原理;掌握电力电子装置的电路组成、工作原理和性能指标;熟悉电力电子装置在各领域的应用。
2.技能目标:能够分析电力电子装置的电路结构,进行简单的电路设计;具备电力电子装置的调试、维护和故障排除能力。
3.情感态度价值观目标:培养学生对电力电子技术的兴趣,认识其在现代社会中的重要性,树立正确的技术观念和创新意识。
二、教学内容本课程的教学内容主要包括以下几个部分:1.电力电子器件:介绍晶闸管、GTO、IGBT等常用电力电子器件的结构、特性和应用。
2.电力电子装置:详细讲解电力电子装置的电路组成、工作原理和性能指标,包括直流电动机调速系统、变频器、电力电子变压器等。
3.应用领域:介绍电力电子装置在工业、交通、家庭等领域的应用案例。
三、教学方法为了提高教学效果,本课程将采用多种教学方法,包括:1.讲授法:通过讲解电力电子器件的原理、特性及应用,使学生掌握基本知识。
2.讨论法:学生针对电力电子装置的实际案例进行讨论,提高学生分析问题和解决问题的能力。
3.案例分析法:分析电力电子装置在实际应用中的典型病例,培养学生解决实际问题的能力。
4.实验法:安排实验室实践环节,让学生亲自动手进行电力电子装置的搭建和调试,增强学生的实践能力。
四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:《电力电子装置原理与应用》等。
2.参考书:提供相关领域的参考书籍,供学生拓展阅读。
3.多媒体资料:制作课件、视频等多媒体资料,丰富教学手段。
4.实验设备:提供电力电子装置实验所需的设备,包括电源、负载、控制器等。
五、教学评估本课程的教学评估将采用多元化的评估方式,以全面、客观地评价学生的学习成果。
评估方式包括:1.平时表现:通过课堂参与、提问、讨论等环节,记录学生的表现,占总评的30%。
SGDDZ-01电力电子技术及电机控制实验装置

SGDDZ-01电力电子技术及电机控制实验装置一、概述"SGDDZ-01型电力电子及电气传动技术实验装置"依据高等院校最新统编教材《电力电子技术》(第五版)(西安交通大学王兆安编著)、《电力拖动自动控制系统》(第三版)(上海大学陈伯时编著)等实验大纲的要求,吸收国内、外同类产品的优点,充分考虑了实验室的现状和发展趋势,精心研制而成。
在同类产品中结构合理、功能完善、可靠性好、性价比高。
二、特点1、综合性强本装置综合了目前国内各类学校电力电子、半导体变流、交直流调速、交流变频、电机控制、控制理论等实验项目。
2、适应性强能满足各类学校相应课程的实验教学,深度和广度可根据需要作灵活调整,普及与提高可根据教学的进程作有机的结合,装置采用积木式结构,更换便捷,如需要扩展功能或开发新实验,只需添加部件即可,永不淘汰。
3、整套性强从专用电源、电机及其它实验部件到实验连接专用导线配套齐全,配套部件的性能、规格等均密切结合实验的需要进行配套。
4、直观性强各实验挂件采用分隔结构形式,组件面板示意、图线分明,各挂件任务明确,操作、维护方便。
5、科学性强装置占地面积少,节约实验用房,减少基建投资;配套的小电机均经特殊设计,可模拟中小型电机的特性和参数;小电机耗电省,节约能源,实验噪声小,整齐美观,改善实验环境;实验内容丰富,设计合理,除了加深理论知识外还可结合实际开设设计性实验。
6、开放性强控制屏供电采用三相隔离变压器隔离,并设有电压型漏电保护装置和电流型漏电保护装置,确保操作者的安全;各电源输出均有监示及短路保护等功能,各测量仪表均有可靠的保护功能,使用安全可靠;控制屏还设有定时器兼报警记录仪,为学生实验技能的考核提供一个统一的标准。
由于整套装置经过精心设计,加上可靠的元器件质量及可靠的工艺作为保障,产品性能优良,所有这些均为开放性实验室,创造了条件。
7、先进性强本装置着重从新器件高度来考虑,在保留了晶闸管实验的基础上,加入了新器件的特性、新器件的驱动以及典型的新器件应用的大量现代电力电子技术实验,让学生对新器件有足够的认识和了解,紧跟时代步伐。
电力电子装置及系统

电力电子装置及系统概述张密李静怡牟书丹李子君0 引言在电力系统中,许多功能的实现都需要靠电力电子装置来完成。
比如说可再生能源的并网发电、无功和谐波的动态补偿、储能装置的功率转换、配用电能的双向流动、交直流电网的柔性互联等。
随着科技的日益发展,大功率、高电压电力电子器件的发展,变换器单元化、模块化以及智能化水平的提高,控制策略和调制策略性能的提升,电力电子装置在电力系统中的作用会越来越大。
1 电力电子装置及系统的概念电力电子装置是以满足用电要求为目标,以电力半导体器件为核心,通过合理的电路拓扑和控制方式,采用相关的应用技术对电能实现变换和控制的装置。
电力电子装置和负载组成的闭环控制系统称为电力电子控制系统,其基本组成如图所示。
它是通过弱电控制强电实现其功能的。
控制系统根据运行指令和输入、输出的各种状态,产生控制信号,用来驱动对应的开关器件,完成其特定功能。
2 电力电子装置的主要类型电力电子装置的种类繁多,根据电能转换形式的不同,基本上可以分为5大类:交流-直流变换器(AC/DC)、直流-交流变换器(DC/AC)、直流-直流变换器(DC/DC)、交流-交流变换器(AC/AC)和电力电子静态开关。
1.AC/DC变换器AC/DC变换器又称整流器。
用于将交流电能变换为直流电能。
2.DC/DC变换器DC/DC变换器用于将一种规格的直流电能变换为另一种规格的直流电能。
采用PWM 控制的DC/DC变换器也称直流斩波器,主要用于直流电机驱动和开关电源。
3.DC/AC变换器DC/AC变换器又称逆变器。
用于将直流电能变换为交流电能。
根据输出电压及频率的变化情况,可分为恒压恒频(CVCF)及变压变频(VVVF)两类,前者用作稳压电源,后者用于交流电动机变频调速系统。
4.AC/AC变换器AC/AC变换器用于将一种规格的交流电能变换为另一种规格的直流电能。
输入和输出频率相同的称为交流调压器,频率发生变化的称为周波变换器或变频器。
大型电力系统中电力电子和FACTS装置

Ø
Ø
图形编辑
中国电力科学研究院 中国电力科学研究院 系统所 系统所
图形编辑
中国电力科学研究院 中国电力科学研究院 系统所 系统所
运行监控
中国电力科学研究院 中国电力科学研究院 系统所 系统所
表格输出-稳态开关电流统计
中国电力科学研究院 中国电力科学研究院 系统所 系统所
大型电力系统中电力电子和FACTS装置 仿真软件包EMTPE的研究与开发
林集明、陈珍珍
中国电力科学研究院 2003.9
中国电力科学研究院 中国电力科学研究院 系统所 系统所
1.研究背景
(1)电力电子技术包括直流输电(HVDC)和灵活 交流输电(FACTS)技术,在我国电力系统中发 挥越来越大的作用。 (2) 现有的仿真软件如EMTP、PSCAD (EMTDC)、 NETOMAC、 SABER、SPICE 、MATLAB等很难全面满足大型电力系统中 电力电子与FACTS 发展的要求
中国电力科学研究院 中国电力科学研究院 系统所 系统所
(3)PMC模块在FACTS仿真中的应用
----关键技术之四(续2)
EMTPE仿真: 天广TCSC阻 天广 抗阶跃控制 响应图
中国电力科学研究院 中国电力科学研究院 系统所 系统所
3.5 操作过电压下的闪络率计算模块
----关键技术之五
在操作过电压u作用下,单个绝缘的闪络率为:
(1)发现现有EMTPs在电力电子仿真中出现 问题的主要原因之二
Ø 在模拟大型电力电子器件电路中,出现不
应有的时延
如有N个电力电子开关在动作上互为因果关 系,如开关S1动作导致S2动作… … ; 而在时间 上,这N个开关是同时动作的。 EMTPs 中,它们在动作上存在 (N-1)?△t (步长)时延,这对于电力电子仿真是不可接受的 。
一文看懂电力电子装置及其特点

一文看懂电力电子装置及其特点
电力电子装置的概念
电力电子装置(powerelectronicequipment)由各类电力电子电路组成的装置。
用于大功率电能的变换和控制。
又称变流装置。
它包括整流器、逆变器、直流变流器、交流变流器、各类电源和开关、电机调速装置、直流输电装置、感应加热装置、无功补偿装置、电镀电解装置、家用电器变流装置等。
其中,直流电源可由整流器或直流变流器组成,用于直流电动机调速、充电(备充电电源)、电镀和科学仪器等的电源。
交流电源可由变频器(见交流变换电路)组成。
分为变频变压电源(用于交流笼式异步电动机调速)、恒频恒压电源(用以构成交流不停电电源)、交流稳压电源、中频感应加热电源(电源输出频率达8千赫,用于感应加热和淬火)、高频加热电源(电源输出频率高于8千赫,用于淬火和焊接)等。
利用电力电子器件的快速开关性能,可构成静止式无触点大功率开关,代替传统的电磁式有触点大功率开关。
电力电子装置的装置保护
电力电子装置受所用器件性能的影响,承受过电压、过电流的能力比较差。
例如,电动机、变压器等通常可在几倍的额定电流下工作几秒钟或几。
新电力电子装置介绍

新电力电子装置介绍新电力电子装置是近年来发展起来的一种电子设备。
它能够将输电线路上的电能进行高效的转换和调节,从而提高输电和配电的效率和质量。
新电力电子装置的出现,为电力系统的更新改造提供了一种全新的技术手段,成功地改变了以往传统电力系统的缺陷。
新电力电子装置的种类非常多,包括了HVDC(高压直流)输电系统、STATCOM(静止补偿装置)、UPFC(统一电力流控制装置)和SVG(静态无功补偿装置)等。
它们有着不同的特点和功能,用于解决电力系统中的不同问题。
HVDC系统是新电力电子装置中最重要的系统之一。
它采用的是高压直流技术,能够将远距离的电能按照高效率进行传输。
它大大降低了电力输送中的能量损失,提高了电力系统的经济性和稳定性。
同时,HVDC系统也能够在不同区域的电力系统之间进行直接连接,增强电力系统的交流能力,避免了传统电力系统中输电路线重复建设的现象。
STATCOM是一种重要的静止补偿装置,能够大大提升电力系统的稳定性和可靠性。
STATCOM能够通过调整电网中的电压频率和电流大小,使电力系统的电能质量得到保障,避免了系统电压波动、频闪和电力波动等问题。
此外,STATCOM 还能够改善电力系统的功率因数,提高电网的能效。
UPFC是一种集静止补偿、电压控制和无功补偿于一体的电力调节装置。
UPFC用于电力系统中的电力路线控制和电力容量调节,可大大提高电力系统的动态稳定性和运行效率。
UPFC还可以根据实时电价和电力需求进行智能电力调节,控制电力系统的负荷特性,使运行的电力系统更加经济高效。
SVG是静态无功补偿装置,主要用于电力系统的无功平衡控制和电力质量控制。
SVG能够根据电网的工作状态和负荷特性,对电力系统的无功功率进行调节和补偿。
通过SVG对电力系统进行控制和优化,可以使电网的功率因数始终处于理想状态,从而提高电能利用率和经济效益。
总的来说,新电力电子装置是一个高效的电力调节工具。
它采用了先进的电子技术,能够为电力系统提供更好的稳定性、可靠性和经济性。
电力电子设备在日常生活中的应用有哪些?
电力电子设备在日常生活中的应用有哪些?在当今科技飞速发展的时代,电力电子设备已经深深地融入了我们的日常生活,从家庭到工作,从交通到娱乐,几乎无处不在。
这些设备以其高效、精确的电能转换和控制能力,为我们的生活带来了诸多便利和创新。
首先,让我们来看看家庭中的电力电子设备。
冰箱是一个典型的例子。
它通过电力电子技术实现精确的温度控制,确保食物在适宜的环境中保存。
冰箱中的压缩机和风扇的运行速度,都由电力电子器件进行调节,以达到节能和稳定运行的目的。
空调也是如此,它根据室内外温度和设定的温度值,通过电力电子变频器来调整压缩机的转速,从而实现高效的制冷或制热,为我们营造舒适的居住环境。
在厨房,电磁炉的广泛应用改变了我们的烹饪方式。
它利用电力电子技术产生高频电磁场,使锅具迅速发热,加热效率高且易于控制。
相比传统的燃气炉灶,电磁炉更加安全、清洁,而且能够实现精确的温度调节,满足不同烹饪需求。
还有微波炉,它通过电力电子器件产生微波,快速加热食物,为我们节省了大量的时间。
家庭中的照明系统也离不开电力电子设备。
LED 灯凭借其高效节能、长寿命等优点,逐渐取代了传统的白炽灯和荧光灯。
LED 灯的驱动电路就是一种电力电子装置,它能够将市电转换为适合 LED 工作的直流电,并实现调光、调色等功能,为我们创造出丰富多彩的照明效果。
接下来,让我们把目光转向个人电子设备。
手机是现代人生活中不可或缺的一部分,其内部的充电器就是一个电力电子设备。
它将市电转换为适合手机电池充电的直流电,并且具备过压、过流保护等功能,确保充电过程安全可靠。
笔记本电脑的电源适配器也起着类似的作用,为电脑提供稳定的电源供应。
在交通领域,电力电子设备的应用更是日益广泛。
电动汽车的发展是一个显著的趋势。
电动汽车的核心部件之一是电机驱动器,它通过电力电子技术将电池的直流电转换为交流电,驱动电机运转,实现车辆的加速、减速和巡航。
同时,电动汽车的充电设施也依赖电力电子技术,快速充电桩能够在短时间内为车辆补充大量电能。
电力电子装置 2021复习要点
2021电力电子装置考试复习要点:1.电力电子装置与系统的基本组成及各部分功能要求能够画出系统图并说明各个部分功能。
☐(功率)输入输出☐信号变换/反馈回路☐控制系统☐驱动电路☐保护吸收电路☐主电路(含滤波电路)☐人机/通信(可选)2.各种开关器件的特性及适用范围;常用器件:SCR、GTO、GTR、MOSFET、IGBT频率、功率特性及其使用范围。
3.开关器件选型依据;器件: 电压、电流、频率、功率4.电力电子变换器几种基本拓扑原理及分析拓扑结构:AC/DC(SCR、IGBT/MOSFET整流)、DC/DC(基本斩波电路:BUCK、BOOST等)、DC/AC(有源逆变、无源逆变)、AC/AC(基于SCR)5.电力电子变换器串并联组合变换器的多重化:减小谐波、提高电压、电流、功率。
6.电力电子装置为什么要高频化?高频化:减小体积、重量。
高频损耗及软开关技术。
7.硬开关与软开关的区别,它们典型的开通/关断电压电流波形,开关损耗的产生机理,与哪些因素有关;如何减小开关损耗;硬开关与软开关:开关损耗由开关电压、电流重叠及导通压降引起。
开关损耗四种类型。
采用软开关。
8.软开关按电压电流的不同可分为哪几类?软开关类型:零电压开通/零电流关断(效果好)、零电压关断/零电流开通(效果差)并分别说明。
9.ZVS PWM与ZVT PWM的异同点?哪种更优?为什么?ZVS PWM:零开关PWM:电路中引入了辅助开关来控制谐振的开始时刻,使谐振仅发生于开关过程前后。
ZVT PWM:零转换PWM:电路中采用辅助开关控制谐振的开始时刻,所不同的是,谐振电路是与主开关并联的,因此输入电压和负载电流对电路的谐振过程的影响很小,电路在很宽的输入电压范围内和从零负载到满载都能工作在软开关状态,而且电路中无功功率的交换被削减到最小,这使得电路效率有了进一步提高。
10.使用隔离型变换器的原因,有哪些典型的隔离型变换器?它们分别由哪个非隔离型变换器推演的隔离型变换器:电位隔离、电压变换。
新电力电子装置介绍
新电力电子装置介绍随着现代科技的发展,越来越多的电子设备被应用于各种领域中,而电力电子装置则是其中颇受瞩目的一类。
新电力电子装置已经成为现代电力工业中不可或缺的一环。
本文将为您介绍新电力电子装置的基本概念、作用、分类以及未来发展趋势。
一、新电力电子装置的基本概念新电力电子装置(new power electronics device)是指基于半导体电子器件实现的高效率、高可靠性、高性价比的电力变换装置。
新电力电子装置是电力电子技术不断发展的结果,将传统的电气机械控制转换为数字化控制,具有调节范围宽、效率高、可靠性好和功率密度大等优点。
二、新电力电子装置的作用1.电能变换:新电力电子装置可将电能从一种形式变为另一种形式,如交流电变为直流电。
2.电压变换:新电力电子装置可将电压从一个级别变为另一个级别,如汽车充电器将宿主电动车的电压从大约400V升高至800V以便于电池充电。
3.电流变换:新电力电子装置可将电流从一个级别变为另一个级别,如机车牵引中,电力电子装置将高压、高电流的交流电转换成适合马达工作的直流电。
三、新电力电子装置的分类根据其半导体电子器件的类型及其工作方式,新电力电子装置可以分为多种类型。
1.开关型电流源逆变器开关型电流源逆变器(switched current source inverter)可以将直流电转换成交流电,并将电压和频率调节到特定的值。
其基本组成是四个晶体管和两个电容,可实现对交流电的控制和调节。
2.三电平逆变器三电平逆变器(three-level inverter)是由三对单项电流开关组成,使得输出电压有三个电平,可实现较低的在逆变器输出端的谐波和容量等问题。
3.大功率高压直流输电技术大功率高压直流输电技术(HVDC)通过将交流电转换为高压直流电,以降低输电系统中的电磁损耗和传输能力损失,并提升电力传输能力。
四、新电力电子装置的发展趋势当前,新电力电子装置正朝着智能、集成、高效的方向不断发展。
电力电子装置知识点总结
电力电子装置知识点总结一、电力电子基础知识1. 电力电子的定义电力电子是将电力系统与电子技术结合起来的一门学科,它主要研究在电力系统中利用电子器件进行能量转换、调节和控制的技术。
2. 电力电子的发展历程电力电子技术最早的应用可以追溯到20世纪50年代初,经过半个多世纪的发展,电力电子技术已经得到了广泛的应用,成为了电力系统中不可或缺的一部分。
3. 电力电子的优点电力电子技术在电力系统中的应用具有很多优点,如能量转换效率高、动态性能好、结构灵活、控制精度高等。
4. 电力电子原理电力电子器件的工作原理主要包括整流器、逆变器、开关、电抗器等,其中整流器用于将交流电转化为直流电,逆变器用于将直流电转化为交流电,开关用于控制电路的通断,电抗器用于电流和电压的调节。
二、电力电子器件1. 二极管二极管是一种最基本的电力电子器件,它主要用于整流和开关等应用。
2. 晶闸管晶闸管是一种受控硅器件,具有双向导通性能和触发控制特性,常用于交流电调节、开关和逆变等应用。
3. 可控硅可控硅是一种受控硅器件,具有单向导通性能和触发控制特性,常用于整流和逆变等应用。
4. IGBTIGBT是一种绝缘栅双极晶体管,具有高频调制特性和大功率开关特性,常用于逆变和交流电调节等应用。
5. MOSFETMOSFET是一种金属氧化物半导体场效应管,具有低导通电阻和低驱动功率,常用于低压高频开关电源中。
6. 发光二极管发光二极管是一种电光转换器件,可以将电能转换为光能,广泛应用于指示灯、显示屏、照明等领域。
7. 功率电阻器功率电阻器是一种具有大功率承受能力的电阻器,用于电流和电压的调节、限制。
三、电力电子应用1. 电能转换电力电子技术主要应用于电能的转换过程中,将交流电转化为直流电或将直流电转化为交流电,以满足不同负载对电能形式的需求。
2. 调节与控制电力电子技术可以实现对电能的调节和控制,包括电压、电流、频率等参数的调节和精确控制,以满足不同电力系统的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图8.2.4 单相输出UPS的 静态开关原理图
8.3 变频调速装置
由交流电机的转速公式:
n 60 f (1 S) / P
可以看出:
若均匀地改变定子频率 f ,则可以平滑地改变电机的转速。
因此,在各种异步电机调速系统中,变频调速的性能最好, 使得交流电机的调速性能可与直流电机相媲美,同时效率高,是 交流调速的主要发展方向。
工作原理
在PWM整流电路的交流输入端AB产生一个正弦波调制PWM波 uAB,uAB中除了含有与电源同频率的基波分量外,还含有与开关频率 有关的高次谐波。由于电感Ls的滤波作用,这些高次谐波电压只会使 交流电流is产生很小的脉动。如果忽略这种脉动,is为频率与电源频率 相同的正弦波。在交流电源电压us一定时,is的幅值和相位由uAB中基 波分量的幅值及其与us的相位差决定。改变uAB中基波分量的幅值和相 位,就可以使is与us同相位,电路工作在整流状态,且功率因数为1。
8.3.1 变频调速的基本控制方式
(1)基频以下的变频调速
(2)基频以上的变频调速 (3)转差频率控制 (4)矢量控制 (5)控制直接转矩
8.3.2 变频调速装置的分类
(1) 间接变频调速装置
按照电路结构和控制方式的不同,间接变频装置又可以分为三种,如图 8.5.1(a)、(b)、(c)所示。
图1 间接变频装置的三种机构形式
图8.1.1 线性稳压电源方框图
2、开关电源:
工作原理: 图8.1.2 开关电源原理框图
50Hz单相交流220V电压或三相交流220V/380V电压经EMI防电磁 干扰电源滤波器,直接整流滤波,然后再将滤波后的直流电压经变换 电路变换为数十或数百kHz的高频方波或准方波电压,通过高频变压器 隔离并降压(或升压)后,再经高频整流、滤波电路,最后输出直流电压。
图8.3.3 单相PWM整流电路的原理框图
单相PWM整流电路采用直接电流控制时的控制系统结构简图
图8.3.4 直接电流控制系统结构图
直流输出电压给定信号Ud*和实际的直流 电压Ud比较后送入PI调 节器,PI调节器的输出即为整流器交流输入电流的幅值,它与标准正 弦波相乘后形成交流输入电流的给定信号is*,is*与实际的交流输入电 流is进行比较,误差信号经比例调节器放大后送入比较器,再与三角载 波信号比较形成PWM信号。
简称开关电源(Switching Power Supply),指起电压 调整功能的器件始终以开关方式工作的一种直流稳压电源。
1、线性稳压电源:
优点:优良的纹波及动态响应特性; 缺点:(1)输入采用50Hz工频变压器,体积庞大;
(2)电压调整器件工作在线性放大区内,损耗大,效率低; (3) 过载能力差。
目前,在计算机网络系统、邮电通信、银行证劵、 电力系统、工业控制、医疗、交通、航空等领域得到 广泛应用。
8.2.1 UPS的分类
根据工作方式,UPS电源分 :
1、后备式UPS
市电存在时,逆变器不工作,市 电经交流稳压器稳压后,向负载供电, 同时充电器工作,对蓄电池组浮充电。
市电掉电时,逆变器工作,将蓄 电池供给的直流电压变换成稳压、稳 频的交流电压,继续向负载供电。
如果逆变器发生故障,UPS则通过静 态开关切换到旁路,直接由市电供电。当 故障消失后,UPS又 重新切换到由逆变器向负载供电。
特点:总是处于稳压、稳频供电状态,
输出电压动态响应特性好,波形畸变小, 其供电质量明显优于后备式UPS。
图8.3.2 在线式UPS的基本结构
8.2.2 UPS电源中的整流器
8.1.2 开关电源的应用
图8.1.4 直流操作电源电路原理图
主电路采用半桥变换电路,额定输出直流电压为220V,输出电流为10A。
8.2 不间断电源
不间断电源:
——Uninterrupitable Power System, 简称UPS
UPS电源装置在保证不间断供电的同时,还能提供 稳压、稳频和波形失真度极小的高质量正弦波电源。
概述:
1)对于小功率UPS,整流器一般采用二极管整流电路, 蓄电池充电由专门的充电器来完成。
2)对于中大功率UPS,整流器一般采用相控式整流电路, 它具有双重功能,在向逆变器提供直流电源的同时,还要向 蓄电池进行充电。
3)减少UPS注入电网的谐波电流的方法: 4)目前,比较先进的UPS采用PWM整流电路,可以做到 注入电网的电流基本接近正弦波,使其功率因数接近1,大 大降低了UPS对电网的谐波污染。
第8章 电力电子装置
8.1 开关电源 8.2 不间断电源(UPS) 8.3 变频调速装置 8.4 电力电子系统可靠性概述
8.1 开关电源
8.1.1 开关电源的工作原理
稳压电源:通常分为线性稳压电源和开关稳压电源。 1、线性稳压电源:
指起电压调整功能的器件始终工作在线性放大区的 直流稳压电源。
2、开关稳压电源:
(2)直接变频装置
该PWM信号经驱动电路后去驱动主电路开关器件,便可使实际的 交流输入电流跟踪指令值,从而达到控制输出电压的目的。
8.2.3 UPS电源中的逆变器
主电路采用全桥逆变电路,为滤去开关频率噪声,输出采用LC 滤波电路,且采用较小的LC滤波器。输出隔离变压器实现逆变器与 负载隔离,避免它们之间电的直接联系,从而减少干扰。
图8.3.1 后备式UPS的基本结构
特点:结构简单、成本低、运行效率高、价格便宜,但其输出电 压稳压精度差,市电掉电时,输出有转换时间。适于小功率。
2、线式UPS
正常工作时,市电经整流器变成直流后,再经逆变器变换成稳压、 稳频的正弦波交流电压供给负载。
当市电掉电时,由蓄电池组向逆变器供电,以保证负载不间断供电。
图8.3.5 UPS逆变器及其控制原理框图
8.2.4 UPS的静态开关
1、工作原理:
为了进一步提高UPS电源的可靠性,在线式UPS均装 有静态开关,将市电作为UPS的后备电源,在UPS发生故 障或维护检修时,无间断地将负载切换到市电上,由市电 直接供电。
2、电路结构:
静态开关的主电路一般由 两只晶闸管开关反并联组成, 一只晶闸管用于通过正半周 电流,另一只晶闸管则用于 通过负半周电流。