晶体管功放调试方法

合集下载

一款为书架箱设计的“胆味”晶体管功放

一款为书架箱设计的“胆味”晶体管功放

一款为书架箱设计的“胆味”晶体管功放2010-06-30 14:25:38 来源:《无线电》杂志作者:魏涛【大中小】浏览:587次评论:0条渴望有一套在独处看书时的音响系统,要求其音色既让人陶醉,又不干扰阅读。

但是能达到这个标准的功放不是价格昂贵,就是听音成本太高(甲类机耗电量大、电费高),选择普通功放又达不到发烧要求,为此,笔者依据自己多年的发烧经验调制出一道价廉物美的“私房菜”。

一、电路特点这是一款为书架箱设计的晶体管功放,电路如图1所示,电路架构为2 级差分和3级达林顿组成的大环路电压负反馈放大线路。

这是再传统不过的电路了,与目前比较流行的全对称电路相比较,这个电路的设计是专为书架箱而设计的。

我们知道,偶次谐波失真在全对称电路中是被抵消掉的,但不悦耳的奇次谐波就只能靠降低放大器的总谐波失真来抑制。

全对称的放大电路声音比较清淡,味精味少,加之业余制作困难,管子配对要求高,做得不好的话,发出恶声是常有的事情。

权衡利弊,全对称架构的电路不是首选。

最佳的电路是两级差分电路。

在一般情况下,这个电路出来的声音是不会难听的,因为它的偶次谐波失真没有被彻底消除掉,听感上自然会好点的。

著名的瑞士高文(GOLDMUND)功放、国内的新德克功放的实际电路架构就是两级差分放大。

在实际听音中,两级差分电路的功放的中音表现一般不错,而低音量感和下潜度却常常表现平平,高音的柔顺度也不佳。

为了提高声音的下潜度、力度及高频的柔顺度,笔者专门增加了一级预推动,这就形成了本电路的两级差分加三级达林顿的结构。

本电路后经实际聆听,声音基本达到了设计的要求。

实际上,本电路的特点不是在架构上,而是在三极管元件的搭配和电路补偿的使用上。

笔者酷爱制作功率放大器,对常见的三极管对音色的影响很有一些个人心得。

在元器件的选择上既要考虑元件的电气特性,又要发挥不同管子的音色优点。

要像按病配药方一样,合理进补,取长补短,最终达到音质的平衡完美。

在本功放中,输入级差分管选用的是国半的NPD5565孪生场效应管,该管子的特点是声音密度高、整齐、稳重,胆味浓,缺点是缺少灵动感,有些木讷。

电视发射机晶体管功放单元的维修技巧

电视发射机晶体管功放单元的维修技巧

源、 激励输人 5 w 正常情况下 , 0m 当发现此功放单元 的功率输 出 1w 指示明显偏小时 , 应进一步观察前后 级放大 器的集 电极 工作 电流 指示是否正 常, 级 约 前
图 1 晶体 管 高频功 率放 大器 电路 框 图
4 0m 0 A左右 , 输出级约 80m 0 A左右 , 如果不正常 , 说 明放大器的直流通路存在 问题 , 两放大器电路均采用 发射 极 电 阻 尺 和 电阻 分 压 偏 置 电路 的热 敏 电 阻 尺
率 放大 器都 工 作 在 甲类 状 态 , 此 重 点 以 G Z一1型 在 S
30w 电视发射机激励器的功放单元为例 , 0 介绍此单
元 的维修 思路 和技 巧 。 此 功 率 放 大 器 共 两 级 , 级 功 放 管 子 采 用 前 3 A 2 输 出级 功放 管采 用 F 4 1 , 工 作 于 甲类 状 D 7 L, A 3L均 态, 前后级 放 大器 电路结 构基 本 相 同。在 2 4V供 电 电
图 3 星一 树 型满 负荷接 入后 的 电缆 网络模 型 24 10
[ 收稿 日期: 0 . . ] 2 61 1 0 09
维普资讯
《 中国有线 电视} 06 2 ) 20 ( 1
CHI NA GI AL DI T CABLE TV

・与 ・ 维 维 护修
有 线 电视 线 路 交 流 故 障 的检 查 与 维 修
口王义东 , 于东海 , 邱绪芝 , 礼 吕德
( 蓬菜市广播 电视局 , 山东 蓬莱 2 5 0 ) 66 0
有线电视线路交流( 干扰或带电) 故障在有线电视
故障 中占的 比例 较 小 ( 占 11) 但 其影 响与 危 害不 约 /0 ,

晶体管功放

晶体管功放

晶体管功放差分晶体管功放的制作作者:admin时间:08-06-16本文介绍的功率放大器在输入级和电压放大级采用两级非对称结构的差分电路,放大线性好、频响宽,对温漂和电源波动影响抑制力强,音质甜美,韵味十足,值得一试。

一、电路原理简要分析图1为本功率放大器的主放大电路,VT2、VT3构成输入级差分电路,VT1、LED1、R4、R9及C2组成输入级差分电路的恒流源电路。

LED1正常发光时其正负端电压差恒定在1.8V,2V之间,噪声小于稳压二极管,常用于功放电路。

其正负端的1.9V左右电压差作用于VT1发射结回路.使VT1射-集电流恒定在(1.9V,0.6V)/680Ω?1.9mA。

在VT2、VT3差分输入电路参数完全对称的情况下,流经VT2、VT3射-集的电流为1.9mA的一半即0.95mA。

RP2改变VT2、VT3发射极的反馈电阻,使VT2、VT3的静态工作点发生正负对称变化,最终改变输出级中点的直流电位。

R7、R8上的电压降正常情况下为2.2kΩ×0.95mA?2.1 V,作为电压放大级VT7、VT8差分电路的发射结偏置电压。

流经VT7、VT8集-射的电流为(2.1V,0.6V)/R13?4.5mA。

VT4、VT5构成VT7、VT8差分电压放大级的镜像电流源负载。

VT6接成共基状态,作为VT7的负载电阻。

VT9、R12及RP3构成推动级、输出级的偏置电路,同时起到对末级功率管温度反馈控制作用。

调节RP3可以改变VT9集-射之间的电压,进而改变推动级和输出级的静态偏置电流。

另一方面,VT9与功率级对管VT12、VT13安装在同一块散热片上,起到对VT12、VT13温度的反馈控制作用,防止VT12、VT13温度过高导致输出电流过大而烧坏。

温度反馈控制的原理是,当VT12、VT13输出电流增大,升温超标时VT9的集-射电流增加而集-射电压下降,从而减小了推动级和输出级的静态输出电流,将功率对管VT12、VT13的电流和温度控制在安全范围之内。

晶体管扩音机功放电路的改进

晶体管扩音机功放电路的改进

晶体管扩音机功放电路的改进
洪家明
【期刊名称】《电声技术》
【年(卷),期】1987(000)003
【摘要】目前,有不少机关、学校及乡村使用的25瓦和50瓦的晶体管扩音机,是采用3AD 53C(3-AD30C)管子做功放管的.这种管子很容易发生c-e之间击穿(Vceo一般为24V).近年来,我们修理了多台这种故障的扩音机,都改用大功率硅三极管3DD15B~D代替原来的功放管3A D53 C,经长时间使用证明,功率足,失真【总页数】1页(P78-78)
【作者】洪家明
【作者单位】
【正文语种】中文
【中图分类】TN91
【相关文献】
1.YLG-200型扩音机功放电路增加保护及显示功能 [J], 吕海兵;曾立勇
2.晶体管厄利电压对功放电路静态电流影响实例分析 [J], 邱静君
3.晶体管扩音机功放电路的改进 [J], 洪家明
4.晶体管扩音机功率放大电路的改进 [J], 许春香
5.扩音机功放电路的改进研究 [J], 涂有超;刘道华;贾卉彩
因版权原因,仅展示原文概要,查看原文内容请购买。

专业功放的维修方法及步骤

专业功放的维修方法及步骤

专业功放的维修方法及步骤专业功放(Professional Power Amplifier)是音频设备中的重要组成部分,用于放大音频信号以驱动扬声器。

如果功放出现故障,维修技术人员需要按照以下步骤进行维修。

步骤一:故障判断1.检查功放是否存在触电的危险。

在维修之前,务必确保功放的电源已经彻底断电,并且内部的高压电容已经放电。

2.了解用户的问题描述,例如功放是否完全无声、是否有杂音、是否有任何故障指示灯亮起等。

3.检查功放的各个连接器和插孔是否牢固连接,以及检查是否有任何可见的损坏或松动的组件。

步骤二:电路分析1.查阅功放的维修手册、原理图或线路图以了解电路的工作原理和信号路径。

2.使用万用表等测试仪器检测电源电压是否正常。

3.检查功放电路板上的电容、电阻、晶体管等元件是否受损。

4.使用手持示波器或信号发生器测试各个电路节点上的信号传输情况,从而定位可能出现问题的区域。

步骤三:故障排除根据电路分析结果,选择相应的排除措施进行修复。

1.检查电源部分,确保电源电压输出正常。

2.检查输入部分,包括各个输入插孔、开关和旋钮,确保输入信号传输正常。

3.检查功放输出端部,确保扬声器连接正常,避免短路或开路。

4.检查功放保护电路,确保保护电路正常工作,避免过负荷或过热损坏。

步骤四:维修处理1.替换受损的电容、电阻、晶体管等元件。

2.修复断开的连接线或焊点。

3.清洁电路板和元件,确保没有收集灰尘或杂质影响电路的正常工作。

4.重新安装维修后的电路板,并确保插排和连接器正确连接。

5.重新组装功放,确保外壳和面板的固定。

步骤五:测试和调试1.重新接通电源,打开设备。

2.使用示波器或音频测试设备,检测功放的输入和输出信号质量。

3.测试功放的音量调节、音调控制等功能是否正常。

4.通过连接扬声器进行听觉测试,确保功放输出正常且无任何异常噪音。

步骤六:维修记录为了以后的参考和追踪,维修技术人员需要记录维修的详细信息,包括故障现象、维修步骤和所更换或修理的部件。

50W晶体管功放电路图

50W晶体管功放电路图

50W晶体管功放电路图此功法电路可谓一装即成,特别适合初学者制作。

这款功放一声道只需17个零件,却收到了意想不到的效果,还音效果真实,频响平直,解析力高,且功率可以达到50W。

具体电路如图(只画出一声道),全机用1/2W电阻,C2和C4用瓷盘电容即可,Q5、Q6采用大功率管2SC5200,变压器容量大于200W,次级输出电压AC22V*2 4A。

50W晶体管功放电路调试方法:本机一般来说无需调整,装机后测中点电压在+-50mV内可以认为正常,否则可调整R2的阻值,如偏离电压高则加大R2,反之则减小。

JK50系列晶体管扩音机的改进JK50系列晶体管扩音机如飞跃JK50-1A,民生JK50W、金龙JK50W、珠江JK50型等,社会拥有量相当大。

美中不足的是它们的电源和功放部分采用的是PNP大功率锗管(3AD30C或3AD53C),一旦损坏,市场上很难买到。

笔者采用市场极易购到的3DD15D 硅管对该机的电源和功放电路进行改进,其效果很好。

下面以飞跃JK50-1A型扩音机为例进行介绍。

一、电源电路的改进JK50-1型晶体管扩音机电源用4只管子组成三级复合管作调整管,如图1所示。

BG14、BG15相并联后再与BG16、BG17复合,以实现输出稳定的-22V工作电压。

由于调整管3AD30C(或3AD53C)输出功率大,很容易损坏。

笔者用β为60的3DD15D取代BG14、BG15改进成功,机器连续工作6~8小时,调整管仍不烫手。

具体改法如下:从原机上拆下BG14、BG15,用硬塑料片剪成比3DD15D略大的形状作绝缘垫片,再将两只3DD15D 安装在原BG14、BG15的位置上(注意涂些硅脂以利于散热)。

然后断开R66以及BG16(3AD6C)的集电极与发射极,使该管发射极与电源输出端相连接,集电极与整流滤波输出端间接一只200Ω/1W的电阻。

再在BG14、BG15的发射极各串一只0.1Ω/1W的反馈电阻,改进后的电路如图2所示。

晶体管功放末级常用的保护电路(图)

晶体管功放末级常用的保护电路(图)

晶体管功放末级常用的保护电路(图)对于大功率、大动态的音响功放,完善的末级保护电路是必不可少的。

一、过流保护晶体管功放为了保护大功率输出管及扬声器,防止其过载,一般装有过流保护电路。

1.RXE系列聚合开关扬声器过载保护电路RXE系列聚合开关(PLOYSWITCH)在功放中一般用于喇叭限流(过载)保护。

其外形如图1所示。

聚合开关制造材料为高分子PTC。

其中专用于扬声器保护的聚合开关,在常温下,其电阻(最小值)只有30mΩ,插入损耗只有0.1dB。

开关本身无任何容抗或感抗分量,在听觉频率范围内不会引起任何失真。

使用时,根据电路及扬声器参数的要求,选择合适的型号(RXE系列不同的型号对应不同的参数)接入电路。

其工作原理十分简单,即当扬声器过载时,聚合开关内部动作,动作后的阻抗比未动作之前增加几个数量级,只要有足够的驱动电压,聚合开关将保持在动作状态以保护扬声器。

喇叭保护TXE系列聚合开关,其最大耐压60V,最大中断电流40A,外形尺寸随型号有所变化,保持电流由0.1A~3.75A不等,触发电流一般为保护电流的两倍。

型号中的数字即为其保持电流,如RXE010保持电流为0—10A,RXE375保持电流为3.75A等等。

常用的有RXE050、RXE075、RXE090、RXE110等。

2.扬声器过载电子线路保护典型应用电路如图2所示。

为简单起见,只画出大功率管过流检拾电路,动作电路因可借用普通中点偏移喇叭保护电路起控,即通过驱动电路控制继电器断开喇叭负载。

关于中点偏移喇叭保护电路的工作原理,将在后面介绍,故此处省略了该起控原理图。

本电路的工作原理:BG5、BG6基极分别接入两只大功率管的发射极。

在输出信号的正、负半周分别监测其中一只输出管的发射极电流。

当发射极电流超过规定的电流(本电路中为15A)时,BG7、BG8的集电极电位下降到一定程度,并通过D1、D2检测,使中点偏移喇叭保护电路中的继电器工作,切断喇叭负载。

晶体管音频功放音质不好的原因及改进方法

晶体管音频功放音质不好的原因及改进方法

晶体管音频功放音质不好的原因及改进方法(转贴)晶体管功放都有非常优秀的特性测试指标,但实际音质音色都很不满意,即主观测试和客观音质有很大差异,其原因如下:一、晶体管功放的开环特性不能令人满意,为了获得好的频响特性,都施加了深度达40db-50db的大环路负反馈,虽然得到非常高的闭环特性,但客观音质评价并不好,声音不柔和、不动听,这正是负反馈过度的通病。

二、晶体管功放的输出内阻Ri本来就非常低、在深度反馈下Ri又大幅度减小,电路阻尼系数Fd往往增大到100以上,Fd要比电子管功放大1-2个数量级(电子管功放Fd一般约在10以下)。

这样高的Fd对扬声器的机电阻尼过重、扬声器振动系数处于过阻尼状态,振膜的运动则很迟钝,动态会变得很小、音质就显得生硬不圆润、缺层次、丰富的谐波被封杀、被过滤,微妙的谐波信息分量大量丢失,振膜细节刻画能力差,声音干瘪、缺乏色彩、不丰满、久听使人生厌,人声表现远不及电子管功放。

三、电路稳定性差、易自激也是深度负反馈功放的一个通病,一般都是在电路中接入减小高频增益的相移补偿电容来破坏形成自激的条件。

此举虽有效地抑制了自激振荡,却常常引起瞬态互调失真增大、高频响应变劣,声音则变得毛糙、尖锐、不悦耳、不耐听。

四、大功率晶体管功放大都是甲乙类功放,有很明显的交越失真故保真度也差,往往又多管并联来增大功率,这样管子的结电客Cs会变大,高频响应不可能很好,同时也会使输出阻尼过重。

五、甲乙类功放的Ic变化特别大,但供电都是一些低压,负载输出特性差的简单电容式滤波电源。

由于大电容滤波充放电速度迟缓,持续大信号时的滤波响应或电源能量输出往往跟不上Ic的动态变化,电源电压经常在峰谷之间作大幅度涨落,当电源容量不足或Ri较大时,峰值信号声音出现阻塞或喘息和拖尾现象,瞬态、动态响应也很不理想。

除上述众所周知的五条原因外,我认为开关失真是晶体管功放音质不好、声音不润、莫名其妙烧高音喇叭的根本原因。

我们知道所有放大器件都是非线性器件,都会产生非线性失真,两个不同频率的信号通过非线性器件时就会产生新的频率成分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

晶体管功放调试方法
作者mzsrz
从早期的厚膜功放到现在的分立功放,前前后后我折腾了有20个年头。

自知玩音响的水很深,比我能力强的人有很多,只是他们多半隐居论坛,很少发言。

由于论坛在晶体管功放调试方面缺少相关的文章,所以斗胆抛砖引玉,把自己多年来的调试功放经验总结出来,让更多的朋友分享。

有不对的地方,还请方家指证。

功放要做出声响来很容易,但是要想做好,就并不那么容易了,除了并不知道哪些是真正影响到功放性能的地方,往往把精力放在了一些并不太重要的事情上,把该注意的地方忽略掉了。

更有些人以为用补品堆砌起来就是好功放,或参照某名机复刻以为就要有合理的设计和制作,还要有精心的调试,方能成材。

可惜现在有些朋友DIY出来的功放其实都不如厂机,这并不是打击某些人的信心,而是事实。

其主要原因是很多人能达到名机的水准,其实这些都是舍本求末的方法,因为他们并不懂得调试功放在DIY中的重要作用。

于是我总结了以下几点加以说明。

调试秘诀之一是高次谐波失真越小越好。

功放低次谐波失真大一点无所谓(当然最好是没有,除非你喜欢听失真的声音),但是高次谐波一定不能有,这是晶体管功放生硬刺耳声音的元凶。

当功放装配完成后,一个非常重要的工作就是调静态电流,它不是一个可有可无,可大可小的随意调整,而是一个非常有讲究的调整,调整得好往往可以改变一台功放的档次。

在调静态电流时最好有失真仪或频谱仪,如果没有,乙类功放可按下表(取自《音频功率放大器设计手册》)给出的参数进行调整。

甲类机器调到额定电流即可,这方面可以省略不考虑。

最优静态电流调整对照表:
图是指一对管的情况,如果是两对管,射极电阻又是独立(即4只),则静态电流加倍,但R两端电压不变,如果遇到上下两管不配对情况导致上下两管电流有误差,则取上下两管R1+R2的电压总和。

下图的测试频率是2kHZ,负载为8Ω,输出75W时的失真情况。

我故意把功放设成欠偏置(即静态电流很小)状态看看它的失真成份是怎么样的。

(下面的图都是经过陷波器滤掉基频后再经低失真运放放大后的情况,为的是能更直观分析失真成份,因为频谱仪的分辨率有限)
静态电流不足时的测试图:可以看出高次谐波比优化调整后的测试图大了20多db
静态电流偏大时的测试图(即我们常说的甲乙类,须要把甲类区分开来)
从上图可以看出,虽然二次谐波比优化后的小1DB左右,但是高次谐波却明显增大很多,从总失真上看可能两者并不是很明显,但是里边的谐波成份确大有不同。

最优化静态电流后的测试图
从上图可以看出,虽然二次谐波比优化后的小1DB左右,但是高次谐波却明显增大很多,从总失真上看可能两者并不是很明显,但是里边的谐波成份确大有不同。

最优化静态电流后的测试图
从上面几图可以明显看出,最优化静态电流后,功放的高次谐波非常小,也就是交越失真被最小化了,带来的是更好的听感。

调试秘诀之二是要注意静态电流热耦合三极管。

最好的办法是装在功率管的上面,如果是射极跟随输出结构的功放(现在的大多数功放都是这种形式),为了保证静态电流的稳定,还要在热耦三极管上包装一层半导热材料。

加多少合适要看具体情况,如果开机放音乐没多久静态电流就超出了很多,就要多加一点,反过来就要少加一些,最终的目的就是要达到长时间工作后静态电流依然还在最优状态下小幅度变化。

注意甲类机同样没有必要做这些。

调试秘诀之三是功放在任何输出状态下都要能稳定工作。

想要达到这点可以这样调试,输入一个20KHZ的正弦波信号,把功放接上电阻负载,当调到功放额定最大功率输出时,如果这个正弦波信号从示波器上看到依然没有高频自激或变形,则说明这台功放的稳定性是很好的。

如果出现下图的情况,说明你的功放稳定性是有问题的。

上图是满功率输出时才会出现的情况,小功率时看似一切正常,如果出现上面的情况,通常的做法是增大极点补偿电容或减小输入级跨导放大系数,也可以修改负反馈深度。

第一
种调整比较容易,也比较常用,例如在原来为100PF的电容上并一个10P或20P的小电容,直到不出现上面情况为止。

减小环路负反馈深度也是可行的办法,但整体性能会受到一定影响,改动后变数更大,比如THD、IMD、输出阻抗等等,除非你讨厌环路负反馈。

调试秘诀之四是要尽可能优化地线的布线布局,
如果这方面处理不好,除了噪声高以外,还影响左右声道的声音分离度,这对高音区的听感和声音结像有明显影响。

下图是正确的星形接地方法:
接机壳要输入端接更好,因为真正需要屏蔽的部份是输入端弱信号部份,如果接到星形接地点,那么从星形接地点到输入信号端的地就有可能成为最容易受干扰的地方。

而且接前级或CD等信号源后,左右声道形成了一个大环路,输入地也在环路内,这样环路面积比接输入端更大,噪声量也更多。

使用单电源的话也是输入端接地,不过接法要变动一下,左右声道输入地相连接后在这条线中间引出一条线接机壳,然后再接到星形接地点,这样才不会形成环路。

总之要记住,任何导线都是有内阻的,一点接地可以很好的回避这个问题,因为所有地线都以这个参考点为基准,地电流噪声不会串到其它地线上,特别是输入地和负反馈的地线。

但一点接地同样存在可能形成环路的问题,这就要具体情况具体分析并拆解环路问题。

环路干扰是困扰很多人的地方,这方面要经验,也要有理论。

所谓环路,说白了就是一个圆圈,不让地线形成圆圈或尽可能缩小圆圈,是我们努力的方向,也是降低噪声的不二法门。

调试秘诀之五是输出中点直流电压一定要低。

中点电压低除了有利于喇叭正常复位,还可以有效抑制功放偶次谐波的生成。

中点电压过高主要原因是输入级管子不配对或输入电路不对称影响,可以修改输入级射极电阻以达到平衡,当然也可以更换晶体管,前一种是治标,后一种是治本,但所花时间可能多一些。

调试秘诀之六是旋转电源变压器或更改装机布局,直到交流声最小为止。

未作调整前,功放输出端噪声分析如下图,输入端子对地短路。

我们可以看到存在100HZ及其谐波,这是整流滤波电源串入电路中来的噪怕,看起来情况并不严重,明显不是主要影响功放噪声的因素。

而50HZ市电及其谐波所形成的干扰明显要高出15db到20db 的量,这才是噪声产生的主要原因,这种噪声主要来自于变压器磁场泄漏和地环路,大多数功放的噪声都是这个原因产生,真正从电源上串到电路中的噪声一般都很小,除非是用老旧的电路。

其解决方法主要的还是调整变压器方位和优化功放的布线、布局。

调整变压器及处理好接地点后(注意千万不要重复接机壳,避免形成环路。

例如输入端子接了机壳,电源中点地再接机壳就成环路了),噪声会降低很多。

我们可以看到下图市电50HZ基频及谐波和100HZ及谐波已经非常接近了。

功放调试到此为止算是告一段落,其中的静态电流调整需要重复进行,因为热机后静态电流很可能变动很大(小的变动是允许的),可能需要与增加半导热材料的方法同时进行调整。

至此你已经基本把功放调到最优状态,这时你的功放已经脱胎换骨,可以轻松超越万元级的厂机了。

相关文档
最新文档