神经网络系统建模综述

合集下载

大脑神经网络连接建模

大脑神经网络连接建模

大脑神经网络连接建模大脑是人类最神秘、最复杂的器官之一,其中神经网络的表现和功能一直是研究人员关注的焦点。

大脑神经网络连接建模是一种通过模拟大脑神经元之间的连接、传递和处理信息的过程,来解析大脑认知活动的方法。

大脑是由上百亿个神经元组成的,它们之间通过神经突触进行信息传递。

通过建立神经网络连接模型,研究者可以更好地理解大脑的工作原理,揭示认知和行为的基本机制。

神经网络连接建模的关键是建立神经元之间连接的拓扑结构。

大脑的神经网络是高度复杂、互连的,可以分为多个脑区和亚区,每个区域都有不同的功能和特性。

因此,研究者需要根据不同脑区的特点来构建连接模型,以便更好地模拟大脑的整体工作过程。

在建模过程中,研究者通常通过采集大脑的结构和功能数据来获取连接信息。

结构数据包括脑区的解剖特征、体积和形状等,而功能数据则反映了大脑在特定任务下的活动模式。

这些数据可以通过核磁共振成像(MRI)和脑电图(EEG)等技术获取。

建立连接模型后,研究者需要进行大脑功能网络的分析和探索。

他们可以使用图论、复杂网络理论和机器学习等方法,来研究神经网络的拓扑结构、节点之间的关联和信号传递等特征。

通过这些分析方法,研究者可以揭示大脑网络的特性,如小世界结构、高度聚集性和无标度网络特性等。

此外,大脑神经网络连接建模还可用于探索大脑疾病的机制和治疗方法。

例如,研究者可以对比正常大脑和病理大脑的连接模型,发现病理性变化的特征和变化。

这有助于理解疾病的发病机制,并为相关疾病的诊断和治疗提供依据。

除了理论模型外,研究者还可以利用计算机模拟来研究大脑神经网络的连接和功能。

计算机模拟可以模拟大脑中的庞大神经网络,通过调整不同的参数和拓扑结构,来探索不同条件下神经网络的行为和功能。

总之,大脑神经网络连接建模是研究者解析大脑认知机制的重要手段。

通过构建神经网络的连接模型,分析网络的拓扑结构和功能特征,研究者可以更好地理解大脑的工作原理和机制。

这项研究对于认知科学、神经科学和临床医学都具有重要意义,有望为人类认知和大脑疾病的研究提供新的思路和方法。

大脑神经网络建模及其功能意义

大脑神经网络建模及其功能意义

大脑神经网络建模及其功能意义简介:人类大脑是一个复杂且神秘的器官,其中神经元通过复杂的网络连接和相互作用,构成了一个庞大的神经网络系统。

大脑神经网络建模是研究人脑结构和功能的重要手段之一。

通过模拟和探索神经网络的构建和工作原理,我们可以更好地理解大脑在认知、感知、学习等方面的功能意义。

一、大脑神经网络建模方法1. 静态建模静态建模是一种将大脑神经网络表示为静态连接模式的方法。

这种方法可以通过扫描和图像处理技术,将大脑的结构和连接关系转化为图像或网络拓扑图。

静态建模的优点是简单易懂,可以提供有关大脑区域之间连接性的信息。

然而,它无法揭示大脑的动态特性和信息传递过程。

2. 动态建模动态建模是一种模拟大脑神经网络活动的方法。

通过建立数学模型、仿真计算等手段,可以模拟大脑神经元之间的相互作用和信息传递过程。

这种方法可以更加真实地模拟和理解大脑的动态功能。

然而,由于大脑神经网络的复杂性,动态建模需要大量的计算资源和高级的算法支持。

二、大脑神经网络建模的功能意义1. 深入理解大脑运作机制大脑神经网络建模可以帮助我们深入理解大脑的运作机制。

通过模拟和分析神经网络的动态特性,可以揭示神经元之间的相互影响和信息传递过程。

这有助于我们更好地理解大脑在认知、感知、学习等方面的机制和原理。

2. 解释认知功能与行为大脑神经网络建模还可以帮助我们解释人类的认知功能和行为。

通过与实际观测和实验结果进行比对,我们可以验证和验证神经网络模型的准确性和可靠性。

这有助于我们探索和理解认知功能与行为的本质。

3. 治疗神经系统疾病大脑神经网络建模对于治疗神经系统疾病也具有重要意义。

通过建立神经网络模型,我们可以模拟疾病对大脑神经网络的影响,从而更好地理解并设计相关的治疗方法。

这为神经系统疾病的治疗和康复提供了重要的依据和指导。

4. 辅助人工智能设计大脑神经网络建模还可以为人工智能的设计和开发提供有益的启示。

人脑作为高度智能的系统,具有强大的信息处理能力。

数学建模神经网络建模

数学建模神经网络建模

通过研究更有效的正则化方法和集成学习 等技术,提高神经网络的泛化能力,减少 过拟合现象。
随着深度学习技术的不断发展,未来可以 探索更多新型的神经网络结构,以解决传 统神经网络在某些特定领域的应用局限。
结合其他数学建模方法
强化神经网络的解释性
将神经网络与其他数学建模方法(如统计 模型、图模型等)相结合,可以发挥各自 的优势,提高模型的性能和解释性。
使用神经网络解决实际问题的案例三
总结词:语音识别
详细描述:神经网络在语音识别领域的应用,通过训练神经网络识别语音信号中的特征,可以实现语 音转文字、语音合成等功能,提高语音识别的准确性和自然度。
05
CATALOGUE
总结与展望
神经网络在数学建模中的优势与局限性
强大的非线性拟合能力
神经网络能够学习并拟合复杂的非线 性关系,适用于各种复杂的数学模型 。
神经网络的结构与工作原理
前向传播
输入数据通过神经网络传递,经过各层处理后得到输 出。
反向传播
根据输出与实际结果的误差,调整神经网络的权重。
训练与优化
通过反复迭代,使神经网络逐渐适应任务,提高准确 率。
神经网络的训练与优化
损失函数
衡量模型预测结果与实际结果的差距,用于 指导权重调整。
梯度下降
一种优化算法,通过计算损失函数的梯度来 更新权重。
研究如何提高神经网络的解释性,使其决 策过程更加透明和可理解,是未来发展的 重要方向之一。
THANKS
感谢观看
实例
股票价格预测、气候变化模型等。
神经网络在分类问题中的应用
总结词
神经网络在分类问题中能够自动提取特征,并实现高效分类。
详细描述
分类问题要求将输入数据分为不同的类别。神经网络通过训练可以学习从输入数据中提取 有意义的特征,并根据这些特征进行分类。常见的应用包括图像分类、自然语言处理等。

人体神经网络系统建模及功能解析分析

人体神经网络系统建模及功能解析分析

人体神经网络系统建模及功能解析分析人体的神经网络系统是一个复杂而精密的组织,由大脑、脊髓和周围神经组成。

它具有多种功能,包括感知、运动控制、内脏活动的调节以及思维和意识的产生。

本文将对人体神经网络系统的建模和功能进行解析分析。

首先,人体的神经网络系统可以通过建模来理解其结构和功能。

建模的目标是对整个系统进行抽象和描述,以便更好地研究和理解其运行机制。

建模可以基于不同层次和尺度的方法,包括分子、细胞、组织和器官水平。

例如,分子层面的建模可以研究神经递质在突触传递中的作用,细胞层面的建模可以研究神经元的电活动和兴奋性传导,组织层面的建模可以研究不同脑区之间的连接和信息传递,器官层面的建模可以研究大脑和脊髓在整体行为和认知中的作用。

其次,神经网络系统的功能可以通过分析其组成部分的相互作用来进行解析。

神经元是神经网络系统的基本单位,它们之间通过突触连接形成复杂的网络。

神经元的兴奋性传导和突触传递是神经网络系统功能实现的关键。

神经元的兴奋性传导是指当神经元受到足够的刺激时,电信号会沿着它的轴突传导到突触,并通过神经递质释放到下一个神经元。

突触传递是指神经递质在突触间隙中传递,以影响下一个神经元的兴奋性状态。

这些传导和传递过程的细节和效率对于神经网络系统的功能实现至关重要。

神经网络系统的功能还可通过研究特定区域和结构的功能分化来进行解析。

大脑是神经网络系统的核心,负责高级认知功能、意识、思维和情感调节。

大脑有多个区域和结构,每个区域和结构都有特定的功能。

例如,脑干控制基本的生命维持功能,大脑皮层负责感知和运动控制,海马体负责记忆和学习等。

通过研究这些区域和结构的功能分化,可以更深入地了解神经网络系统的整体功能。

此外,神经网络系统的功能可以通过研究其在疾病状态下的改变来进行解析。

神经网络系统在多种神经系统疾病中发挥关键作用,如阿尔茨海默病、帕金森病和精神分裂症等。

通过比较疾病和健康状态下神经网络系统的差异,可以揭示疾病的发病机制和病理过程,为疾病的诊断和治疗提供理论基础。

神经网络的建模和优化

神经网络的建模和优化

神经网络的建模和优化一、引言近年来,神经网络作为一种高效的人工智能模型在各个领域得到广泛应用。

如何对神经网络进行建模和优化,是目前研究的热点之一。

本文将从神经网络的基本概念入手,介绍神经网络的建模和优化过程。

二、神经网络的基本概念神经网络是一种模拟生物神经元之间互相连接的复杂网络结构,它可以通过学习来实现对各种输入输出之间的关系进行预测和识别。

神经网络通常由输入层、隐藏层和输出层三个部分组成。

其中输入层用于接收输入信号,输出层用于输出预测结果,而隐藏层则可以有多个,在其中进行信息的转化和处理。

三、神经网络的建模过程在神经网络的建模过程中,需要确定神经网络的拓扑结构、选择合适的激活函数和设计合理的损失函数等方面问题。

1. 确定神经网络的拓扑结构拓扑结构是神经网络的关键设计参数之一,它影响着神经网络的表示能力和计算效率。

常见的神经网络拓扑结构包括多层感知机(Multilayer Perceptron,MLP)、卷积神经网络(ConvolutionalNeural Network,CNN)和循环神经网络(Recurrent Neural Network,RNN)等。

在实际应用中,需要根据输入数据的属性和实际问题的需求来选择合适的神经网络拓扑结构。

2. 选择合适的激活函数在神经网络中,激活函数被用来实现非线性变换,增加神经网络的表达能力。

常用的激活函数包括Sigmoid函数、ReLU函数等。

在实际应用中,需要根据数据的属性和问题的特点来选择合适的激活函数。

3. 设计合理的损失函数损失函数是神经网络优化的核心,它用于度量预测结果与实际结果之间的差异。

不同的损失函数适用于不同的问题,例如,均方误差(Mean Squared Error,MSE)适用于回归问题,交叉熵(Cross-Entropy)适用于分类问题等。

四、神经网络的优化过程神经网络的优化过程是通过参数的调整来使得损失函数最小化,从而提高模型的预测准确性。

神经网络的建模和训练方法

神经网络的建模和训练方法

神经网络的建模和训练方法神经网络是一种基于生物神经系统的计算模型,通过多层感知机或深度学习算法等方法,实现对复杂数据的建模和预测。

神经网络是一种非常强大的人工智能技术,已经在图像识别、自然语言处理、语音识别、医疗诊断、金融风险评估、智能化控制等领域得到了广泛应用。

在本文中,我们将探讨神经网络的建模和训练方法,以及这些方法的优缺点和适用范围。

一、神经元和神经网络的基本原理神经元是神经网络的最小单元,通过接收输入信号和根据权重计算输出信号来模拟人类神经系统中的神经元。

神经网络由多个神经元相互连接而成,每个神经元都具有一组权重,用于计算输入信号的加权和,输出结果再通过激活函数进行处理。

而神经网络的层数和神经元数量取决于数据的复杂度以及模型的性能需求。

二、神经网络的建模方法神经网络的建模方法包括有监督学习、无监督学习和半监督学习等,下面将分别对它们进行介绍。

1.有监督学习有监督学习是一种通过有标签数据进行训练的方法,通过最小化模型预测与真实输出之间的损失函数,不断优化神经网络的参数和权重,使其在新的未标记数据上取得更好的性能。

有监督学习主要可以用于分类、回归和序列预测等问题。

2.无监督学习无监督学习是一种没有标注数据的训练方法,通过最大化观测数据的联合分布,并通过生成模型、聚类和降维等方法来学习输入数据的内在结构。

无监督学习可以用于数据聚类、降噪、特征学习、生成模型、推荐系统等领域。

3.半监督学习半监督学习是一种同时使用有标记和无标记数据进行训练的方法。

这种方法可以最大化模型的预测精度,并且可以在减少数据标注量的情况下提高模型性能。

半监督学习可以用于文本分类、语音识别、图像分类等场景。

三、神经网络的训练方法神经网络的训练方法包括误差反向传播、遗传算法和蚁群算法等,下面将分别对它们进行介绍。

1.误差反向传播误差反向传播是一种广泛使用的神经网络训练方法,通过计算神经网络的输出误差,再反向传播到各层神经元进行权重的修正。

神经网络复杂神经网络的建模与分析

神经网络复杂神经网络的建模与分析

神经网络复杂神经网络的建模与分析神经网络是人工智能领域中一种重要的算法模型,它模拟了人类的神经系统,能够实现复杂的模式识别和学习能力。

本文将介绍神经网络的建模和分析方法,帮助读者更加深入地理解这一技术。

一、神经网络模型的基本结构神经网络由各种神经元和它们之间的连接构成,一般包括输入层、隐藏层和输出层。

每个神经元都有输入和输出,通过连接权重和激活函数来实现信息的传递和处理。

神经网络的结构可以用图示方式表示,每个神经元用圆圈表示,连接线表示神经元之间的连接关系。

在确定神经网络的结构时,需要考虑输入和输出的特点,合理设置隐藏层的数目和神经元数量。

通常情况下,隐藏层越多,神经网络的学习能力和表达能力越强,但也增加了计算复杂度和训练时间。

二、神经网络建模的步骤神经网络建模的过程包括确定输入和输出的特征向量、选择合适的激活函数和损失函数、设计合理的网络结构、初始化权重和偏置、以及通过训练算法进行参数的优化调整。

1. 特征向量的选择神经网络的输入通常是特征向量,特征向量的选择对建模效果至关重要。

特征向量应该包含能够表达问题特点的关键信息,同时还要避免维度过高和冗余的特征。

常见的特征选择方法有主成分分析(PCA)和线性判别分析(LDA)等。

2. 激活函数和损失函数的选择激活函数决定了神经元的输出值,常用的激活函数有Sigmoid函数、ReLU函数和Tanh函数等。

损失函数用于衡量神经网络模型的预测结果与真实值的差距,常见的损失函数有均方误差(MSE)和交叉熵损失函数等。

激活函数和损失函数的选择应根据具体问题进行权衡。

3. 网络结构的设计根据问题的复杂程度和数据的特点,设计合理的网络结构是神经网络建模的重要一步。

通过增加隐藏层和神经元的数量,可以提高网络的学习能力和表达能力,但也会增加训练时间和计算复杂度。

在网络结构设计时,需要考虑到是否存在过拟合和欠拟合的问题。

4. 权重和偏置的初始化权重和偏置的初始化对神经网络的训练起到重要影响。

人工神经网络模型算法和应用的综述

人工神经网络模型算法和应用的综述

人工神经网络模型算法和应用的综述人工神经网络(Artificial Neural Network,ANN)是一种模仿生物神经网络的计算模型,由许多人工神经元节点组成。

它通过模拟人类神经系统的工作方式,实现对信息的处理和学习能力。

随着计算机科学和人工智能领域的发展,人工神经网络模型算法和应用得到了广泛的研究和应用。

本文将对人工神经网络模型算法以及其在各个领域中的应用进行综述。

一、人工神经网络模型算法1. 感知器模型感知器模型是最早应用于人工神经网络中的一种模型。

它由多个输入节点和一个输出节点组成,通过对输入节点和权重的线性组合,利用激活函数将结果转化为输出。

感知器模型的简单结构和快速训练特性使得它在二分类问题中得到广泛应用。

2. 多层前馈神经网络(Feedforward Neural Network,FNN)多层前馈神经网络是一种典型的人工神经网络模型。

它由多个神经元层组成,每一层的神经元与上一层的神经元全连接。

信息在网络中只向前传递,从输入层经过隐藏层最终到达输出层。

多层前馈神经网络通过反向传播算法进行训练,可以应用于各种复杂的非线性问题。

3. 循环神经网络(Recurrent Neural Network,RNN)循环神经网络是一种具有反馈环的神经网络模型。

它在网络中引入了记忆机制,使得信息可以在网络中进行循环传播。

循环神经网络适用于序列数据的处理,如自然语言处理和时间序列预测等任务。

4. 卷积神经网络(Convolutional Neural Network,CNN)卷积神经网络是一种专门用于图像识别和处理的人工神经网络模型。

它通过卷积层、池化层和全连接层等组件,实现对图像中特征的提取和分类。

卷积神经网络在计算机视觉领域中具有重要的应用,如图像分类、目标检测和语义分割等任务。

二、人工神经网络的应用1. 自然语言处理人工神经网络在自然语言处理中具有广泛的应用。

例如,利用循环神经网络可以实现语言模型和机器翻译等任务;利用卷积神经网络可以进行文本分类和情感分析等任务。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

神经网络系统建模综述一、人工神经网络简介1.1人工神经网络的发展历史人工神经网络早期的研究工作应追溯至本世纪40年代。

下面以时间顺序,以著名的人物或某一方面突出的研究成果为线索,简要介绍人工神经网络的发展历史。

1943年,心理学家W·Mcculloch和数理逻辑学家W·Pitts在分析、总结神经元基本特性的基础上首先提出神经元的数学模型。

此模型沿用至今,并且直接影响着这一领域研究的进展。

因而,他们两人可称为人工神经网络研究的先驱。

1945年冯·诺依曼领导的设计小组试制成功存储程序式电子计算机,标志着电子计算机时代的开始。

50年代末,F·Rosenblatt设计制作了“感知机”,它是一种多层的神经网络。

这项工作首次把人工神经网络的研究从理论探讨付诸工程实践。

在60年代初期,Widrow提出了自适应线性元件网络,这是一种连续取值的线性加权求和阈值网络。

后来,在此基础上发展了非线性多层自适应网络。

当时,这些工作虽未标出神经网络的名称,而实际上就是一种人工神经网络模型。

80年代初期,模拟与数字混合的超大规模集成电路制作技术提高到新的水平,完全付诸实用化,此外,数字计算机的发展在若干应用领域遇到困难。

这一背景预示,向人工神经网络寻求出路的时机已经成熟。

美国的物理学家Hopfield于1982年和1984年在美国科学院院刊上发表了两篇关于人工神经网络研究的论文,引起了巨大的反响。

人们重新认识到神经网络的威力以及付诸应用的现实性。

随即,一大批学者和研究人员围绕着Hopfield提出的方法展开了进一步的工作,形成了80年代中期以来人工神经网络的研究热潮。

1.2人工神经网络的工作原理人工神经网络是由大量处理单元广泛互连而成的网络结构,是人脑的抽象、简化和模拟。

人工神经网络就是模拟人思维的第二种方式。

这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。

虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。

人工神经网络首先要以一定的学习准则进行学习,然后才能工作。

所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。

1.3人工神经网络的特性人工神经网络具有初步的自适应与自组织能力。

在学习或训练过程中改变突触权重值,以适应周围环境的要求。

同一网络因学习方式及内容不同可具有不同的功能。

人工神经网络是一个具有学习能力的系统,可以发展知识,以致超过设计者原有的知识水平。

通常,它的学习训练方式可分为两种,一种是有监督或称有导师的学习,这时利用给定的样本标准进行分类或模仿;另一种是无监督学习或称无导师学习,这时,只规定学习方式或某些规则,则具体的学习内容随系统所处环境(即输入信号情况)而异,系统可以自动发现环境特征和规律性,具有更近似人脑的功能。

二、神经网络系统建模方法2.1 基于人工神经网络的建模技术2.1.1 正向建模正向建模是指训练一个神经网络表达系统正向动态的过程,这一过程建立的神经网络模型称为正向模型。

在正向模型的结构中,神经网络与待辨识的系统并联,两者的输出误差用做网络的训练信号。

显然,这是一个典型的有教师学习问题。

实际系统作为教师,向神经网络提供算法所需的期望输出。

当系统是被控对象或传统控制器时,神经网络一般采用多层前向网络的形式,可直接选用BP 网络或它的各种变形。

而当系统为性能评价器时,则可选择再励学习算法,这时既可以采用具有全局逼近能力的网络,如多层感知器,也可选用具有局部逼近能力的网络,如小脑模型关节控制器等[2]。

2.1.2 逆向建模建立动态系统的逆模型,在神经网络控制中起着关键作用,并且得到了非常广泛的应用。

其中比较简单的是直接逆建模法。

直接逆建模也称为广义逆学习。

从原理上说,这是一种最简单的方法。

拟辨识的系统输出作为网络的输入,网络输出与系统输入比较,相应的输入误差用于训练,因此网络将通过学习建立系统的逆模型。

但是如果所辨识的非线性系统是不可逆的,利用上述方法,将得到一个不正确的逆模型。

因此,在建立系统逆模型时,可逆性应该事先有所保证[3]。

2.2利用人工神经网络求解问题的一般步骤在实际应用中,面对一个具体的问题时,首先需要分析利用神经网络求解问题的性质,然后根据问题特点,确定网络模型。

最后通过对网络进行训练、仿真等,检验网络的性能是否满足要求。

这一过程一般包括:(1)确定信息表达方式将领域问题及其相应的领域知识转化为网络可以接受并处理的形式,即将领域问题抽象为适合于网络求解的某种数据形式。

(2)网络模型的确定根据问题的实际情况,选择模型的类型、结构等。

另外,还可在典型网络模型的基础上,结合问题的具体情况,对原网络进行变形、扩充等,同时还可以采用多种网络模型的组合形式。

(3)网络参数的选择确定网络输入/输出神经元的数目,如果是多层网络,还需要进一步确定隐含层神经元的个数。

对于反馈神经网络,如Hopfield 网络和Elman 网络,还需要进一步地设置反馈神经元的有关属性。

(4)训练模式的确定包括选择合理的训练算法,确定合适的训练步数,指定适当的训练目标误差,以获得较好的网络性能。

(5)网络测试选择合理的测试样本,对网络进行测试,或者将网络应用于实际问题,检验网络性能。

需要注意的是,网络测试过程需要遵循“交叉测试”的原则,保证测试的有效性、准确性和全面性。

三、典型模型介绍3.1 BP神经网络1986年,Rumelhart等提出了误差反向传播神经网络,简称BP网络(Back Propagation),该网络是一种单向传播的多层前向网络。

误差反向传播的BP算法简称BP算法,其基本思想是梯度下降法。

它采用梯度搜索技术,以期使网络的实际输出值与期望输出值的误差均方值为最小。

3.1.1 BP网络特点(1)是一种多层网络,包括输入层、隐含层和输出层;(2)层与层之间采用全互连方式,同一层神经元之间不连接;(3)权值通过δ学习算法进行调节;(4)神经元激发函数为S函数;(5)学习算法由正向传播和反向传播组成;(6)层与层的连接是单向的,信息的传播是双向的。

3.1.2 BP网络结构含一个隐含层的BP网络结构如图1所示,图中i 为输入层神经元,j 为隐层神经元,k 为输出层神经元。

图1 BP神经网络结构3.1.3 BP网络的逼近BP算法的学习过程由正向传播和反向传播组成。

在正向传播过程中,输入信息从输入层经隐层逐层处理,并传向输出层,每层神经元(节点)的状态只影响下一层神经元的状态。

如果在输出层不能得到期望的输出,则转至反向传播,将误差信号(理想输出与实际输出之差)按联接通路反向计算,由梯度下降法调整各层神经元的权值,使误差信号减小。

3.1.4 BP网络的优缺点由于BP网络具有很好的逼近非线性映射的能力,该网络在模式识别、图像处理、系统辨识、函数拟合、优化计算、最优预测和自适应控制等领域有着较为广泛的应用。

虽然BP网络得到了广泛的应用,但自身也存在一些缺陷和不足,主要包括以下几个方面的问题。

首先,由于学习速率是固定的,因此网络的收敛速度慢,需要较长的训练时间。

对于一些复杂问题,BP算法需要的训练时间可能非常长,这主要是由于学习速率太小造成的,可采用变化的学习速率或自适应的学习速率加以改进。

其次,BP算法可以使权值收敛到某个值,但并不保证其为误差平面的全局最小值,这是因为采用梯度下降法可能产生一个局部最小值。

对于这个问题,可以采用附加动量法来解决。

再次,网络隐含层的层数和单元数的选择尚无理论上的指导,一般是根据经验或者通过反复实验确定。

因此,网络往往存在很大的冗余性,在一定程度上也增加了网络学习的负担。

最后,网络的学习和记忆具有不稳定性。

也就是说,如果增加了学习样本,训练好的网络就需要从头开始训练,对于以前的权值和阈值是没有记忆的。

3.2 RBF网络RBF网络是一种三层前向网络,由于输入到输出的映射是非线性的,而隐含层空间到输出空间的映射是线性的,从而可以大大加快学习速度并避免局部极小问题。

3.2.1 RBF网络结构图2 RBF网络结构3.2.2 RBF网络的逼近采用RBF网络逼近一对象的结构如图3所示。

图3 RBF神经网络逼近3.3 回归神经网络对角回归型神经网络(DRNN:Diagonal Recurrent Neural Network)是具有反馈的动态神经网络,该网络能够更直接更生动地反映系统的动态特性,它在BP网络基本结构的基础上,通过存储内部状态使其具备映射动态特征的功能,从而使系统具有适应时变特性的能力,DRNN网络代表了神经网络建模和控制的方向。

3.3.1 DRNN网络结构DRNN网络是一种三层前向网络,其隐含层为回归层。

正向传播是输入信号从输入层经隐层传向输出层,若输出层得到了期望的输出,则学习算法结束;否则,转至反向传播。

反向传播就是将误差信号(理想输出与实际输出之差)按联接通路反向计算,由梯度下降法调整各层神经元的权值和阈值,使误差信号减小。

DRNN网络结构如图4所示。

图4 DRNN神经网络结构3.3.2 DRNN网络的逼近DRNN网络逼近的结构如图5所示,图中k为网络的迭代步骤,u(k)和y(k)为辨识器的输入。

DRNN为网络辨识器。

y(k)为被控对象实际输出,ym(k)为DRNN的输出。

将系统输出y(k)及输入u(k)的值作为辨识器DRNN的输入,将系统输出与网络输出的误差作为辨识器的调整信号。

图5 DRNN神经网络逼近四、神经网络的应用4.1 图像压缩编码Ackley 和Hinton 等人提出了利用 B P 网络实现数据编码的基本思想。

其原理是 ,把一组输入模式通过少量的隐层节点映射到一组输出模式 ,并使输出模式等同与输入模式。

当中间隐层的节点数比输入模式维数少时 ,就意味着隐层能更有效地表现输入模式 ,并把这种表现传给输出层。

在这个过程中 ,输入层和隐层的变换可以看成是压缩编码的过程 ; 而隐层和输出层的变换可以看成是解码过程。

4.2 人脸识别对人脸识别是人类最伟大的视觉功能之一 ,神经网络受动物神经系统启发 ,利用大量简单处理单元互联而构成的复杂系统 ,以解决复杂模式识别和行为控制问题。

将人工神经网络用于人脸识别 , 建立了人脸识别模型 , 通过对输入图像实行图像压缩、图像抽样及输入矢量标准化等图像预处理 ,将标准化矢量输入神经网络进行训练。

神经网络用于人脸识别时 , 网络的每一个输入节点对应样本的一个特征,而输出节点数等于类别数 , 一个输出节点对应一个类。

4.3 故障诊断对于故障诊断而言 ,其核心技术是故障模式识别。

而人工神经网络由于其本身信息处理特点 ,如并行性、自学习、自组织性、联想记忆等 ,使得能够出色地解决那些传统模式识别难以圆满解决的问题 ,所以故障诊断是人工神经网络的重要应用领域之一 ,已有不少应用系统的报道。

相关文档
最新文档