Stellite_Alloys_司太立合金使用手册
司太立合金stellite6K stellite6 stellite6B

铸棒
硬 度C
化学成分(重量%) Cr Si W Fe Mo Ni Co Mn
典型用途
Stellite 1 53 2.50 29.50 1.20 12.50 3.00 1.00 3.00 Bal 1.00 阀座、轴承、刀口等
Stellite 3 54 2.40 31.00 1.00 12.50 3.00
3.00 Bal 1.00 针阀座、阀座、轧钢导向辊
热压模、热挤压模、干电池 Stellite 4 48 0.90 32.00 1.00 13.50 1.00 0.50 0.50 Bal 0.50
工业
发动机气门、高温高压阀 Stellite 6 43 1.20 29.00 1.20 4.50 3.00 1.00 3.00 Bal 1.00
二、钴基合金分类 按使用用途分类,钴基合金可以分为钴基耐磨损合金,钴基耐高温合金及钴基耐磨损和水溶液腐 蚀合金。一般使用工况下,其实都是兼有耐磨损耐高温或耐磨损耐腐蚀的情况,有的工况还可能 要求工件同时耐高温耐磨损耐腐蚀,而越是在这种复杂的工况下,才越能体现钴基合金的优势。 钴基合金一般分成钴铬钨与钴铬钼两大类。钴铬钨侧重于高温耐磨;钴铬钼侧重于高温耐蚀。 三、钴基合金基理 钴基合金基体为面心立方 fcc 的结构的Co-Cr 合金固溶体,根据其W、C 含量的不同,在基体 上有相当数量的富铬碳化物(M7C3 型)析出,因而具有良好的金属-金属耐磨擦及耐磨料磨损 性能,合金硬度随 W、C 含量的增加而升高。该合金强度和硬度可以保持到 800℃以上,具有良 好的耐磨损、耐高温、耐腐蚀、耐气蚀等综合性能。 四、融品科技系列钴基合金产品特点 1、钢水纯净 2、组织致密 3、性能均衡 五、融品科技系列钴基合金产品形态 1、母合金 电极棒 2、精密铸件 3、能变形牌号的锻棒 锻件 热轧条 4、能变形牌号的焊丝 板材 六、钴基合金延展 更多 钴基合金 司太立合金 信息 请致电或点击钴基合金 stellite 合金 司太立合金 专题 七、WR6B,stellite6B 合金
Stellite6物理和力学性能司太立6的硬度是多少

Stellite6物理和力学性能司太立6的硬度是多少Stellite 6产品概述STL6是STELLITE6的缩写,STELLITE6合金是一种钴基合金,用于磨损环境,防咬死,防磨损,防摩擦。
合金的摩擦系数很低,能和其他金属产生滑触,在多数情况下不会产生磨损。
即使不用润滑剂,或者不能用润滑剂的应用中,合金可以把咬死和磨损降至最低。
该合金在-253~700℃温度范围内具有良好的综合性能,650℃以下的屈服强度居变形高温合金的,并具有良好的性能以及加工性能、焊接性能良好。
Stellite 6化学成分Stellite 6物理和力学性能Stellite 6焊接焊前预备工序:(1) 用氧-乙炔火焰加热需返修叶片的钎焊司太立合金片,取下合金片,并打磨原钎焊部位,去除钎料(包含掉落司太立合金片的叶片);(2) 电动砂轮打磨进汽侧水蚀区域,使之露出金属光泽,边缘部位应圆滑过渡,不得有尖角,尽量去除水蚀痕迹;(3) 用放大镜检查焊接区域,若有缺点,打磨去除缺点,并用上色探伤确认缺点已去除干净后再进行下道工序;(4)用丙酮清洗干净水蚀区域,去除油、锈等污物。
上海叶钢金属集团有限公司仓库一角Stellite 6耐热耐磨性能特点Stellite耐热耐磨合金的材质硬度HRC40到HRC65,耐热温度600℃到1200摄氏度。
相比较镍基合金与铁基合金,Stellite合金的耐冷热疲劳性能更加卓越。
同时,钴基合金的热硬度也更具优势,即随着温度的升高,钴基合金的硬度下降得更为缓慢。
上海叶钢金属集团有限公司上海叶钢金属集团有限公司Stellite 6耐热耐磨硬质合金强化方式通过碳化物或金属间化合物强化,碳化物强化的钴铬钨系列,如Stellite6B,Stellite6K,Stellite1,Stellite4,Stellite12,Stellite20,Stellite100等;碳化物强化的钴铬钼系列,如stellite703;金属间化合物强化的,如TRIBALOY T-400,TRIBALOY T-800;Stellite 6应用领域合金可用于制造阀门零件, 泵柱塞, 蒸汽机防腐蚀罩, 高温轴承, 阀杆,食品加工设备, 针阀,热挤模具, 成型磨具等.上海叶钢→Stellite 6镍合金,→上海叶钢 Stellite 6钢材,上海叶钢→Stellite 6不锈钢,→上海叶钢 Stellite 6价格,上海叶钢→Stellite 6耐高温,→上海叶钢 Stellite 6圆棒,上海叶钢→Stellite 6耐腐蚀,→上海叶钢 Stellite 6圆钢,上海叶钢→Stellite 6密度,→上海叶钢 Stellite 6薄板,上海叶钢→Stellite 6硬度,→上海叶钢 Stellite 6卷板,上海叶钢→Stellite 6抗拉强度,→上海叶钢 Stellite 6材料上海叶钢→Stellite 6屈服强度,→上海叶钢 Stellite 6材质上海叶钢→Stellite 6多少钱一公斤,→上海叶钢 Stellite 6棒材上海叶钢→Stellite 6钢板,→上海叶钢 Stellite 6板子上海叶钢→Stellite 6板材,→上海叶钢 Stellite 6钢带上海叶钢→Stellite 6带材,→上海叶钢 Stellite 6厚板上海叶钢→Stellite 6法兰,→上海叶钢 Stellite 6弯头上海叶钢→Stellite 6三通,→上海叶钢 Stellite 6锻件上海叶钢→Stellite 6焊丝,→上海叶钢 Stellite 6焊条上海叶钢→Stellite 6线材,→上海叶钢 Stellite 6毛细管上海叶钢→Stellite 6无缝管,→上海叶钢 Stellite 6焊管上海叶钢→Stellite 6锻环,→上海叶钢 Stellite 6环件上海叶钢→Stellite 6焊材,→上海叶钢 Stellite 6多少钱一顿上海叶钢→Stellite 6什么价格,→上海叶钢 Stellite 6最高使用温度上海叶钢→Stellite 6厂家,→上海叶钢 Stellite 6现货上海叶钢→Stellite 6生产厂家,→上海叶钢进口Stellite 6。
司太立(Stellite)高温合金牌号、成分及用途

0.50 0.50
有良好的耐高温腐蚀和抗氧化性能、优良的冷热
8.0
Bal. Mn:1.0
加工和焊接工艺性能.
Mn:0.5 具有优良的耐腐蚀和抗氧化性能,从低温到 980℃均具有良好的拉伸性能和疲劳性能,并且
9.0 5.0 0.4 0.4 Bal Cu:0.5 耐盐雾气氛下的应力腐蚀。可广泛用于制造航空
发动机零部件、宇航结构部件、化工设备和接触 Nb:4.0 海水并承受高机械应力的场合
Mn:0.35
Cu:0.3 在 650℃下该合金具有很高的强韧性﹑疲劳性能
0.35 0.006 3.0 20 0.6 1.0 Bal
及良好的综合性能,在航空航天发动机中得到广
Nb:5.0 泛应用
Co:1.0
Ni-825 0.05 21.0
Bal. 304L 不锈钢精密铸件
2.5
Bal. 316 不锈钢精密铸件
316L 不锈钢精密铸件
2.5
Bal.
316L Stainless Steel Investment Castings
23-26 0.1
Tribaloy 700 42-48 0.1
2.8 1.8 3.0 2.0 3.2 2.2 3.4 2.4
38
1
5
15 Co3 3.4
32
Bal. Bal.
广泛用于玻璃模具冲头、闷头、芯子、导环等部件
Bal.
Bal.
较高的 Mo 含量使得铸件在高温硫酸环境下具有良好的耐腐蚀性,用于泵 1 Bal.
Nistelle B 13-25 0.1
7
29 6 Bal.
Deloro 40G Deloro 40K Deloro 44K Deloro 50
司太立(Stellite)合金12执行标准司太立(Stellite)合金12物理性能、化学成分

『常见问题』:司太立(Stellite)合金系列有哪些?司太立(Stellite)合金合金是什么材质?司太立(Stellite)合金执行标准是什么?司太立(Stellite)合金抗拉强度是什么?司太立(Stellite)合金是什么价格?司太立(Stellite)合金屈服强度是什么?司太立(Stellite)合金对应什么牌号?司太立(Stellite)合金硬度是什么?『形态』:司太立(Stellite)合金棒材,司太立(Stellite)合金锻棒,司太立(Stellite)合金板材,司太立(Stellite)合金无缝管材,司太立(Stellite)合金带材,司太立(Stellite)合金卷材,司太立(Stellite)合金盘丝,司太立(Stellite)合金扁条,司太立(Stellite)合金圆棒,司太立(Stellite)合金厚板,司太立(Stellite)合金光棒,司太立(Stellite)合金圆钢,司太立(Stellite)合金圆饼,司太立(Stellite)合金焊丝,等可定制,司太立Stellite 12钴基耐磨合金:司太立(Stellite)是一种能耐各种类型磨损和腐蚀以及高温氧化的硬质合金。
即通常所说的钴基合金,司太立合金由美国人Elwood Hayness于1907年发明。
司太立合金是以钴作为主要成分,含有相当数量的镍、铬、钨和少量的钼、铌、钽、钛、镧等合金元素,偶而也还含有铁的一类合金。
根据合金中成分不同,它们可以制成焊丝,粉末用于硬面堆焊,热喷涂、喷焊等工艺,也可以制成铸锻件和粉末冶金件。
司太立合金铸件适用于核电、石化、电力、电池、玻璃、轻工、食品等诸多领域。
具有耐磨、耐蚀、抗氧化和耐高温特性。
常用的产品有阀芯、阀座、轴类、轴套、泵类部件,玻璃、电池模具、喷嘴及切割刀具等。
合金类别有:Co基合金铸件、Ni基合金铸件、Fe基合金铸件。
司太立粉末冶金制品采用钴基、镍基或铁基合金雾化粉末,经压制、烧结、精加工制成。
北京肯纳司太立合金成分标准

北京肯纳司太立合金成分标准一、引言合金材料是一种由两种以上的金属或者金属与非金属元素混合而成的材料,其具有优异的性能和广泛的应用领域。
肯纳司太立合金是一种在北京生产的优质合金材料,被广泛应用于航空航天、汽车制造、工程机械等高端领域。
为了确保产品质量和性能的稳定性,北京肯纳司太立公司制定了一套严格的合金成分标准,以保证产品在各种工况下的安全可靠性。
本文将对北京肯纳司太立合金成分标准进行全面、详细、完整和深入地探讨。
二、合金成分标准的重要性合金的成分决定了其性能和用途,合金成分标准的制定对于保证产品质量和满足用户需求非常重要。
2.1 提高产品性能合金的成分直接影响其硬度、强度、韧性、耐磨性等力学性能,通过合金成分的调整,可以提高产品的性能,使其更加耐用和可靠。
2.2 适应不同工作环境不同工作环境对合金材料的要求不同,例如在高温环境下工作的发动机零部件对耐高温性能要求较高,而在腐蚀性气候条件下使用的设备则对耐腐蚀性能有较高要求。
合金成分标准能够根据不同的工作环境要求,调整合金成分以满足不同应用领域的需求。
2.3 保证产品质量合金成分标准可以规范合金产品的生产过程,确保产品成分的一致性和稳定性,避免因为成分波动或混杂引起的材料性能不一致,从而保证产品质量。
三、北京肯纳司太立合金成分标准的制定为了确保肯纳司太立合金的质量和性能,北京肯纳司太立公司制定了严格的合金成分标准。
该标准主要包括以下几个方面的内容:3.1 主要合金元素北京肯纳司太立合金的主要成分包括铝、钛、镍、铬等元素,这些元素都具有优异的机械性能和耐腐蚀性能,能够满足产品在各种复杂工况下的使用需求。
3.2 合金元素含量范围北京肯纳司太立公司制定了合金元素含量的上下限,以确保产品的一致性和稳定性。
合金元素的含量范围是根据产品的使用环境和性能要求进行调整的,以使产品能够适应不同的应用场景。
3.3 杂质元素控制合金材料中的杂质元素可能对产品性能产生不良影响,因此需要对其进行控制。
上海司太立焊条成份与用途说明

上海司太立钴基焊条电焊条硬度化学成分(重量%)典型用途C Cr Si W Fe Mo Ni Co Mn B Cu其他Stellite 1 48 2.2029.002.0014.003.000.50 3.00Bal 1.00阀座、轴承、刀口等Stellite 6 40 1.0029.001.00 4.50 3.000.50 3.00Bal 1.00发动机气门、高温高压阀门、涡轮机叶片Stellite 12 44 1.3029.001.009.00 3.000.50 3.00Bal 1.00高温高压阀门、锯齿、螺旋推杆等Stellite 21 230.3028.001.00 2.50 5.50 2.50Bal 2.00涡轮机叶片、阀座、热冲模Stellite 25 冷硬0.1520.001.0014.003.000.5010.00Bal 1.50高温耐蚀密封面、挤压模Nistelle C 0.1017.00 5.00 6.0017.00Bal高温耐蚀密封环Ni-Mang 冷硬0.60 2.700.20Bal 3.7013.50锤式破碎机、高锰钢部件焊接STE 308-16 0.0819.500.90Bal0.5010.000.800.50用于焊接Cr18Ni8不锈钢STE 308L-16 0.0319.500.90Bal0.5010.000.800.50用于焊接超低碳Cr18Ni8不锈钢STE 309-16 0.1523.500.90Bal0.5013.000.800.50用于焊接Cr22Nil2不锈钢及用于不锈钢与低碳钢或低合金钢之间的焊接STE 309L-16 0.0223.500.90Bal0.5013.000.800.50打底层焊接,异种钢焊接,易产生裂纹部位的焊接STE 309Mo-16 0.1223.500.90Bal 2.5013.000.80用于焊接Cr22Nil2-Mo不锈钢STE309MoL-160.0323.500.90Bal 2.5013.000.80用于焊接超低碳Cr22Nil2Mo不锈钢STE 310-16 0.2026.500.75Bal0.5021.50 1.500.50用于焊接Cr25Ni20不锈钢STE 310Mo-16 0.0826.500.75Bal 2.5021.00 1.200.50耐硫酸腐蚀、抗裂性、高温性能优良STE 316-16 0.0518.500.90Bal 2.5012.500.800.50用于焊接Cr18Ni12Mo2不锈钢STE 316L-16 0.0318.500.90Bal 2.5012.500.800.50用于焊接超低碳Cr18Ni12Mo2不锈钢STE 316LF0.0218.000.75Bal 2.7016.00 2.000.50耐尿素腐蚀性优良STE 347-160.0819.500.50Bal0.5010.000.800.508xc-1.00用于焊接Cr18Ni8含铌或钛的不锈钢STE 997 560.60 5.500.80Bal 4.00W:7.00.70低氢型高速钢焊条D 287 400.1014.000.50Bal 1.00 5.000.50水泵、水轮机部件D 907冷硬0.2021.001.00 2.50Bal 3.0020.00 1.50热剪刀片。
司太立合金性能
司太立合金介绍
司太立(Stellite)是一种能耐各种类型磨损和腐蚀以及高温氧化的硬质合金。
即通常所说的钴基合金,司太立合金由美国人Elwood Hayness 于1907年发明。
司太立合金是以钴作为主要成分,含有相当数量的镍、铬、钨和少量的钼、铌、钽、钛、镧等合金元素,偶而也还含有铁的一类合金。
根据合金中成分不同,它们可以制成焊丝,粉末用于硬面堆焊,热喷涂、喷焊等工艺,也可以制成铸锻件和粉末冶金件。
1.铸棒
连铸生产线,直径为2.5-8.0mm的钴基、镍基系列合金,成分均匀,无偏析,杂质含量少,表面光洁,直径公差小,长度可自由选择,适合于氧乙缺焊和钨极氩弧焊工艺。
2.粉末
合金粉末适用工艺包括等离子堆焊、等离子喷涂、氧-乙炔喷焊、高频重熔、超音速喷涂及粉末冶金等。
3.管状焊丝
直径1.2mm-5.0mm、合金含量可≥50%的铁基、镍基、钴基、碳化钨、不锈钢等材料,用于埋弧焊、明弧焊、气体保护焊、线材电弧喷涂、氧-乙炔焊等的管状焊丝、焊棒。
可用于冶金、矿山、电力、机械等耐磨、耐蚀、耐高温场合。
4.电焊条
5.铸件
司太立合金铸件适用于核电、石化、电力、电池、玻璃、轻工、食品等诸多领域。
具有耐磨、耐蚀、抗氧化和耐高温特性。
常用的产品有阀芯、阀座、轴类、轴套、泵类部件,玻璃、电池模具、喷嘴及切割刀具等。
合金类别有:Co基合金铸件、Ni基合金铸件、Fe基合金铸件。
司太立粉末冶金制品采用钴基、镍基或铁基合金雾化粉末,经压制、烧结、精加工制成。
主要产品有阀杆、阀芯(球)、阀座、阀圈、密封环、木材锯齿、轴承泵、轴承球等。
镍基合金铸件。
Titanium Alloys 产品说明书
IntroductionTitanium (Ti) alloys are well-known superalloys due to their high strength-to-weight ratio, excellent mechanical properties, corrosion and hightemperature resistance and biocompatibility. They are widely applied in various industries and application areas, such as biomedical, aerospace, marine and automotive industries, and in 3D-printing for implant manufacturing, with Ti-6Al-4V (also called TC4 or Ti64) being one of the most important titanium alloys. It is known that the chemical composition of alloys can influence their properties and grades. The concentrations of both the additive and impurityelements in the alloy need to be strictly controlled to ensure the material’s quality. For example, Al, V, Fe, Sn, and Cu in a Ti alloy can enhance high-temperature creep resistance, while Y and Pd can improve corrosion resistance and thermal stability.1-2 Therefore, accurate elemental analysis of Ti alloys is important in terms of metallurgy and product quality.In current national standards (e.g., ASTM E2371-13, China National Standard GB/T 4698 and industry standard HB 7716.13), inductively coupled plasma optical emission spectroscopy (ICP-OES) is the specified technique for the determination of elements in the concentration range from percent to ppm in alloys due to its advantages of high matrix tolerance, wide linear range and multi-element analysis capabilities.3-5Determination of Major and Trace Elements in Titanium Alloys Using the Avio Max 550 ICP-OESA P P L I C A T I O N N O T EAUTHOR Shuli ChengPerkinElmer Shanghai, ChinaICP-Optical Emission SpectroscopyAccording to the test standard method ASTM E2371, most types of Ti alloys can be dissolved in two acid mixtures: HF-HNO 3 or HCl-HF-HNO 3, where HCl is needed especially for alloys containing Mo, Pd and Ru. To compare the effectiveness of the digestion, the samples were digested with two acid mixtures: HF+HNO 3 (5:1) and HCl+HF+HNO 3 (2:3:1).Approximately 0.5 g of Ti64 alloy samples were weighed and placed into DigiTUBE ® digestion tubes, followed by deionized (DI) water and acids, as shown in Table 2. Due to the strong reactivity, all acids should be added dropwise. The DigiTUBEs were then gently heated in the Sample Preparation Block (PerkinElmer, Shelton, Connecticut, USA), until the samples were completely dissolved, according to the program in Table 3. The samplesolutions were cooled to room temperature and diluted to 100 mL with deionized water in a polypropylene volumetric flask. In addition, 1 g of pure Ti metal was digested with HF and HNO 3 and diluted to 50 mL. This solution contains 2.0 g/L of Ti for preparing matrix-matched standard solution.However, one of the challenges of analyzing Ti alloys with ICP-OES is spectral interference caused by matrix elements: Ti, Al, V and Fe. In this application, the major and trace elements in Ti64 alloy samples were analyzed with the PerkinElmer Avio ® 550 Max fully simultaneous ICP-OES, demonstrating its excellent capability of accurate measurement of complex matrix samples.ExperimentalSample PreparationSamples consisted for NIST 173c Titanium Alloy UNS R56400 (National Institute of Standards and Technology, Bethesda, Maryland, USA) and an unknown Ti64 powder. NIST 173c was used for method development and accuracy validation; thecertified values are listed in Table 1.Calibration Standards PreparationAll the calibration standard solutions were prepared PerkinElmer single- and multi-element standard solutions, as well as theprepared 2.0 g/L Ti stock. The calibration standards were matrix-matched to the approximate levels of the major elements and contained 4500 ppm Ti, along with the analyte concentrations in Table 4, which were selected to match the expected concentrations in the Ti alloys.InstrumentationAll analyses were performed with the Avio 550 Max fullysimultaneous ICP-OES (PerkinElmer), which features a unique echelle optic and segmented-array charge coupled devicedetector (SCD)6, providing high-speed analysis and simultaneous measurements of all elements. The instrument’s proprietary Universal Data Acquisition (UDA)7 technology allows collection of all the spectral data for every sample in a single run, which provides flexibility of wavelength selection of all elements and simplifies method development. Plus, the combination of Flat Plate™ plasma technology 8 with vertical torch design enables the Avio to handle high matrix samples without large dilutions. And last, but certainly not least, the instrument’s dual plasma view 9 capability allows the measurement of major and minor elements in one method by setting the radial view for the determination of major elements, while axial view is used for minor elements due to its higher sensitivity.An HF-resistant nebulizer and spray chamber were used. Theinstrument's operating parameters, the wavelengths, plasma view, and background correction are listed in Tables 5 and 6. All data processing was done with Syngistix™ for ICP software.Results and DiscussionWhen analyzing metal samples, higher dilution is generally used to decrease matrix effects and spectral interferences. However, dilution also decreases the analyte concentration, which may make measurements of low-level analytes more difficult. In this work, the Ti alloy samples were diluted 200 times for analysis of all elements, from ppm to percent levels.200ppm V4500ppm Ti10ppm F e1ppm P d1ppm R u(a)(b)Figure 1. Spectra showing interferences of (a) 200 ppm V and 4500 ppm Ti on 1 ppm Pd 340.450 and (b) 10 ppm Fe on 1 ppm Ru 240.272.No MSFNo MSFMSF MSF(a)(b)Figure 2. Spectra of (a) Pd and (b) Ru spiked at 0.1 ppm in NIST CRM 173C, with (pink) and without (blue) MSF applied.To deal with spectral interferences caused by major elements, the Multicomponent Spectral Fitting (MSF) capability (includedin Syngistix software 10) was applied to Ru and Pd. Figure 1 shows the overlayed spectra of 1 ppm of Pd and Ru and the matrix elements: 4500 ppm Ti, 200 ppm V and 10 ppm Fe. By applying MSF, as shown in Figure 2, the spectral interferences were effectively removed, yielding an interference-free spectrum (pink), allowing accurate determination of Pd and Ru at very low concentration levels (0.1 mg/L).Excellent calibrations were obtained, with regression coefficients greater than 0.999 for all elements. The method detection limits (MDLs) were determined by analyzing 10 replicates of the 4500 mg/L Ti matrix blank solution. Figure 3 shows the reporting limits (LOR) in sample calculated as 3*MDL. The LORs are far below the lower limits specified on ASTM E2371-13, demonstrating the excellent sensitivity of theAccuracyTo verify the accuracy of the results, NIST CRM 173C wasprepared with both acid mixtures and analyzed. The results from the two digestion acid mixtures are compared in Figure 4 and show that all the elements were within ± 10% of the certified values, demonstrating that both acid mixtures are suited for the that the Avio 550 Max system is capable of measuring elements at low levels by using MSF to correct for spectral interferences.Figure 4. Recoveries for the certified elements in CRM 173c sample digested with Figure 5. Recoveries for the spiked elements in NIST 173c sample.ConclusionThe results presented here demonstrate the ability of Avio 550 Max fully simultaneous ICP-OES to analyze challenging Ti alloy samples. The Flat Plate plasma technology, vertical torch design and dual view enable the Avio 550 Max to perform this analysis and obtain excellent recoveries from a wide concentration range. Multicomponent Spectral Fitting (MSF) was successfully applied for spectral interference correction, ensuring accurate results for all elements with excellent recoveries.Figure 3. LOR of analytes in Ti alloy measured (blue) and specified in LOR measured LOR specified in ASTM 2371References1. Matthew J. Donachie, Jr., Titanium, a Technical Guide, 2000.2. https:///3. A STM E2371-13, Standard Test Method for Analysis of Titanium and Titanium Alloys by Direct Current Plasma and Inductively Coupled Plasma Atomic Emission Spectrometry.4. G B/T 4698-2019, Methods for chemical analysis of titanium sponge, titanium and titanium alloys.5. H B 7716 -2002, Spectrometric analysis of titanium alloys.6. “Avio 550/560 Max ICP-OES Optical System and SCD Detector”, Technical Note, PerkinElmer, 2020.7. “Universal Data Acquisition in Syngistix Software for Avio 550/560 Max ICP-OES”, Technical Note, PerkinElmer, 2020.8. “Flat Plate Plasma Technology on the Avio Max Series ICP-OES”, Technical Note, PerkinElmer, 2020.9. “Vertical Dual View on the Avio Max Series ICP-OES”, Technical Note, PerkinElmer, 2020.10. “Multicomponent Spectral Fitting”, Technical Note,PerkinElmer, 2017.Consumables UsedFor a complete listing of our global offices, visit /ContactUsCopyright ©2023, PerkinElmer U.S. LLC. All rights reserved. PerkinElmer ® is a registered trademark of PerkinElmer U.S. LLC. All other trademarks are the property of their respective owners.PerkinElmer U.S. LLC 710 Bridgeport Ave.Shelton, CT 06484-4794 USA (+1) 855-726-9377。
司太立耐热耐磨硬质合金的化学成分和用途
密封座 ● 在 Co 基中硬度最高适用于陶
瓷。水泥工业螺旋输送机,各种 刀具,拉伸模等
名称
化学成分(质量分数%)
硬度③
制品种类、用途、特性④
主要用途
Co
Cr
W C Fe Ni 其他 (HRC) 铸 电 管垫 粉 金属 冲 水点 腐 冷间 热间
件 弧 圈棒 末 间磨 击 腐蚀 蚀 磨损 磨损
○○
○○
○ ○ ○ ○
管垫 圈棒
○ ○ ○
○
制品种类、用途、特性④
Hale Waihona Puke 粉 金属 冲 水点末 间磨 击 腐蚀
损
○
●
×
●
○
●
●
●
○
●
○
●
○
●
●
●
●
●
○
●
●
●
○
●
×
●
●
×
●
腐 冷间 蚀 磨损 ●● ●○
●●
●○
●○ ●● ●● ●●
热间 磨损
主要用途
● 密封环、各种刀具类、粉碎机, 轴类,搅拌器螺旋浆叶片、套管
棒
损
镍 司太立 No711② Co+Ni 27 W+ 2.7 23 —
-
钴 合
其余
Mo
金
10
G40 ○
海因斯合金○R
-
15
- 0.75 4 其 其余 G57 ○
各类刀具、挖掘钻、挤压螺旋、 链锯、各种阀门类
○○ × ● ● ●
● 除盐酸外,在腐蚀性气体种耐
No40
余
蚀性优异,适用于泵的柱塞阀
司太立合金
(3)美国司太立(Stellite)合金(表6-5-39)表6-5-39 司太立合金的牌号与化学成分(质量分数)(%)合金牌号化学成分(质量分数)(%)C Si Mn Cr Ni Mo Co W Fe 其他Stellite 1 2.5 ——33.0 ——余量13.0 ——Stellite 3 2.4 ——30.0 ——余量13.0 ——Stellite 3PM 2.3 1.0 1.0 31.0 ≤3.0—余量12.5 ≤3.0B1.0Stellite 4 1.0 ——33.0 ——余量14.0 ——Stellite 6 1.0 ——26.0 ——余量5.0 —Nb6.0Stellite 6KC 1.7 2.0 2.0 30.0 ≤3.0≤1.5余量4.5 ≤3.0—Stellite 6PM 1.1 1.5 1.0 29.0 ≤3.0≤1.5余量4.5 ≤3.0B≤1.0Stellite 7 0.4 ——26.0 ——余量6.0 ——Stellite 8 0.2 ——27.0 2.0 6.0 余量———Stellite 12 1.8 ——29.0 ——余量9.0 ——Stellite 12P 1.4 ——31.0 ——余量9.0 ——Stellite19 1.7 1.0 1.0 31.0 ≤3.0—余量10.5 ≤3.0B≤1.0Stellite 20 2.5 ——33.0 ——余量18.0 ——Stellite 21 0.20-0.30 1.0 1.0 25.0-29.0 1.75-3.75 5.0-6.0 余量—≤3.0B≤0.007Stellite 23 0.40 0.6 0.3 24.0 2.0 —余量5.0 1.0 —Stellite 25 0.1 ≤1.0 1.5 20.0 10.0 —余量15.0 ≤3.0S≤0.03Stellite 27 0.40 0.6 0.3 25.0 32.0 5.5量—10 —Stellite 30 0.45 0.6 0.6 26.0 15.0 6.0 余量— 1.0 —Stellite 31 0.45-0.55 1.0 1.0 24.5-26.5 9.5-11.5 —余量7.0-8.0 ≤2.0—Stellite 98M2 2.0 1.0 1.0 30.0 3.5 ≤0.80余量18.5 ≤2.5 B 1.1Stellite 156 1.6 1.1 ≤1.028.0 ≤30≤1.0余量4.0 —Stellite 157 0.1 1.6 —22.0 ≤2.0≤1.0余量4.5 ≤2.0B2.4Stellite 158 0.75 1.2 ≤1.026.0 ≤3.0≤1.0余量5.5 ≤2.0B0.7Stellite 159 0.1 3.3 —18.5 27.0 5.5 余量— 2.0 B3.2Stellite 190 3.25 0.85 ≤0.526.0 ≤3.0≤1.0余量14.5 ≤3.0—Stellite 190PM 3.2 1.0 1.0 26.0 ≤3.0—余量14.0 ≤3.0B≤1.0Stellite 228 0.1 ——26.0 — 3.0 余量—20.0 —Stellite 238 0.1 ——26.0 — 3.0 余量— 2.0 —Stellite 250 0.1 ——28.0 ——余量—20.0 Nb 2.0Stellite 251 0.3 ——28.0 ——余量—18.0 Nb 2.0Stellite 306 0.4 ——25.0 5.0 —余量2.0 —Nb 6.0Stellite 506 1.6 ——35.0 ——余量7.5 ——Stellite 694 0.85 1.0 1.0 28.0 5.0 —余量19.5 ≤3.0V1.0;B0.01Stellite 1040 2.00 ——33.0 ——余量18.0 ——Stellite 2006 1.3 1.2 —31.0 8.0 8.0 余量—18.0 —Stellite 2012 1.7 1.2 —33.0 8.0 10.0量—15.0 —Stellite F 2.0 ——25.0 22.0 —余量1.20 ——Stellite SF1 1.3 3.0 —19.0 13.0 —余量13.0 — B 2.5Stellite SF6 0.7 3.0 —19.0 13.0 —余量8.0 —B1.7Stellite SF12 0.9 2.5 —19.0 13.0 —余量9.0 — B 1.8Stellite SF20 1.5 3.0 —19.0 13.0 —余量15.0 — B 3.0Stellite X90 0.5 ——26.0 10.0 —余量7.0 ——Stellite T40 2.0 ——34.0 ——余量19.0 ——stellite合金-stellite合金基本概念stellite合金是钴基合金的典型代表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Selection Table
Resistance Low Satisfactory Very Good Excellent
ALLOY Stellite™ Deloro™ Tribaloy™ Nistelle™ Delcrome™ Stelcar™ Jet Kote™
MECHANICAL WEAR
CORo welding consumables, Kennametal Stellite also offers its expertise and experience in coating services in the form of HVOF (HighVelocity Oxy Fuel) coatings and weld hardfacings. In the UK and in Shanghai, hardfaced components can be manufactured complete to drawing by in-house machine shops.
ALLOYS HARDFACING ALLOYS
Hardfacing Alloys
Kennametal Stellite is a global provider of solutions to wear, heat, and corrosion problems and is a world-class manufacturer of alloybased materials and components. These consumables come in the form of rod, wire, powder, and electrode and can be custom engineered to meet individual customer needs.
DelcromeTM Alloys
These iron-based alloys were developed to resist abrasive wear at lower temperatures, typically up to 200º C. When compared with our cobalt- and nickel-based alloys, their corrosion resistance is also comparatively low.
HIGH OPERATING TEMPERATURE
/stellite
3
Hardfacing Alloys TIG and Oxy-Acetylene Welding
Stelcar™ Alloys
Stelcar™ alloys are mixtures of carbide particles and nickel- or cobalt-based powders. Due to their construction, Stelcar™ materials are available only in powder form, for application by thermal spraying or weld hardfacing.
2
/stellite
NistelleTM Alloys
Nistelle™ alloys are designed for corrosion resistance rather than wear resistance, particularly in aggressive chemical environments where their high chromium and molybdenum contents provide excellent pitting resistance. As a class, they are also generally resistant to high-temperature oxidation and hot gas corrosion. Care should be taken to select the correct alloy for any given corrosive environment.
Jet KoteTM Powder
Jet Kote™ powders are used for thermal spraying, and they usually consist of either a carbide-metal combination (e.g., WC-Co or Cr3Cr2-NiCr) or a Stellite™ alloy.
TribaloyTM Alloys
Tribaloy™ alloys, with either nickel or cobalt base, were developed for applications in which extreme wear is combined with high temperatures and corrosive media. Their high molybdenum content accounts for the excellent dry-running properties of Tribaloy™ alloys and makes them very suitable for use in adhesive (metal-tometal) wear situations. Tribaloy™ alloys can be used up to 800–1000° C (1472–1832° F).
Hardfacing Alloys At a Glance
Hardfacing Alloys At a Glance
Hardfacing Alloys
StelliteTM Alloys
The cobalt-based Stellite™ alloys are our most wellknown and successful alloys, with the best “all-round” properties. They combine excellent mechanical wear resistance, especially at high temperatures, with very good corrosion resistance. The Stellite™ alloys are mostly cobalt based with additions of Cr, C, W, and/or Mo. They are resistant to cavitation, corrosion, erosion, abrasion, and galling. The lower carbon alloys are generally recommended for cavitation, sliding wear, or moderate galling. The higher carbon alloys are usually selected for abrasion, severe galling, or lowangle erosion. Stellite™ 6 is our most popular alloy as it provides a good balance of all of these properties. The Stellite™ alloys retain their properties at high temperatures where they also have excellent oxidation resistance. They are typically used in the temperature range 315–600° C (600–1112° F). They can be finished to exceptional levels of surface finish with a low coefficient of friction to give good sliding wear.
DeloroTM Alloys
The Deloro™ alloys are nickel based with additions of typically Cr, C, B, Fe, and Si. They cover a very wide range of hardness from soft, tough, build-up alloys that are easily machined or hand finished to exceptionally hard, wear-resistant alloys. They can be selected for hardnesses of between 20 and 62 HRC depending on the application. Their low melting point makes these powders ideal for spray/fuse or powder welding applications. The lower hardness Deloro™ alloys are typically used for glass forming molds. The higher hardness Deloro™ alloys are used in severe wear applications, such as rebuilding the flights of feeder screws, and they can be blended with carbides for an even harder deposit. They maintain their properties up to temperatures of about 315° C (600° F) and also offer good oxidation resistance.