快速傅里叶变换(FFT)的DSP实现
快速傅里叶变换(FFT)的DSP实现

目录一、前言二、设计题目三、设计要求3.1 设计目的3.2 设计要求四、设计内容五、设计原理5.2 离散傅里叶变换DFT5.3 快速傅里叶变换FFT六、总体方案设计6.1 设计有关程序流程图6.2 在CCS环境下加载、调试源程序七、主要参数八、实验结果分析九、设计总结一、前言随着数字电子技术的发展,数字信号处理的理论和技术广泛的应用于通讯、语音处理、计算机和多媒体等领域。
快速傅里叶变换(FFT)使离散傅里叶变换的时间缩短了几个数量级。
在数字信号处理领域被广泛的应用。
FFT已经成为现代化信号处理的重要手段之一。
本次课程设计主要运用CCS这一工具。
CCS(Code Composer Studio)是一种针对TM320系列DSP的集成开发环境,在Windows操作系统下,采用图形接口界面,提供环境配置、源文件编辑、程序调试、跟踪和分析等工具,可以帮助用户在一个软件环境下完成编辑、编译、链接、调试和数据分析等工作。
CCS有两种工作模式,即软件仿真器和硬件在线编程。
软件仿真器工作模式可以脱离DSP芯片,在PC上模拟DSP的指令集和工作机制,主要用于前期算法实现和调试。
硬件在线编程可以实时运行在DSP芯片上,与硬件开发板相结合进行在线编程和调试应用程序。
二、设计题目快速傅里叶变换(FFT)的DSP实现三、设计要求3.1设计目的⑴加深对DFT算法原理和基本性质的理解;⑵熟悉FFT的算法原理和FFT子程序的算法流程和应用;⑶学习用FFT对连续信号和时域信号进行频谱分析的方法;⑷学习DSP中FFT的设计和编程思想;⑸学习使用CCS 的波形观察器观察波形和频谱情况;3.2 基本要求⑴研究FFT 原理以及利用DSP 实现的方法;⑵编写FFT 程序;⑶调试程序,观察结果。
四、 设计内容⑴用DSP 汇编语言及C 语言进行编程;⑵实现FFT 运算、对输入信号进行频谱分析。
五、 设计原理快速傅里叶变换FFT快速傅里叶变换(FFT )是一种高效实现离散傅里叶变换(DFT )的快速算法,是数字信号处理中最为重要的工具之一,它在声学,语音,电信和信号处理等领域有着广泛的应用。
(完整word版)基于DSP的快速傅立叶变换(FFT)的实现(汇编语言)

快速傅立叶变换(FFT )的实现一、实验目的1.了解FFT 的原理及算法;2.了解DSP 中FFT 的设计及编程方法;3.熟悉FFT 的调试方法;二、实验原理FFT 是一种高效实现离散付立叶变换的算法,把信号从时域变换到频域,在频域分析处理信息。
对于长度为N 的有限长序列x (n ),它的离散傅里叶变换为:(2/)j N nk N W e π-=,称为旋转因子,或蝶形因子。
在x (n )为复数序列的情况下,计算X (k ):对某个k 值,需要N 次复数乘法、(N -1)次复数加法;对所有N 个k 值,需要2N 次复数乘法和N (N -1)次复数加法。
对于N 相当大时(如1024)来说,直接计算它的DFT 所作的计算量是很大的,FFT 的基本思想在于: 利用2()j nk N N W e π-=的周期性即:k N k N N W W +=对称性:/2k k N N N W W +=-将原有的N 点序列分成两个较短的序列,这些序列的DFT 可以很简单的组合起来得到原序列的DFT 。
按时间抽取的FFT ——DIT FFT 信号流图如图5.1所示:图5.1 时间抽取的FFT —DIT FFT 信号流图FFT 算法主要分为以下四步。
第一步 输入数据的组合和位倒序∑=-=10)()(N n nk N W n x k X把输入序列作位倒序是为了在整个运算最后的输出中得到的序列是自然顺序。
第二步 实现N 点复数FFT第一级蝶形运算;第二级蝶形运算;第三级至log2N 级蝶形运算;FFT 运算中的旋转因子N W 是一个复数,可表示:为了实现旋转因子N W 的运算,在存储空间分别建立正弦表和余弦表,每个表对应从0度到180度,采用循环寻址来对正弦表和余弦表进行寻址。
第三步 功率谱的计算X (k )是由实部()R X k 和虚部()I X k 组成的复数:()()()R I X k X k jX k =+;计算功率谱时只需将FFT 变换好的数据,按照实部()R X k 和虚部()I X k 求它们的平方和,然后对平方和进行开平方运算。
快速傅立叶变换_FFT_在数字信号处理器_DSP_上的实现

器(DSP)TMS320C5402上实现中出现的计算溢出等问题进行了分析并提出了解决方法,同时对快速
傅立叶变换(FFT)的特点进行了研究和总结,据此在DSPC5402上实现了快速傅立叶变换(FFT)。
关键词:数字信号处理;快速傅立叶变换;反序
中图分类号:TN911.72
文献标识码:A
The Implementation of Fast Fourier Transform (FFT) in DSP
(1)
式中: X1(k) 和 X 2 (k ) 分别为 x1 (r) 和 x2 (r) 的 N / 2 点DFT,即:
X1 (k) = DFT[x1 (r)]
(2)
X 2 (k) = DFT[x2 (r)]
(3)
因此对于一个 N 点的DIT-FFT运算来说,可以表
示成如下的流程图(图1): 写成向量形式即为:
· 36 ·
舰船防化
2007 年第 1 期
图 1 N 点 DIT-FFT 运算流程图(N=8)
入序列进行适当的组合以形成N点复数序列;复数序 列的FFT;将FFT的N点复数输出序列进行适当的运算 组合,获得原实数输入的2N点FFT复数输出序列。通 过这种变换处理,FFT的运算量减少了一半,效率可 比一般的FFT提高一倍。
RM[0]=IM[0]=RM[N/2] =IM[N/2 ]=0
RP[N/2]=R[N/2];IP[N/2]=I[N/2 ]
对应于 2N 点实输入序列的 2N 点 FFT 复输出序列
的形成:
利用序列 RP[k],RM[k],IP[k]和 IM[k],按下
面等式计算实输入序列 a(n)FFT 的输出:
AR[k]:AR[2N-k]=RP[k]+cos(kπ/N)*IP[k]-sin(k
快速傅里叶变换(FFT)的DSP实现

快速傅里叶变换(FFT)的DSP实现(天津大学电子信息工程学院)摘要:本文介绍了快速傅里叶变换(FFT)的快速高效的原理及实现方法,对快速傅立叶变换(FFT)的特点进行了研究和总结.对于快速傅立叶变换(FFT)在TMS320C54X系列数字信号处理器(DSP)实现中出现的计算溢出等问题进行了分析并提出了解决方法,同时据此使用DSP实现了快速傅立叶变换(FFT).关键词:数字信号处理;快速傅立叶变换;反序;计算溢出1引言:傅里叶变换是一种将信号从时域变换到频域的变换方式,在语音处理、图像处理、信号处理领域中都发挥了极大的作用,是一种重要的分析工具。
离散傅里叶变换(DFT)是连续傅里叶变换在离散系统中的表现形式,具有非常广泛的应用.但是由于DFT的计算量很大,因此在很长一段时间里其应用受到限制。
快速傅里叶变换(FFT)是实现普通离散傅里叶变换的一种高效方法,快速傅里叶变换(FFT)的出现使得傅里叶变换在实际中得到了广泛的应用.快速傅里叶变换并不是一种新的变换,它是离散傅里叶变换的一种快速算法。
它是DSP领域中的一项重大突破.由于考虑了计算机和数字硬件实现的约束条件,研究了有利于机器操作的运算结构,使DSP的计算时间缩短了一到两个数量级,还有效的减少了计算所需的存储容量,FFT技术的应用极大的推动了DSP的理论的技术的发展。
本文中使用的是由TI公司生产的TMS320C54系列的DSP。
C54x系列DSP具有很高的操作灵活性和速度。
它具有一个先进的修正哈佛结构、专门硬件逻辑的CPU、片内存储器、片内外设和专用的指令集、将C54xCPU 和片内存储器与外设配置组合在一起的螺旋结构。
这使得该系列可以满足电子市场众多领域的应用要求.2DSP在数字信号处理中的优势:数字信号处理是一门广泛应用于许多领域的新兴学科.20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应用而生并得到迅速广泛的应用。
快速傅里叶变换的DSP实现

快速傅里叶变换的DSP实现FFT的基本原理是将N点的时间域信号转换为频域信号,其中N为2的幂。
FFT通过将DFT变换分解为递归处理的子问题,大大提高了计算效率。
下面将介绍FFT的DSP实现步骤。
第一步是将输入信号分解为偶数位和奇数位部分。
即将输入信号的下标为偶数和奇数的采样点分为两个序列。
第二步是对这两个序列分别进行FFT变换。
对于每个序列,不断递归地将其分解为更小的序列进行FFT变换。
第三步是将两个FFT变换的结果结合起来。
通过将奇数位序列的结果乘以旋转因子(Wn)与偶数位序列的结果相加,得到FFT的结果。
第四步是重复第二和第三步,直到最后得到完整的FFT结果。
在DSP实现FFT时,需要注意以下一些优化技巧。
首先是采用位逆序(bit-reversal)算法。
位逆序算法对输入序列进行重新排列,使得后续计算可以利用FFT的特殊结构进行高效处理。
其次是使用查表法计算旋转因子。
旋转因子是FFT中的关键部分,计算量很大。
通过将旋转因子预先计算并存储在查找表中,可以大大提高计算效率。
另外,可以采用并行计算的方法,同时处理多个子序列,以进一步提高计算速度。
此外,在实际应用中,还需要注意处理FFT的边界条件和溢出问题,以及对频谱结果进行解释和处理。
综上所述,FFT在DSP中的实现需要考虑算法的效率和优化技巧。
通过采用递归分解、位逆序、查表法和并行计算等方法,可以实现高效的FFT计算。
在实际应用中,还需要注意处理边界条件和溢出问题,以及对频谱结果的处理和解释。
希望本文的介绍能帮助读者更好地理解和应用FFT在DSP中的实现。
DSP实现FFT的代码

DSP实现FFT的代码FFT(快速傅里叶变换)是一种用于高效计算离散傅里叶变换(DFT)的算法。
在数字信号处理(DSP)中,FFT常被用来进行频域分析、滤波和信号压缩等操作。
下面是一个使用C语言实现FFT的代码示例:```c#include <stdio.h>#include <math.h>//基于蝴蝶算法的FFT实现if (N <= 1) return;for (int i = 0; i < N / 2; i++)even[i] = x[2*i];odd[i] = x[2*i+1];}fft(even, N / 2);fft(odd, N / 2);for (int k = 0; k < N / 2; k++)x[k] = even[k] + t;x[k + N/2] = even[k] - t;}free(even);free(odd);//对输入信号进行FFT变换fft(x, N);//打印复数数组for (int i = 0; i < N; i++)printf("(%f,%f) ", creal(arr[i]), cimag(arr[i]));}printf("\n");int maiint N = 8; // 信号长度printf("原始信号为:\n");fft_transform(x, N);printf("FFT变换后的结果为:\n");return 0;```在这个代码示例中,我们首先定义了一个基于蝴蝶算法的FFT实现函数,然后使用该函数对输入信号进行傅里叶变换。
最后,我们通过打印的方式输出了原始信号和经过FFT变换后的结果。
需要注意的是,FFT是一个复杂的算法,需要理解较多的数学知识和算法原理。
在实际应用中,可以使用现成的DSP库或者软件工具来进行FFT计算,以提高效率和准确性。
基于DSP的数据采集及FFT实现

基于DSP的数据采集及FFT实现基于数字信号处理器(DSP)的数据采集和快速傅里叶变换(FFT)实现在信号处理和频谱分析等领域具有广泛的应用。
通过使用DSP进行数据采集和FFT实现,可以实现高速、高精度和实时的信号处理。
首先,数据采集是将模拟信号转换为数字信号的过程。
数据采集通常涉及到模拟到数字转换器(ADC),它将模拟信号进行采样并进行量化,生成离散的数字信号。
DSP通常具有内置的ADC,可以直接从模拟信号源获取数据进行采集。
采集到的数据可以存储在DSP的内存中进行后续处理。
数据采集的关键是采样频率和采样精度。
采样频率是指在单位时间内采集的样本数,它决定了采集到的频谱范围。
采样频率需要满足奈奎斯特采样定理,即至少为信号最高频率的2倍。
采样精度是指每个采样点的位数,它决定了采集到的数据的精确程度。
常见的采样精度有8位、16位、24位等。
在数据采集之后,可以使用FFT算法对采集到的数据进行频谱分析。
FFT是一种用于将时间域信号转换为频域信号的算法,它能够将连续时间的信号转换为离散频率的信号。
FFT算法的核心是将复杂度为O(N^2)的离散傅里叶变换(DFT)算法通过分治法转化为复杂度为O(NlogN)的算法,使得实时处理大规模数据成为可能。
在使用DSP进行FFT实现时,可以使用DSP芯片内置的FFT模块,也可以通过软件算法实现FFT。
内置的FFT模块通常具有高速运算和低功耗的优势,可以在较短的时间内完成大规模数据的FFT计算。
软件算法实现FFT较为灵活,可以根据实际需求进行调整和优化。
通常,FFT实现涉及到数据的预处理、FFT计算和结果后处理。
数据的预处理通常包括去除直流分量、加窗等操作,以减小频谱泄漏和谱漂的影响。
FFT计算是将采集到的数据通过FFT算法转换为频域信号的过程。
结果后处理可以包括频谱平滑、幅度谱归一化、相位分析等。
通过合理的数据预处理和结果后处理,可以获得准确的频谱信息。
除了基本的数据采集和FFT实现,基于DSP的数据采集和FFT还可以进行其他扩展和优化。
FFT的DSP实现

FFT的DSP实现FFT(快速傅里叶变换)是一种计算离散傅里叶变换(DFT)的高效算法。
它通过利用DFT的对称性质和递归分解将计算复杂度从O(n^2)减少到O(nlogn),其中n为信号的样本数。
DSP(数字信号处理)指的是用数字计算机或数字信号处理器对连续时间的信号进行采样、变换、滤波以及其他处理的技术和方法。
1.采样与量化:首先,将输入的模拟信号进行采样和量化。
采样将连续的模拟信号转换为离散的数字信号,量化将连续的信号幅值大小转换为离散的数值。
2. 窗函数:为了减少频谱泄漏的效应,通常在DFT之前应用窗函数对信号进行加权。
常用的窗函数有矩形窗、Hamming窗、Hanning窗等。
选择合适的窗函数可以达到有效减小频谱泄漏的目的。
3.数据流和缓冲:将经过窗函数加权的信号按照一定的时间顺序送入缓冲区。
4. 快速傅里叶变换(FFT):将缓冲区中的数据应用FFT算法进行处理。
FFT算法将信号分解为多个较小的子问题,并通过递归将计算复杂度从O(n^2)减少到O(nlogn)。
FFT算法可以分为迭代式FFT和递归式FFT 两种形式。
5.频谱计算:通过FFT算法计算得到的频谱表示信号在频率域的分布情况。
频谱是信号在各个频率上的振幅和相位信息。
可以通过对频谱进行幅度谱或相位谱的操作来进行进一步的分析和处理。
6.频谱处理:根据具体的需求,可以对频谱进行滤波、修正、分析等操作。
滤波可用于信号降噪、频域特定频率的提取等;修正可用于频谱校正、泄漏校正等;分析可用于频谱峰值检测、频谱关键特征提取等。
7.逆变换:如果需要将频率域上的信号恢复到时域,可以通过应用逆变换(IDFT)来实现。
逆变换将频谱中的振幅和相位信息转换为原始信号的样本值。
8.输出与显示:最后,将处理后的信号输出到需要的设备或显示器上。
可以将频谱可视化展示出来,也可以将逆变换后的信号还原为音频、图像等形式的数据。
以上是FFT的DSP实现的基本步骤。
FFT在数字信号处理中被广泛应用于音频处理、图像处理、通信系统等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录一、前言二、设计题目三、设计要求3.1 设计目的3.2 设计要求四、设计内容五、设计原理5.2 离散傅里叶变换DFT5.3 快速傅里叶变换FFT六、总体方案设计6.1 设计有关程序流程图6.2 在CCS环境下加载、调试源程序七、主要参数八、实验结果分析九、设计总结一、前言随着数字电子技术的发展,数字信号处理的理论和技术广泛的应用于通讯、语音处理、计算机和多媒体等领域。
快速傅里叶变换(FFT)使离散傅里叶变换的时间缩短了几个数量级。
在数字信号处理领域被广泛的应用。
FFT已经成为现代化信号处理的重要手段之一。
本次课程设计主要运用CCS这一工具。
CCS(Code Composer Studio)是一种针对TM320系列DSP的集成开发环境,在Windows操作系统下,采用图形接口界面,提供环境配置、源文件编辑、程序调试、跟踪和分析等工具,可以帮助用户在一个软件环境下完成编辑、编译、链接、调试和数据分析等工作。
CCS有两种工作模式,即软件仿真器和硬件在线编程。
软件仿真器工作模式可以脱离DSP芯片,在PC上模拟DSP的指令集和工作机制,主要用于前期算法实现和调试。
硬件在线编程可以实时运行在DSP芯片上,与硬件开发板相结合进行在线编程和调试应用程序。
二、设计题目快速傅里叶变换(FFT)的DSP实现三、设计要求3.1设计目的⑴加深对DFT算法原理和基本性质的理解;⑵熟悉FFT的算法原理和FFT子程序的算法流程和应用;⑶学习用FFT对连续信号和时域信号进行频谱分析的方法;⑷学习DSP中FFT的设计和编程思想;⑸学习使用CCS 的波形观察器观察波形和频谱情况;3.2 基本要求⑴研究FFT 原理以及利用DSP 实现的方法;⑵编写FFT 程序;⑶调试程序,观察结果。
四、 设计内容⑴用DSP 汇编语言及C 语言进行编程;⑵实现FFT 运算、对输入信号进行频谱分析。
五、 设计原理快速傅里叶变换FFT快速傅里叶变换(FFT )是一种高效实现离散傅里叶变换(DFT )的快速算法,是数字信号处理中最为重要的工具之一,它在声学,语音,电信和信号处理等领域有着广泛的应用。
5.1. 离散傅里叶变换DFT对于长度为N 的有限长序列x(n),它的离散傅里叶变换(DFT )为(1)式中, ,称为旋转因子或蝶形因子。
从DFT 的定义可以看出,在x(n)为复数序列的情况下,对某个k 值,直接按(1)式计算X(k) 只需要N 次复数乘法和(N-1)次复数加法。
因此,对所有N 个k 值,共需要N2次复数乘法和N(N-1)次复数加法。
对于一些相当大有N 值(如1024点)来说,直接计算它的DFT 所需要的计算量是很大的,因此DFT 运算的应用受到了很大1,1,0,)()(10-==∑-=N k W n x k X n n nk N Nj N e W /2π-=的限制。
5.2.快速傅里叶变换FFT旋转因子WN 有如下的特性。
对称性:周期性:利用这些特性,既可以使DFT 中有些项合并,减少了乘法积项,又可以将长序列的DFT 分解成几个短序列的DFT 。
FFT 就是利用了旋转因子的对称性和周期性来减少运算量的。
FFT 的算法是将长序列的DFT 分解成短序列的DFT 。
例如:N 为偶数时,先将N 点的DFT 分解为两个N/2点的DFT ,使复数乘法减少一半:再将每个N/2点的DFT 分解成N/4点的DFT ,使复数乘又减少一半,继续进行分解可以大大减少计算量。
最小变换的点数称为基数,对于基数为2的FFT 算法,它的最小变换是2点DFT 。
一般而言,FFT 算法分为按时间抽取的FFT (DIT FFT)和按频率抽取的FFT(DIF FFT )两大类。
DIF FFT 算法是在时域内将每一级输入序列依次按奇/偶分成2个短序列进行计算。
而DIF FFT 算法是在频域内将每一级输入序列依次奇/偶分成2个短序列进行计算。
两者的区别是旋转因子出现的位置不同,得算法是一样的。
在DIF FFT 算法中,旋转因子出现在输入端,而在DIF FFT 算法中它出现在输入端。
假定序列x(n)的点数N 是2的幂,按照DIF FFT 算法可将其分为偶序列和奇序列。
2/N k N k N W W +-=N k N k N W W +=k N W偶序列:奇序列:则x(n)的DFT 表示为由于,则(3)式可表示为式中, 和分别为和的N/2的DFT 。
由于对称性, 则。
因此,N 点可分为两部分:前半部分:(4) 后半部分: (5) 从式(4)和式(5)可以看出,只要求出0~N/2-1区间和的值,就可求出0~N-1区间的N 点值。
12/,1,0),2(2),-(N (4),(2),(0),1-==N r r x x x x x x 即12/,1,0),12(1),-(N (5),(3),(1),2-=+=N r r x x x x x x 即)2()()()12()2()()()(12/02212/02112/0)12(12/021010∑∑∑∑∑∑-=-=-=+-=-=-=+=++=+=N r rk N k N N r rk N N r k r N N r rkN N n nk NN n nk N W r x W W r x W r x W r x n n W n x W n x k X 为奇数为偶数[][]2/)2//(22)/2(2N N j N j N W e e W ===--ππ)3(12/,1,0)()()()()(2112/02/212/02/1-=+=+=∑∑-=-=N k k X W k X W r x W W r x k X k N N r rk N kN N r rk N )(1k X )(2k X )(1n x )(2n x ,2/K N N k NW W -=+)()()2/(21k X W k X N k X k N -=+)(k X 12/,1,0)()()(21-=+=N k k X W k X k X k N 12/,1,0)()()2/(21-=-=+N k k X W k X N k X k N )(1k X )(2k X )(k X以同样的方式进行抽取,可以求得N/4点的DFT ,重复抽取过程,就可以使N 点的DFT 用上组2点的 DFT 来计算,这样就可以大减少运算量。
基 2 DIF FFT 的蝶形运算如图(a)所示。
设蝶形输入为和,输出为和,则有(6)(7) 在基数为2的FFT 中,设N=2M ,共有M 级运算,每级有N/2个2点FFT 蝶形运算,因此,N 点FFT 总共有个蝶形运算。
-1图(a) 基2 DIF FFT 的蝶形运算例如:基数为2的FFT ,当N=8时,共需要3级,12个基2 DIT FFT 的蝶形运算。
其信号流程如图(b)所示。
)(1p x m -)(1q x m -)(p x m )(q x m k N m m m W q x p x p x )()()(11--+=k Nm m m W q x p x q x )()()(11---=N N 2log )2/()(1q x m -)(p x m )(1q x m -)(q x m图(b) 8点基2 DIF FFT 蝶形运算从图(b)可以看出,输入是经过比特反转的倒位序列,称为位码倒置,其排列顺序为。
输出是按自然顺序排列,其顺序为。
六、 总体方案设计6.1 设计程序流程图)7(),3(),5(),1(),6(),2(),4(),0(x x x x x x x x )7(),6(,),1(),0(x x x x6.2在CCS环境下加载、调试源程序(1)起动CCS,在CCS中建立一个工程文件project\new\FFT,往工程文件里添加程序file\new\sourcefile.建立C源文件和一个命令文件,并将这两个文件添加到工程,再编译并装载程序:阅读Dsp原理及应用中fft 用dsp实现的有关程序。
双击,启动CCS的仿真平台的配着选项。
选择C5510 Simulator。
Add加到my system ,按下save(2)启动c5510后打开文件FFT.pjt.将编写好的源程序,和命令文件加载到文件FFT.pjt\Source.(3)按下project\build调试程序,看其中是否有错误。
(4)无错后,Debug\run运行FFT.out程序。
.(5)通过graph property dialog窗口,改变N点的值,得到不同的结果。
七.主要参数进行N点FFT运算,分别实现N=256,N=512得到不同的功率谱图六.源程序:Cmd源文件代码:-f 0-w-stack 500-sysstack 500-l rts55.libMEMORY{DARAM: o=0x100, l=0x7f00VECT:o=0x8000, l=0x100DARAM2:o=0x8100,l=0x7f00SARAM: o=0x10000,l=0x30000SDRAM:o=0x40000,l=0x3e0000 }SECTIONS{.text: {}>DARAM.vectors: {}>VECT.trcinit:{}>DARAM.gblinit:{}>DARAM.frt:{}>DARAM.cinit:{}>DARAM.pinit:{}>DARAM.sysinit:{}>DARAM2.far:{}>DARAM2.const:{}>DARAM2.switch:{}>DARAM2.sysmem:{}>DARAM2.cio:{}>DARAM2.MEM$obj:{}>DARAM2.sysheap:{}>DARAM2.sysstack:{}>DARAM2.stack:{}>DARAM2.input:{}>DARAM2.fftcode:{}>DARAM2}C文件源码:#include "math.h"#define sample_1 256#define signal_1_f 60#define signal_2_f 200#define signal_sample_f 512#define pi 3.1415926int input[sample_1];float fwaver[sample_1],fwavei[sample_1],w[sample_1]; float sin_tab[sample_1];float cos_tab[sample_1];void init_fft_tab();void input_data();void fft(float datar[sample_1],float datai[sample_1]); void main(){int i;init_fft_tab();input_data();f or (i=0;i<sample_1;i++){fwaver[i]=input[i];fwavei[i]=0.0f;w[i]=0.0f;}fft(fwaver,fwavei);while(1);}void init_fft_tab(){float wt1;float wt2;int i;for (i=0;i<sample_1;i++){wt1=2*pi*i*signal_1_f;wt1=wt1/signal_sample_f;wt2=2*pi*i*signal_2_f;wt2=wt2/signal_sample_f;input[i]=(cos(wt1)+cos(wt2))/2*32768;}}void input_data(){int i;for(i=0;i<sample_1;i++){sin_tab[i]=sin(2*pi*i/sample_1);cos_tab[i]=cos(2*pi*i/sample_1);}}void fft(float datar[sample_1],float datai[sample_1]) {int x0,x1,x2,x3,x4,x5,x6,x7,xx;int i,j,k,b,p,L;float TR,TI,temp;for(i=0;i<sample_1;i++){x0=x1=x2=x3=x4=x5=x6=0;x0=i&0x01;x1=(i/2)&0x01;x2=(i/4)&0x01;x3=(i/8)&0x01;x4=(i/16)&0x01;x5=(i/32)&0x01;x6=(i/64)&0x01;x7=(i/128)&0x01;xx=x0*128+x1*64+x2*32+x3*16+x4*8+x5*4+x6*2+x7;datai[xx]=datar[i];}for(i=0;i<sample_1;i++){datar[i]=datai[i];datai[i]=0;}for(L=1;L<=8;L++){b=1;i=L-1;while(i>0){b=b*2;i--;}for(j=0;j<=b-1;j++){p=1;i=8-L;while(i>0){p=p*2;i--;}p=p*j;for(k=j;k<256;k=k+2*b){TR=datar[k];TI=datai[k];temp=datar[k+b];datar[k]=datar[k]+datar[k+b]*cos_tab[p]+datai[k+b]*sin_tab[p];datai[k]=datai[k]-datar[k+b]*sin_tab[p]+datai[k+b]*cos_tab[p];datar[k+b]=TR-datar[k+b]*cos_tab[p]-datai[k+b]*sin_tab[p];datai[k+b]=TI+temp*sin_tab[p]-datai[k+b]*cos_tab[p];}}}for(i=0;i<sample_1/2;i++){w[i]=sqrt(datar[i]*datar[i]+datai[i]*datai[i]);}}八、实验结果及分析作图,得到输入信号的功率图谱。