FFT超全快速傅里叶

合集下载

FFT快速傅里叶变换(蝶形算法)详解概要

FFT快速傅里叶变换(蝶形算法)详解概要
33
5.4 按频率抽取的基2-FFT算法

算法原理
先把输入按n的顺序分成前后两半 再把输出X(k)按k的奇偶分组 设序列长度为N=2L,L为整数 前半子序列x(n) 后半子序列 x(n
nk x ( n ) W N
N 1
rk k rk x1 (r )W N WN x ( r ) W 2 N 2 2
k X 1 (k ) WN X 2 (k )
式中,X1(k)和X2(k)分别是x1(n)和x2(n)的N/2的DFT。
另外,式中k的取值范围是:0,1, …,N/2-1 。
N 2M , 第L级:
r WN W2jL , j 0,1,2,,2 L1 1
2 L 2 M 2 LM N 2 LM
W W
r N j N 2 L M
e
j
2 N 2 L M
j
e
j
2 j 2 M L N
W
j 2 M L N
r WN
的确定
25
序列的逆序排列

序列的逆序排列
由于 x(n) 被反复地按奇、偶分组,所以流图输入端的 排列不再是顺序的,但仍有规律可循: 因为 N=2M , 对于任意 n(0≤n ≤N-1),可以用M个 二进制码表示为:
n( DEC) (nM 1nM 2 n2 n1n0 ) ( BIN )
(2)周期性 (3)可约性 另外,
( n N ) k n( k N ) nk WN WN WN
mnk nk WmN WN
nk nk / m WN WN /m
( k N / 2) k WN WN
N /2 WN 1
8

fft快速傅里叶变换获取频谱

fft快速傅里叶变换获取频谱

fft快速傅里叶变换获取频谱
快速傅里叶变换(FFT)是一种快速计算离散傅里叶变换的算法,可以用于将时域信号转换为频域信号。

以下是使用FFT 获取频谱的步骤:
1. 获取输入信号:首先,获取要分析的时域信号。

这可以是从音频、传感器或其他数据源中采集到的实时数据。

2. 填充信号:为了使FFT算法有效,需要将输入信号长度扩展到2的幂次方。

可以使用零填充或重复填充信号来达到所需的长度。

3. 应用窗函数:可以选择将窗函数应用于输入信号以减少在频谱中产生的泄漏效应。

常见的窗函数包括汉宁窗、海明窗等。

4. 执行FFT:使用FFT算法将时域信号转换为频域信号。

这将产生一组复数值,表示输入信号在不同频率上的分量。

5. 计算幅度谱:从FFT结果中提取幅度谱,即频谱的振幅信息。

可以通过计算每个频率分量的模值来实现。

6. 频率轴转换:根据采样率和FFT长度,将频率轴转换为常规单位,例如赫兹(Hz)或千赫兹(kHz)。

7. 可视化频谱:最后,将频谱数据可视化为图形,例如线性或对数坐标下的谱图。

需要注意的是,获取准确的频谱还需要考虑采样率、频率分辨率、重叠等因素,并进行信号处理和噪声消除等步骤。

fft快速傅立叶变换

fft快速傅立叶变换

fft快速傅立叶变换FFT快速傅立叶变换(Fast Fourier Transform)是一种用于将信号从时域转换到频域的计算方法。

它是傅立叶变换的一种高效算法,能够快速计算出信号的频谱信息,广泛应用于信号处理、图像处理、通信等领域。

傅立叶变换是一种将连续信号分解成一系列正弦和余弦函数的方法,通过计算信号在不同频率上的振幅和相位信息,可以揭示信号的频谱结构。

然而,传统的傅立叶变换算法在计算复杂度上较高,对于信号长度较大的情况下,计算时间也会很长。

而FFT算法则通过利用信号的对称性和周期性,将计算复杂度从O(N^2)降低到O(NlogN),大大提高了计算效率。

FFT算法的核心思想是将原始信号划分为多个较短的子序列,然后对每个子序列进行傅立叶变换,最后再将这些子序列的频谱信息合并起来。

这种分而治之的策略使得计算过程可以并行进行,从而加快了计算速度。

具体而言,FFT算法可以分为两个步骤:分解和合并。

在分解步骤中,原始信号会被划分为两个长度为N/2的子序列,并分别进行傅立叶变换。

而在合并步骤中,将这两个子序列的频谱信息合并成一个长度为N的频谱序列。

通过递归地进行这两个步骤,最终可以得到完整的频谱信息。

除了提高计算效率外,FFT算法还具有其他一些优点。

首先,它可以处理不同长度的信号,只要信号长度是2的幂次。

其次,FFT算法可以通过零填充来增加频谱的分辨率,从而更精确地分析信号。

此外,FFT算法还可以通过将频谱信息进行逆变换,将信号从频域转换回时域。

然而,FFT算法也存在一些限制。

首先,由于FFT算法假设信号是周期性的,因此对于非周期性信号的处理效果可能不理想。

其次,FFT算法在处理非线性系统时可能会产生频谱泄漏的现象,即频谱中出现额外的能量分量。

因此,在实际应用中需要根据具体情况选择合适的窗函数来减小泄漏的影响。

总的来说,FFT快速傅立叶变换是一种高效的信号处理算法,能够快速计算信号的频谱信息。

它在许多领域都有广泛的应用,如音频信号处理、图像压缩、频谱分析等。

fft快速傅里叶变换应用场景

fft快速傅里叶变换应用场景

fft快速傅里叶变换应用场景一、引言傅里叶变换是信号处理中常用的基本工具之一,它可以将时域信号转化为频域信号,从而对信号进行频谱分析。

但是,传统的傅里叶变换算法计算复杂度较高,对于实时性要求较高的应用场景不太适合。

因此,快速傅里叶变换(FFT)应运而生。

本文将介绍FFT快速傅里叶变换在各种应用场景中的具体应用。

二、图像处理1. 图像压缩图像压缩是指通过某种算法将图像数据压缩到更小的存储空间中,以减少存储空间和传输带宽。

FFT快速傅里叶变换可以将图像从时域转化为频域,然后对频域信息进行压缩。

这样做的好处是可以去除一些高频成分和低频成分,从而减少冗余数据。

2. 图像滤波图像滤波是指通过某种算法对图像进行降噪或增强处理。

FFT快速傅里叶变换可以将图像从时域转化为频域,在频域中进行滤波操作。

例如,在高通滤波器中,可以将低频成分滤除,从而增强图像的高频细节。

三、音频处理1. 音频压缩音频压缩是指通过某种算法将音频数据压缩到更小的存储空间中,以减少存储空间和传输带宽。

FFT快速傅里叶变换可以将音频从时域转化为频域,然后对频域信息进行压缩。

这样做的好处是可以去除一些高频成分和低频成分,从而减少冗余数据。

2. 音乐合成音乐合成是指通过某种算法将多个声音信号合并为一个复合声音信号。

FFT快速傅里叶变换可以将多个声音信号从时域转化为频域,在频域中进行加和操作。

这样做的好处是可以避免在时域中信号相加时出现相位问题。

四、通信领域1. 无线电通信在无线电通信中,FFT快速傅里叶变换被广泛应用于OFDM(正交分组多路复用)调制技术中。

OFDM技术利用FFT技术将高速数据流分割成多个低速子载波,在每个子载波上进行调制和解调,从而提高了无线电信号的传输速率和抗干扰能力。

2. 有线通信在有线通信中,FFT快速傅里叶变换被广泛应用于数字信号处理中。

例如,在数字电视中,FFT技术可以将视频和音频数据分离出来,从而实现高清晰度的视频和清晰的声音。

详解FFT(快速傅里叶变换FFT

详解FFT(快速傅里叶变换FFT

knN W N N第四章 快速傅里叶变换有限长序列可以通过离散傅里叶变换(DFT)将其频域也离散化成有限长 序列.但其计算量太大,很难实时地处理问题,因此引出了快速傅里叶变换 (FFT). 1965 年,Cooley 和 Tukey 提出了计算离散傅里叶变换(DFT )的快 速算法,将 DFT 的运算量减少了几个数量级。

从此,对快速傅里叶变换(FFT ) 算法的研究便不断深入,数字信号处理这门新兴学科也随 FFT 的出现和发 展而迅速发展。

根据对序列分解与选取方法的不同而产生了 FFT 的多种算 法,基本算法是基2DIT 和基2DIF 。

FFT 在离散傅里叶反变换、线性卷积 和线性相关等方面也有重要应用。

快速傅里叶变换(FFT )是计算离散傅里叶变换(DFT )的快速算法。

DFT 的定义式为N −1X (k ) = ∑ x (n )W NR N (k )n =0在所有复指数值 W kn 的值全部已算好的情况下,要计算一个 X (k ) 需要 N 次复数乘法和 N -1 次复数加法。

算出全部 N 点 X (k ) 共需 N 2次复数乘法和 N ( N − 1) 次复数加法。

即计算量是与 N 2成正比的。

FFT 的基本思想:将大点数的 DFT 分解为若干个小点数 DFT 的组合, 从而减少运算量。

W N 因子具有以下两个特性,可使 DFT 运算量尽量分解为小点数的 DFT运算:(1) 周期性:( k + N ) nN= W kn= W ( n + N ) k(2) 对称性:W( k + N / 2 )= −W kNN利用这两个性质,可以使 DFT 运算中有些项合并,以减少乘法次数。

例子:求当N=4 时,X(2)的值4 NNN3∑44444X (2) = n =0x (n )W 2 n = x (0)W 0 + x (1)W 2 + x (2)W 4 + x (3)W 6= [ x (0) + x (2)]W 0 + [ x (1) + x (3)]W 2(周期性)4=[ x (0) + x (2)]-[ x (1) + x (3)]W 04(对称性)通过合并,使乘法次数由 4 次减少到 1 次,运算量减少。

详解快速傅里叶变换FFT算法

详解快速傅里叶变换FFT算法

详解快速傅里叶变换FFT算法快速傅里叶变换(FFT)算法是一种高效的计算离散傅里叶变换的方法。

它通过将傅里叶变换问题分解为更小的子问题,从而减少计算量。

FFT算法广泛应用于信号处理、图像处理和其他科学与工程领域。

FFT算法的核心思想是将一个长度为N的复数序列分解为两个长度为N/2的复数序列,并重用其计算结果。

这种分解是通过将序列的奇数项与偶数项分为两组来实现的。

分解后可以继续将长度为N/2的序列分解为长度为N/4的序列,直到序列长度为1时停止。

然后,通过合并这些子问题的解,我们可以得到原始问题的解。

FFT算法的关键步骤可以概括为以下几点:1.首先,将输入序列通过位逆序操作重新排列。

这是为了便于分解和合并子问题的解。

2.然后,将序列分解为两个长度为N/2的子序列。

一组是奇数项,另一组是偶数项。

3.对两个子序列进行递归调用FFT算法,分别计算它们的傅里叶变换。

4.将子问题的解合并为原始问题的解。

这是通过使用每个子问题的解的一部分和一些旋转因子来完成的。

5.重复以上步骤,直到得到最终的傅里叶变换结果。

FFT算法的时间复杂度是O(NlogN),相对于朴素的傅里叶变换(时间复杂度为O(N^2)),有着显著的性能优势。

这个优势主要来自于FFT算法中子问题的重用和分治思想的应用。

FFT算法的应用非常广泛。

在信号处理中,FFT算法可以用来分析信号的频域特征,还可以用于滤波、频谱分析和频率估计等。

在图像处理中,FFT算法被用来进行图像变换,包括傅里叶变换、离散余弦变换等。

此外,FFT算法还被广泛应用于通信、雷达和声音等领域中的数据处理和分析。

总的来说,FFT算法通过分解和重用子问题的解,实现了高效的计算离散傅里叶变换的目的。

它的应用范围广泛,并且在在很多领域中被广泛使用。

fft 快速傅里叶变换 (fast fourier transform)

fft 快速傅里叶变换 (fast fourier transform)

FFT 快速傅里叶变换(Fast Fourier Transform) 是一种用于快速计算傅里叶变换的算法,是在傅里叶变换的基础上发展而来的。

FFT 算法被广泛应用于数字信号处理、图像处理、声音处理、卷积操作、解析几何等领域,它的高效性和实时性使得它成为了当今计算机科学领域不可或缺的一部分。

一、傅里叶变换简介傅里叶变换是将一个时域信号转换为频域信号的过程,其公式如下:$F(\omega)=\int_{-\infty}^{\infty}f(t)e^{-i\omega t}dt$其中,$f(t)$ 表示时域信号,$F(\omega)$ 表示频域信号,$\omega$ 表示角频率。

傅里叶变换可以分为连续傅里叶变换和离散傅里叶变换两种。

连续傅里叶变换仅适用于连续信号,而离散傅里叶变换适用于离散信号。

二、离散傅里叶变换离散傅里叶变换是一种将离散信号变换为频域信号的方法,其公式如下:$X_k=\sum_{n=0}^{N-1}x_n e^{-\frac{2\pi i}{N}kn},k=0,1,...,N-1$其中,$x_n(n=0,1,...,N-1)$ 表示原始离散信号,$X_k(k=0,1,...,N-1)$ 表示变换后的频域信号。

但是,使用该公式直接计算离散傅里叶变换的时间复杂度为$O(N^2)$,计算效率低下。

三、FFT 快速傅里叶变换FFT 快速傅里叶变换是一种基于DFT 离散傅里叶变换的高效算法,它的时间复杂度可以达到$O(NlogN)$,较之直接计算DFT 的时间复杂度要低得多。

FFT 算法的基本思想是将 DFT 分治成多个较小的 DFT,并利用其重复性降低运算次数。

1.蝴蝶运算蝴蝶运算是 FFT 算法的基本运算,通过它可以将 DFT 的计算复杂度降低为 $O(N)$。

蝴蝶运算的实质是将两个相邻点之间的信号进行乘法和加法运算,其公式如下:$X_k=X_{k1}+W_{N}^kX_{k2},X_{k+N/2}=X_{k1}-W_{N}^kX_{k2}$其中,$X_{k1}$ 表示 $X_k$ 中偶数项,$X_{k2}$ 表示 $X_k$ 中奇数项,$W_N$ 是DFT 的核函数。

fft(快速傅里叶变换)

fft(快速傅里叶变换)

1. 一维快速傅里叶变换的原理:关于变量X 的次数界为n 多项式P(X),其系数表示法表示为P(X) = A0 * X^0 + A1 * X^1 + ... + An-1 * X^(n-1)其点值表示法表示为n 个点值对组成的集合{ (X0,Y0), (X1,Y1), ..., (Xn-1,Yn-1) },集合中所有Xi 各不相同且Yi = P(Xi)。

显然,点值表示不唯一。

定理:对于任意n 个点值对组成的集合{ (X0,Y0), (X1,Y1), ..., (Xn-1,Yn-1) },存在唯一的次数界为n 的多项式P(X),满足Yi = P(Xi),i = 0, 1, ... n-1 。

精心挑选n 个点,可以使两种表示相互转化的算法的时间复杂度压缩为nlog(n)。

如果选择“单位复根”作为求值点,则可以通过对系数向量做离散傅里叶变换(DFT),得到相应的点值表示,也可以通过对点值执行“逆DFT”运算,而获得相应的系数向量。

n 次单位复根是满足W^n = 1 的复数W ,n 次单位复根刚好有n 个,它们是e^(2*PI*i*k / n),k = 0, 1, ..., n-1 。

Wn = e^(2*PI*i/n) 称为主n次单位根,其它n次单位根都是它的幂。

引理:对任何整数n>=0, k>=0, d>0, Wdn^dk = Wn^k 。

推论:对任意偶数n>0, 有Wn^(n/2) = W2 = -1 。

引理:如果n>0 为偶数,n个n次单位复根的平方等于n/2 个n/2 次单位复根。

假定n 为2的幂,则次数界为n 的多项式P(X) = A0 * X^0 + A1 * X^1 + ... + An-1 * X^(n-1) ,其系数向量为A = (A0, A1, A2, ... An-1),P(X)在n 个单位复根处的值为Yk = P(Wn^k),向量Y = (Y0, Y1, ... , Yn-1) 是系数向量A 的离散傅里叶变换(DFT),写作Y = DFTn(A) 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

快速傅里叶变换
FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。

有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。

这就是很多信号分析采用FFT变换的原因。

另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。

虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用多少点来做FFT。

现在圈圈就根据实际经验来说说FFT结果的具体物理意义。

一个模拟信号,经过ADC采样之后,就变成了数字信号。

采样定理告诉我们,采样频率要大于信号频率的两倍,这些我就不在此罗嗦了。

采样得到的数字信号,就可以做FFT变换了。

N个采样点,经过FFT之后,就可以得到N个点的FFT结果。

为了方便进行FFT运算,通常N取2的整数次方。

假设采样频率为Fs,信号频率F,采样点数为N。

那么FFT之后结果就是一个为N点的复数。

每一个点就对应着一个频率点。

这个点的模值,就是该频率值下的幅度特性。

具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。

而第一个点就是直流分量,它的模值就是直流分量的N倍。

而每个点的相位呢,就是在该频率下的信号的相位。

第一个表示直流分量(即0Hz),而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示
采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。

例如某点n所表示的频率为:Fn=(n-1)*Fs/N。

由上面的公式可以看出,Fn所能分辨到频率为为Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。

1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时间的信号并做FFT,则结果可以分析到0.5Hz。

如果要提高
频率分辨力,则必须增加采样点数,也即采样时间。

频率分辨率和采样时间是倒数关系。

假设FFT之后某点n用复数a+bi表示,那么这个复数的模就是An=根号a*a+b*b,相位就是Pn=atan2(b,a)。

根据以上的结果,就可以计算出n 点(n≠1,且n<=N/2)对应的信号的表达式为:
An/(N/2)*cos(2*pi*Fn*t+Pn),即2*An/N*cos(2*pi*Fn*t+Pn)。

对于n=1点的信号,是直流分量,幅度即为A1/N。

由于FFT结果的对称性,通常我们只使用前半部分的结果,即小于采样频率一半的结果。

好了,说了半天,看着公式也晕,下面圈圈以一个实际的信号来做说明。

假设我们有一个信号,它含有2V的直流分量,频率为50Hz、相位
为-30度、幅度为3V的交流信号,以及一个频率为75Hz、相位为90度、幅度为1.5V的交流信号。

用数学表达式就是如下:
S=2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180)
式中cos参数为弧度,所以-30度和90度要分别换算成弧度。

我们以256Hz的采样率对这个信号进行采样,总共采样256点。

按照我们上面的分析,Fn=(n-1)*Fs/N,我们可以知道,每两个点之间的间距就是1Hz,第n个点的频率就是n-1。

我们的信号有3个频率:0Hz、50Hz、75Hz,应该分别在第1个点、第51个点、第76个点上出现峰值,其它各点应该接近0。

实际情况如何呢?我们来看看FFT的结果的模值如图所示
从图中我们可以看到,在第1点、第51点、和第76点附近有
比较大的值。

我们分别将这三个点附近的数据拿上来细看:
1点: 512+0i
2点: -2.6195E-14 - 1.4162E-13i
3点: -2.8586E-14 - 1.1898E-13i
50点:-6.2076E-13 - 2.1713E-12i
51点:332.55 - 192i
52点:-1.6707E-12 - 1.5241E-12i
75点:-2.2199E-13 -1.0076E-12i
76点:3.4315E-12 + 192i
77点:-3.0263E-14 +7.5609E-13i
很明显,1点、51点、76点的值都比较大,它附近的点值都很小,可以认为是0,即在那些频率点上的信号幅度为0。

接着,我们来计算各点的幅度值。

分别计算这三个点的模值,结果如下:
1点: 512
51点:384
76点:192
按照公式,可以计算出直流分量为:512/N=512/256=2;50Hz信号的幅度为:384/(N/2)=384/(256/2)=3;75Hz信号的幅度为
192/(N/2)=192/(256/2)=1.5。

可见,从频谱分析出来的幅度是正确的。

然后再来计算相位信息。

直流信号没有相位可言,不用管它。

先计算50Hz信号的相位,atan2(-192, 332.55)=-0.5236,结果是弧度,换算为角度就是180*(-0.5236)/pi=-30.0001。

再计算75Hz信号的相位,atan2(192, 3.4315E-12)=1.5708弧度,换算成角度就是180*1.5708/pi=90.0002。

可见,相位也是对的。

根据FFT结果以及上面的分析计算,我们就可以写出信号的表达式了,它就是我们开始提供的信号。

总结:假设采样频率为Fs,采样点数为N,做FFT之后,某一点n(n从1开始)表示的频率为:Fn=(n-1)*Fs/N;该点的模值除以N/2就是对应该频率下的信号的幅度(对于直流信号是除以N);该点的相位即是对应该频率下的信号的相位。

相位的计算可用函数atan2(b,a)计算。

atan2(b,a)是求坐标为(a,b)点的角度值,范围从-pi到pi。

要精确到xHz,则需要采样长度为1/x秒的信号,并做FFT。

要提高频率分辨率,就需要增加采样点数,这在一些实际的应用中是不现实的,需要在较短的时间内完成分析。

解决这个问题的方法有频率细分法,比较简单的方法是采样比较短时间的信号,然后在后面补充一定数量的0,使其长度达到需
要的点数,再做FFT,这在一定程度上能够提高频率分辨力。

具体的频率细分法可参考相关文献。

[附录:本测试数据使用的matlab程序]
close all; %先关闭所有图片
Adc=2; %直流分量幅度
A1=3; %频率F1信号的幅度
A2=1.5; %频率F2信号的幅度
F1=50; %信号1频率(Hz)
F2=75; %信号2频率(Hz)
Fs=256; %采样频率(Hz)
P1=-30; %信号1相位(度)
P2=90; %信号相位(度)
N=256; %采样点数
t=[0:1/Fs:N/Fs]; %采样时刻
%信号
S=Adc+A1*cos(2*pi*F1*t+pi*P1/180)+A2*cos(2*pi*F2*t+pi*P2/180);
%显示原始信号
plot(S);
title('原始信号');
figure;
Y = fft(S,N); %做FFT变换
Ayy = (abs(Y)); %取模
plot(Ayy(1:N)); %显示原始的FFT模值结果
title('FFT 模值');
figure;
Ayy=Ayy/(N/2); %换算成实际的幅度
Ayy(1)=Ayy(1)/2;
F=([1:N]-1)*Fs/N; %换算成实际的频率值
plot(F(1:N/2),Ayy(1:N/2)); %显示换算后的FFT模值结果
title('幅度-频率曲线图');
figure;
Pyy=[1:N/2];
for i=1:N/2
Pyy(i)=phase(Y(i)); %计算相位
Pyy(i)=Pyy(i)*180/pi; %换算为角度end;
plot(F(1:N/2),Pyy(1:N/2)); %显示相位图title('相位-频率曲线图');
看完这个你就明白谐波分析了。

Image
Image
Image
Image。

相关文档
最新文档