激光干涉测长

激光干涉测长
激光干涉测长

迈克尔逊干涉仪

在干涉过程中,如果两束光的光程差是光波长的整数倍(0,1,2……),在光检测器上得到的是相长的干涉信号;如果光程差是半波长的奇数倍(0.5,1.5,2.5……),在光检测器上得到的是相消的干涉信号。当两面平面镜严格垂直时为等倾干涉,其干涉光可以在屏幕上接收为圆环形的等倾条纹;而当两面平面镜不严格垂直时是等厚干涉,可以得到以等厚交线为中心对称的直等厚条纹。在光波的干涉中能量被重新分布,相消干涉位置的光能量被转移到相长干涉的位置,而总能量总保持守恒。19世纪末人们通过使用气体放电管、滤色镜、狭缝或针孔成功得到了迈克耳孙干涉仪的干涉条纹,而在一个版本的迈克耳孙-莫雷实验中采用的光源是星光。星光不具有时间相干性,但由于其从同一个点光源发出而具有足够好的空间相干性,从而可以作为迈克耳孙干涉仪的有效光源。

激光切割

激光笔

双频激光干涉仪

马赫-曾德尔干涉仪

索菲干涉仪

1.仪器构造简介

实验室中最常用的迈克耳逊干涉仪,其原理图和结构图如图1和图2所示。M1和M2是在

相互垂直的

图1

图2

两臂上放置的两个平面反射镜,其背面各有三个调节螺旋,用来调节镜面的方位;M2是固定的,M1由精密丝杆控制,可沿臂轴前后移动,其移动距离由转盘读出。仪器前方粗动手轮分度值为10-2mm,右侧微动手轮的分度值为10-4mm,可估读至10-5mm,两个读数手轮属于蜗轮蜗杆传动系统。在两臂轴相交处,有一与两臂轴各成45o的平行平面玻璃板P1,且在P1的第二平面上镀以半透(半反射)膜,以便将入射光分成振幅近乎相等的反射光1和透射光2,故P1板又称为分光板。P2也是一平行平面玻璃板,与P1平行放置,厚度和折射率均与P1相同。由于它补偿了1与2之间附加的光程差,故称为补偿板。

从扩展光源S射来的光,到达分光板P1后被分成两部分。反射光1在P1处反射后向着M1前进;透射光2透过P1后向着M2前进。这两列光波分别在M1、M2上反射后沿着各自的入射方向返回,最后都到达E处。既然这两列光波来自光源上同一点O,因而是相干光,在E 处的观察者能看到干涉图样。

由于从M2返回的光线在分光板P1的第二面上反射,使M2在M1附近形成一平行于M1的虚像M?2,因而光在迈克耳逊干涉仪中自M1和M2的反射,相当于自M1和M?2的反射。由此

可见,在迈克耳逊干涉仪中所产生的干涉与厚度为d的空气膜所产生的干涉是等效的。

2.实验原理

当M1和M?2严格平行时,所得的干涉为等倾干涉。所有倾角为i的入射光束,由M1和M?2反射光线的光程差Δ均为

(1)

式中i为光线在M1镜面的入射角,d为空气薄膜的厚度,它们将处于同一级干涉条纹,并定位于无限远。这时,在图1中的E处,放一会聚透镜,在其焦平面上(或用眼在E处正对P1观察),便可观察到一组明暗相间的同心圆纹。这些条纹的特点是:

干涉条纹的级次以中心为最高。在干涉纹中心,因i=0,由圆纹中心出现亮点的条件

(2)

得圆心处干涉条纹的级次

(3)

当M1和M′2的间距d逐渐增大时,对于任一级干涉条纹,例如第k级,必定以以其

的值来满足,故该干涉条纹向变大(变小)的方向移动,即向外扩展。这时,观察者将看到条纹好像从中心向外“涌出”,且每当间距d增加时,就有一个条纹涌出。反之,当间距由大逐渐变小时,最靠近中心的条纹将一个一个地“陷入”中心,且每陷入一个条纹,间距的改变亦为。

因此,只要数出涌出或陷入的条纹数,即可得到平面镜M1以波长λ为单位的移动距离。显然,若有N个条纹从中心涌出时,则表明M1相对于M′2移远了

(4)

反之,若有N个条纹陷入时,则表明M1和M?2移近了同样的距离。根据(4)式,如果已知光波的波长λ,便可由条纹变动的数目,计算出M1移动的距离和干涉条纹变动的数目,便可算出光波的波长。

本次实验每组测量N取50个条纹的“涌出”或“陷入”,并在迈氏干涉仪上读出,便可知的值,则mm nm

迈克尔孙干涉仪

激光干涉仪功能与应用

SJ6000激光干涉仪产品具有测量精度高、测量速度快、测量范围大、分辨力高等优点。通过与不同的光学组件结合,可以实现对线性、角度、平面度、直线度(平行度)、垂直度、回转轴等参数的精密测量,并能对设备进行速度、加速度、频率-振幅、时间-位移等动态性能分析。 在相关软件的配合下,可自动生成误差补偿方案,为设备误差修正提供依据。

1.静态测量 SJ6000激光干涉仪的系统具有模块化结构,可根据具体测量需求选择不同组件。SJ6000基本线性测量配置: 图1-基本线性配置 SJ6000全套镜组:

图2-SJ6000全套镜组 镜组附件: 图3-SJ6000 镜组附件 镜组安装配件: 图4-SJ6000 镜组安装配件

1.1. 线性测量 1.1.1. 线性测量构建 要进行线性测量,需使用随附的两个外加螺丝将其中的一个线性反射镜安装在分光镜上,组装成“线性干涉镜”。线性干涉镜放置在激光头和线性反射镜之间的光路上,用它的反射光线形成激光光束的参考光路,另一束光入射到线性反射镜,通过线性反射镜的线性位移来实现线性测量。如下图所示。 图5-线性测量构建图 图6-水平轴线性测量样图图7-垂直轴线性测量样图 1.1. 2. 线性测量的应用 1.1. 2.1. 线性轴测量与分析 激光干涉仪可用于精密机床、三坐标的定位精度、重复定位精度、微量位移精度的测量。测量时在工作部件运动过程中自动采集并及时处理数据。

图8-激光干涉仪应用于机密机床校准 图9-激光干涉仪应用于三坐标机校准 SJ6000软件内置10项常用机床检验标准,自动采集完数据后根据所选标准自动计算出所需误差数据,可生成误差补偿表,为机床、三坐标的误差修正提供依据。

光学干涉测量技术

光学干涉测量技术 ——干涉原理及双频激光干涉 1、干涉测量技术 干涉测量技术和干涉仪在光学测量中占有重要地位。干涉测量技术是以光波干涉原理为基础进行测量的一门技术。相干光波在干涉场中产生亮、暗交替的干涉条纹,通过分析处理干涉条纹获取被测量的有关信息。 当两束光亮度满足频率相同,振动方向相同以及相位差恒定的条件,两束光就会产生干涉现象,在干涉场中任一点的合成光强为: 122I I I πλ=++ 式中△是两束光到达某点的光程差。明暗干涉条纹出现的条件如下。 相长干涉(明): min 12I I I I ==+ ( m λ=) 相消干涉(暗): min 12I I I I ==+-, (12m λ? ?=+ ??? ) 当把被测量引入干涉仪的一支光路中,干涉仪的光程差则发生变化。通过测量干涉条纹的变化量,即可以获得与介质折射率和几何路程有关的各种物理量和几何量。 按光波分光的方法,干涉仪有分振幅式和分波阵面式两类。按相干光束传播路径,干涉仪可分为共程干涉和非共程干涉两种。按用途又可将干涉仪分为两类,一类是通过测量被测面与参考标准波面产生的干涉条纹分布及其变形量,进而求得试样表面微观几何形状、场密度分布和光学系统波像差等,即所谓静态干涉;另一类是通过测量干涉场上指定点干涉条纹的移动或光程差的变化量,进而求得试样的尺寸大小、位移量等,即所谓动态干涉。 下图是通过分波面法和分振幅法获得相干光的途径示意图。光学测量常用的是分振幅式等厚测量技术。 图一 普通光源获得相干光的途径 与一般光学成像测量技术相比,干涉测量具有大量程、高灵敏度、高精度等特点。干涉测量应用范围十分广泛,可用于位移、长度、角度、面形、介质折射率的变化及振动等方面的测量。在测量技术中,常用的干涉仪有迈克尔逊干涉仪(图二)、马赫-泽德干涉仪、菲索

激光干涉原理在振动测量中的应用讲解

激光干涉原理在振动测量中的应用 激光干涉原理在振动测量中的应用0 引言振动量值的计量是计量科学中一个非常重要的方面。在现实中,描述振动特性的最常用的量值是位移、速度、加速度。常用的测振技术是接触式测量。在测量物体上安装加速度传感器,利用加速度传感器的电荷输出信号实现加速度-速度-位移的相关测量。如果测量较小物体的振动,附加的传感器质量往往影响被测物体的振动,从而产生测量误差;而且一些工作场合因被测物体表面影响或是测量条件的限制往往 激光干涉原理在振动测量中的应用 0 引言 振动量值的计量是计量科学中一个非常重要的方面。在现实中,描述振动特性的最常用的量值是位移、速度、加速度。常用的测振技术是接触式测量。在测量物体上安装加速度传感器,利用加速度传感器的电荷输出信号实现加速度-速度-位移的相关测量。如果测量较小物体的振动,附加的传感器质量往往影响被测物体的振动,从而产生测量误差;而且一些工作场合因被测物体表面影响或是测量条件的限制往往不允许在被测物体表面安装测振传感器。因此设计和开发新型的非接触式、高精度、实时性的测振技术一直是工程科学和技术领域中的重要任务。 由于激光的方向性、单色性和相干性好等特性,使激光测量技术广泛应用于各种军事目标的测量和精密民用测量中,尤其是在测量各种微弱振动、目标运动的速度及其微小的变化等方面。 1 激光干涉测振原理 激光干涉测振技术是以激光干涉原理为基础进行测试的一门技术,测试灵敏度和准确度高,绝大部分都是非接触式的。激光干涉原理如图1所示。 光源S处发出的频率为f、波长为λ的激光束一部分投射到记录介质H(比如全息干板)上,光波的复振幅记为E1,另一部分经物体O表面反射后投射到记录介质H上,光波的复振幅记为E2。其中: 式中:A1和A2分别为光波的振幅;σ1和σ2分别是光波的位相;当E1和E2满足相干条件时,其光波的合成复振幅E为: 光强分布I为: 式(4)的四项中前三项均为高频分量,只有第四项为低频分量,且与物体表面的状态有关。第四项的含义是σ2代表的物体表面与σ1代表的参考面之间的相对变化量。因此通过处理和分析物体表面与参考在变形前后的位相变化、光强变化等,从而得到被测物体振动速度、位移等关系式。

激光干涉位移测量技术

激光干涉位移测量技术 张欣(2015110034) 摘要:为了实现纳米级以上分辨力位移的测量研究,利用激光干涉位移测量技术可以达到纳米级分辨力,其具有可溯源、分辨力高、测量速度快等特点,是目前位移测量领域的主流技术。本文对目前主要的激光干涉位移测量技术进行了分类介绍,并对各种干涉仪的特点进行了分析,最后介绍了激光干涉位移测量技术的国内外发展现状和趋势。 关键词:纳米级;激光干涉;位移测量; 1 引言 干涉测量技术( interferometry ) 是基于电磁波干涉理论,通过检测相干电磁波的图样,频率、振幅、相位等属性,将其应用于各种相关的测量技术的统称。用于实现干涉测量技术的仪器被称为干涉仪。在当今多个科研领域,干涉测量技术都发挥着重要的作用,包括天文学,光纤光学,以及各种工程测量学。其中由于上个世纪60年代激光的研制成功,使得激光干涉测量技术在各种精密工程领域得到了广泛的应用。它的基本功能是将机械位移信息变成干涉条纹的电信号,再对干涉条纹进行调理和细分,进而获得所需要的测量信息。整个激光干涉测量系统中主要的组成部分有光电转换、信号调理、信号细分处理。 1.1激光干涉仪分类 激光干涉仪是以干涉测量为原理,利用激光作为长度基准,对数控设备(加工中心、三坐标测量机等)的位置精度(定位精度、重复定位精度等)、几何精度(抚养扭摆角度、直线度、垂直度)进行精密测量的精密测量技术。由于激光具有波长稳定、波长短、具有干涉性,使得激光在现代光电测量系统中占据了重要的地位,尤其是在激光干涉测量系统中。下面介绍激光干涉仪测量原理以及激光干涉仪。 光的相长干涉和相消干涉: 图1.光的相长以及相消干涉 如果两束光相位相同,光波会叠加增强,表现为亮条纹,如果两束光相位相反,光波会相互抵消,表现为暗条纹。图1.1就是光的相长以及相消干涉,而激光干涉仪主要依据的原理就是激光的干涉产生明亮

检测第一次讨论课 激光干涉测长仪

激光干涉测长仪 何洪坤,神和尧,张建民 (上海工程技术大学机械工程学院,上海 201620) 摘要:主要介绍了运用干涉测量技术的激光干涉测长仪,比较详细的概述了光的干涉原理以及激光干涉测长仪的组成和工作原理。 关键词:激光干涉;测长仪 LASER INTERFEROMETER LENGTH MEASURING INSTRUMENT HE Hongkun,SHEN Heyao,ZHANG Jianmin (Shanghai University of Engineering Science ,Department of Mechanical Engineering,Shanghai 201620) Abstract:This paper describes the use of interferometry laser interferometer length measuring instrument, a more detailed overview of the principle of interference of light and composition and working principle of the laser interferometer length measuring instrument. Key words:Laser Interferometer;Length Measuring Instrument 1 引言 干涉测量技术是以光的干涉现象为基础进行测量的一门技术。在激光出现以后,加之电子技术和计算机技术的发展,隔振与减振条件的改善,干涉技术得到了长足进展。干涉测量技术大多数是非接触测量,具有很高的测量灵敏度和精度,而且应用范围十分广泛。常用的干涉仪有迈克尔逊干涉仪、马赫—曾德干涉仪、菲索干涉仪、泰曼—格林干涉仪等;70年代以后,具有良好抗环境干扰能力的外差干涉仪,如双频激光干涉仪、光纤干涉仪也很快的发展了起来。激光干涉仪越来越实用,其性能越来越稳定,结构也越来越紧凑。 2 光的干涉原理 2.1 光波的叠加 波的叠加原理[1]:光波的叠加服从叠加原理,该原理可表述为:一列波在空间传播时,空间的每一点都引起振动。当两列波在同一空间传播时,空间各点都参与每列波在该点引起的振动。当波的独立传播定律成立时,两列波在空间交迭区域内每点的振动是各列波单独在该点产生的振动的合成,这就是波的叠加原理。2.2 光波强度的合成[2] 并不是任意的两列波都能产生干涉现象,能够产生干涉现象的两列光波必须满足相干条件,即是: (1)频率相同; (2)存在相互平行的振动分量; (3)两光波在相遇处有固定不变的相位差。 对于光的干涉来说,由于光源发光的特点,最关键的是要满足第3个条件。因此,在光学中获得相干光源的唯一办法就是把一个波列的光分成一束或几束波,然后再令其重合而产生稳定的干涉效应。用一分为二的方法就能使二光波的初相差保持恒定,就把光源初相位不稳定的问题解决了[3]。一般获得相干光的办法有两类:分振幅的干涉和分波面的干涉。 2.3 光的干涉 分波面干涉[8]:如果从一点光源发出的光波的波阵面上分离出两束或多束光,由于同一波阵面的各部分

激光干涉测量技术

激光干涉测量技术 南京师范大学中北学院 18112122 谭昌兴 干涉测量技术是以光波干涉原理为基础进行测量的一门技术。20世纪60年代以来,由于激光的出现、隔振条件的改善及电子与计算机技术的成熟,使干涉测量技术得到长足发展。 干涉测量技术大都是非接触测量,具有很高的测量灵敏度和精度。干涉测量应用范围十分广泛,可用于位移、长度、角度、面形、介质折射率的变化及振动等方面的测量。在测量技术中,常用的干涉仪有迈克尔逊干涉仪、马赫-泽德干涉仪、菲索干涉仪、泰曼-格林干涉仪等;70年代以后,抗环境干扰的外差干涉仪(交流干涉仪)发展迅速,如双频激光干涉仪等;近年来,光纤干涉仪的出现使干涉仪结构更加简单、紧凑,干涉仪性能也更加稳定。 干涉测长的基本原理 激光干涉测长的基本光路是一个迈克尔逊干涉仪,用干涉条纹来反映被测量的信息。干涉条纹是接收面上两路光程差相同的点连成的轨迹。激光器发出的激光束到达半透半反射镜P 后被分成两束,当两束光的光程相差激光半波长的偶数倍时,它们相互加强形成亮条纹;当两束光的光程相差半波长的奇数倍时,它们相互抵消形成暗条纹。两束光的光程差可以表为 (1) j M J j N i i i l n l n ∑∑==-=?11 式中j i n n ,分别为干涉仪两支光路的介质折射率;j i l l ,分别为干涉仪两支光路的几何路程。将被测物与其中一支光路联系起来,使反光镜M 2沿光束2方向移动,每移动半波长的长度,光束2的光程就改变了一个波长,于是干涉条纹就产生一个周期的明、暗变化。通过对干涉条纹变化的测量就可以得到被测长度。

被测长度L 与干涉条纹变化的次数N 和干涉仪所用光源波长λ之间的关系是 2λ N L = (2) 从测量方程出发可以对激光干涉测长系统进行基本误差分析 δλδδλ λ+=?+?=?N L N N L L 即 (3) 式中δλδδ和N ,L 分别为被测长度、干涉条纹变化计数和波长的相对误差。这说明被测长度的相对误差由两部分组成,一部分是干涉条纹计数的相对误差,另一部分是波长也就是频率的相对误差。前者是干涉测长系统的设计问题,后者除了激光稳频技术有关之外还与环境控制,即对温度、湿度、气压等的控制有关。因此激光干涉测长系统测量误差必须根据具体情况进行具体分析。 激光的发明和应用使干涉测长技术提高了精度,扩大了量程并且得到了普及,但是使干 涉测长技术走出实验室进入车间,成为生产过程质量控制设备的是激光外差干涉测长技术, 具体来讲就是双频激光干涉仪。 激光干涉仪产生的干涉条纹变化频率与测量反射镜的运动速度有关,在从静止到运动再 回到静止的过程中对应着频率从零到最大值再返回到零的全过程,因此光强转化出的直流电 信号的频率变化范围也是从零开始的。这样的信号只能用直流放大器来放大处理。但是在外 界环境干扰下,干涉条纹的平均光强会有很大的变化,以至于造成计数的错误。所以一般的 激光干涉仪抗干扰能力差,只能在恒温防振的条件下使用。为了克服以上缺点,可以在干涉 仪的信号中引入一定频率的载波,使被测信号通过这一载波来传递,使得干涉仪能够采用交 流放大,隔绝外界环境干扰造成的直流电平漂移。利用这种技术设计的干涉仪称作外差干涉 仪,或交流干涉仪。产生干涉仪载波信号的方法有两种,一种是使参与干涉的两束光产生一 个频率差,这样的两束光相干的结果会出现光学拍的现象,转化为电信号以后得到差频的载 波,另一种是在干涉仪的参考臂中对参考光束进行调制,与测量臂的光干涉直接生成载波信 迈克尔逊干涉仪 图1 激光干涉测长仪的原理图

实验二 双频激光干涉实验

实验二 双频激光干涉实验 一、 实验目的 了解双频激光干涉测量原理,设计测量长度与角度的干涉系统,并且比较一般干涉测量与双频激光干涉测量的异同。 二、 实验原理 1. 测长原理如图1所示: 其中L1 为稳频的激光器,Mm 、Mr 为两个全反射组件,P1、P2 为检偏器,D1、D2 为光电探测 器。Mm 固定在被测物体上。 输出激光含频差为f ?的两正交线偏振光分量1f 、2f 。输出光经分光镜 BS 后,一 部分光被反射,经检偏器 P 1, 两频率分量干涉产生拍频,该信号被光电探测器D1 接 收,形成参考信号 Sr 。透射光经线性干涉仪后,1f 、2f 被分开, 1f 进入参考臂,2f 进入测量臂,由两角锥棱镜反射返回后,在线性干涉仪上会合,经检偏器 P2 后发生干 涉,光电探测器 D2 接收干涉信号,形成测量信号 Sm 。 此时如果测量镜以速度v 移动,则1f 的返回光频率发生变化,成为1D f f +?,D f ?为多普勒频差,1D f f +?通过线性干涉仪与2f 的返回光会合,经检偏后,其拍频被光电 探测器 D2 接收,Sr ,Sm 经前置放大后进入计算机进行计数。 计算机对两路信号进行比较,计算其差值±D f ?。进而按下式计算动镜的速度?和移动的距离得出所测的长度 L 。 设在测量中动镜的移动速度v (这里v 可以随时间变化),则由多普勒效应引起的频差变化为: 122 D v v f f c λ?== (1-1) 式中:1f 激光频率,c 光速,λ波长,D f ?为动镜移动时,由它反射回来的光频率 的

变化量,也就是经计算机比较计算出来的两路信号的差值。 设动镜的移动距离为D ,时间为t 则: 000()222 t t t D D D vdt f dt f dt N λλλε==??=??=+??? (1-2) N ε+为测量过程中动镜下的条纹数(N 为整数部分,ε为小数部分)。 00()t t D D N f dt f dt ε+=??=??∑? (1-3) 所以,位移D 的计算公式为: ()2D N λε= + (1-4) 2. 测角原理如图2所示: 如图,基于正弦尺的原理,利用角度干涉仪和角度靶镜,双频激光干涉仪就可以进行角度测量。其干涉光路的工作原理和测长的相似,只不过测量的位移变成了两个角锥棱镜的相对位置变化—D 。于是,在小角度的情况下,我们得到角度测量结果(弧度)为: D L α= (1-5) 三、 实验步骤 1. 在实验箱中找出需要用的零部件(不用的不要拿出): (1) P T-1105C 激光头、(2)PT-1303C 高速接收器、(3)PT-1201A 线性干涉仪、(4) PT-1202A 全反射组件、(5)PT-1210A 角度干涉组件、(6)角度靶镜、(7) PT-1801B 通用调节架、(8)连接电缆 各部件外形图如下所示:

激光干涉测长系统

激光干涉测长 B08340218 吴国斌 08测控(2)班 干涉测量技术是以光的干涉现象为基础进行测量的一门技术。在激光出现以后,加之电子技术和计算机技术的发展,隔振与减振条件的改善,干涉技术得到了长足进展。干涉测量技术大多数是非接触测量,具有很高的测量灵敏度和精度,而且应用范围十分广泛。常用的干涉仪有迈克尔逊干涉仪、马赫—曾德干涉仪、菲索干涉仪、泰曼—格林干涉仪等;70年代以后,具有良好抗环境干扰能力的外差干涉仪,如双频激光干涉仪、光纤干涉仪也很快的发展了起来。激光干涉仪越来越实用,其性能越来越稳定,结构也越来越紧凑。 干涉测长的基本原理 激光干涉测长的基本光路是一个迈克尔逊干涉仪(如图1示),用干涉条纹来反映被测量的信息。干涉条纹是接收面上两路光程差相同的点连成的轨迹。激光器发出的激光束到达半透半反射镜P 后被分成两束,当两束光的光程相差激光半波长的偶数倍时,它们相互加强形成亮条纹;当两束光的光程相差半波长的奇数倍时,它们相互抵消形成暗条纹。两束光的光程差可以表示为 j M J j N i i i l n l n ∑∑==-=?1 1 (1) 式中j i n n ,分别为干涉仪两支光路的介质折射率;j i l l ,分别为干涉仪两支光路的几何路程。将被测物与其中一支光路联系起来,使反光镜M 2沿光束2方向移动,每移动半波长的长度,光束2的光程就改变了一个波长,于是干涉条纹就产生一个周期的明、暗变化。通过对干涉条

纹变化的测量就可以得到被测长度。 被测长度L 与干涉条纹变化的次数N 和干涉仪所用光源波长λ之间的关系是 2 λ N L = (2) 式(2)是激光干涉测长的基本测量方程。 从测量方程出发可以对激光干涉测长系统进行基本误差分析 δλδδλ λ+=?+?=?N L N N L L 即 (3) 式中δλδδ和N ,L 分别为被测长度、干涉条纹变化计数和波长的相对误差。这说明被测长度的相对误差由两部分组成,一部分是干涉条纹计数的相对误差,另一部分是波长也就是频率的相对误差。前者是干涉测长系统的设计问题,后者除了激光稳频技术有关之外还与环境控制,即对温度、湿度、气压等的控制有关。因此激光干涉测长系统测量误差必须根据具体情况进行具体分析。 激光干涉测长系统的组成 除了迈克尔逊干涉仪以外,激光干涉测长系统还包括激光光源,可移动平台,光电显微 镜,光电计数器和显示记录装置。激光光源一般是采用单模的He-Ne 气体激光器,输出的是波长为632.8纳米的红光。因为氦氖激光器输出激光的频率和功率稳定性高,它以连续激励的方式运转,在可见光和红外光区域里可产生多种波长的激光谱线,所以氦氖激光器特别适合用作相干光源。为提高光源的单色性,对激光器要采取稳频措施。可移动平台携带着迈克 迈克尔逊干涉仪 图1 激光干涉测长仪的原理图

实验三 激光干涉测量技术

实验三激光干涉测量技术 一、引言 激光精密干涉测量技术有着广泛的应用。区别于基础实验课程中应用成套的干涉仪设备进行测量,本实验使用零散的光学元件搭建干涉装置,旨在锻炼学生的实际光路搭建能力以及相关的实践技巧。 二、实验目的 1.了解激光干涉测量的原理 2.掌握微米及亚微米量级位移量的激光干涉测量方法 3.了解激光干涉测量方法的优点和应用场合 4. 锻炼实际光路搭建能力以及搭建干涉测量装置的相关技巧 三、实验原理 本实验采用泰曼-格林(Twyman-Green)干涉系统,T-G干涉系统是著名的迈克尔逊白光干涉仪的一种变型,在光学仪器的制造工业中,常用其产生的等间距干涉条纹对光学零件或光学系统作综合质量检验。 图1 泰曼-格林干涉仪原理图

泰曼-格林干涉仪与原始的迈克尔逊干涉仪不同点是,光源是单色激光光源,它置于一个校正像差的透镜L1的前焦点上,光束经透镜L1准直后,被分束器A 分成两束光,到达反射镜M1和M2并被反射,两束反射光再次经A透射和反射,用另一个校正像差的透镜L2会聚,观察屏放在透镜L2的焦点位置观察,也可不加透镜L2直接观察。能够观察到反射镜M1和M2的整个范围,从而可获得清晰、明亮的等间距干涉直条纹,其原理如图1所示。 若作出反射镜M1在半反射面A中的虚像M1’(图中未画出),干涉仪的出射光线相当于M2和M1’所构成的空气楔的反射光,因而泰曼干涉仪实际上就等效于平面干涉仪,只是这里两束光的光路被完全分开,进而产生了等厚干涉条纹。当光源是点光源时,条纹是非定域的,在两个相干光束重叠区域内的任何平面上,条纹的清晰度都一样。不过,实际上为了获得足够强度的干涉条纹,光源的扩展不能忽略,这时条纹定域在M1和M2构成的空气楔附近。 如图1所示,设入射平面波经M1反射后的波前是W1,经M2反射后相应的波前是W2,W1和W2位相相同。引入虚波前W1’,它是在W1半反射面A中的虚像,图中画出了虚相交于波前W2上P点的两支光路,这两支光在P点的光程差为 即等于W1’到P点的法线距离,因为W1’和W2之间介质(空气)折射率为1,显然当 时,P点为亮点,而当 时,P点为暗点。如果平面M1和M2是理想的平面,那么反射回来的波前W1(或W1’)和W2也是平面,这样当眼睛聚焦于W2上时,在W1’和W2之间有一楔角 的情况下,将看到一组平行等距的直线条纹(W1’和W2相互平行,视场是均匀 照明的,没有条纹),它们与所形成的空气楔的楔棱平行。从一个亮条纹(或暗条纹)过渡到相邻的亮条纹(或暗条纹),W1’和W2之间的距离改变λ。由于 测量镜M2移动l会带来2l的光程差则: 式中N为干涉条纹数。 因此,记录下干涉条纹移动数,已知激光波长,即可测量反射镜的位移量,或反射镜的轴向变动量l。测量灵敏为:当N=1,则

激光干涉测量

激光干涉测量 xxxxx xxxxx xxxxx 摘要:干涉测量技术是以光波干涉原理为基础进行测量的一门技术。 20世纪60年代以来,由于激光的出现、隔振条件的改善及电 子与计算机技术的成熟,使干涉测量技术得到长足发展。本文 介绍了激光干涉的基本原理。 关键词:激光干涉测量双频激光干涉仪 由于科学技术的进步,干涉测量技术已经得到相当广泛的应用。一方面因为微电子、微机械、微光学和现代工业提出了愈来愈高的精度和更大的量程,其它方法难以胜任;另一方面因为当代干涉测量技术本身具有灵敏度高、量程大、可以适应恶劣环境、光波和米定义联系而容易溯源等特点,因而在现代工业中应用非常广泛。 激光的出现在世界计量史上具有重大的意义。用稳频的氦氖激光器作为光源,由于它的相干长度很大,干涉仪的测量范围可以大大的扩展;而且由于它的光束发散角小,能量集中,因而它产生的干涉条纹可以用光电接收器接收,变为电讯号,并由计数器一个不漏的记录下来,从而提高了测量速度和测量精度,比如说我国自行设计与制造的以氦氖激光器作为光源的光电光波比长仪,可以在20分钟之内把1米线纹尺上1001条刻线依次自动鉴定完毕,精度达到±0.2μm,这就是激光干涉仪的成功例证。 一、激光干涉仪的介绍 激光干涉仪,以激光波长为已知长度,利用迈克耳逊干涉系统测量位移的通用长度测量,有单频的和双频的两种。 1、单频激光干涉仪 从激光器发出的光束,经扩束准直后由分光镜分为两路,并分别从固定反射镜和可动反射镜反射回来会合在分光镜上而产生干涉条纹。当可动反射镜移动时,干涉条纹的光强变化由接受器中的光电转换元件和电子线路等转换为电脉冲信号,经整形、放大后输入可逆计数器计算出总脉冲数,再由电子计算机按计算式[356-11]式中λ为激光波长(N 为电脉冲总数),算出可动反射镜的位移量L。使用单频激光干涉仪时,要求周围大气处于稳定状态,各种空气湍流都会引起直流电平变化而影响测量结果。 2、双频激光干涉仪 双频激光干涉仪是在单频激光干涉仪的基础上发展的一种外差式干涉仪,,双频激光干涉仪可以在恒温,恒湿,防震的计量室内检定量块,量杆,刻尺和坐标测量机等,也可以在普通车间内为大型机床的刻度进行标定,既可以对几十米的大量程进行精密测量,也可以对手表零件等微小运动进行精密测量,既可以对几何量如长度、角度.直线度、平行度、平面度、

激光干涉仪原理及应用详解

激光干涉仪概述 SJ6000激光干涉仪产品采用美国进口高稳频氦氖激光器、激光双纵模热稳频技术、高精度环境补偿模块、几何参量干涉光路设计、高精度激光干涉信号处理系统、高性能计算机控制系统技术,实现各种参数的高精度测量。通过激光热稳频控制技术,实现快速(5~10分钟)、高精度(0.05ppm)、抗干扰能力强、长期稳定性好的激光频率输出,采用不同的光学镜组可以测量出线性、角度、直线度、平面度和垂直度等几何量,并且可以进行动态分析。

SJ6000激光干涉仪产品具有测量精度高、测量速度快、最高测速下分辨率高、测量范围大等优点。通过与不同的光学组件结合,可以实现对直线度、垂直度、角度、平面度、平行度等多种几何精度的测量。在相关软件的配合下,还可以对数控机床进行动态性能检测,可以进行机床振动测试与分析,滚珠丝杆的动态特性分析,驱动系统的响应特性分析,导轨的动态特性分析等,具有极高的精度和效率,

为机床误差修正提供依据。 激光干涉仪性能特点 1.测量精度高、速度快,稳定性好 ①使用美国高性能氦氖激光器,结合伺服稳频控制系统,达到高精度稳频(0.05ppm) ②以光波长(633nm)为测量单位,分辨率可达nm级 ③使用高速光电信号采样和处理技术,测量速度可达到4m/s。 ④配合有环境补偿单元,在环境变化的情况下,也可以得到较高的测量精度 ⑤分离式干涉镜设计,避免了测量镜组由于主机发热而引起的镜组形变 2.应用范围广 ①可以实现线性、角度、直线度、垂直度、平面度等几何量的检测 ②结合我们的软件系统,可以用于速度,加速度,振动分析以及稳定度等分析 ③可实时监控精密加工机床等机器的动态数据,进行动态特性分析 3.软件界面友好 ①使用当前热门的软件界面开发工具,软件界面人性化,操作简单。 ②将静态测量和动态测量两种功能合并到一个软件中,更方便用户切换测量类型。

单频-双频激光干涉仪

激光干涉仪 - 单频与双频激光干涉仪比较 单频的激光器它的一个根本弱点就是受环境影响严重,在测试环境恶劣,测量距离较长时,这一缺点十分突出。其原因在于它是一种直流测量系统,必然具有直流光平和电平零漂的弊端。激光干涉仪可动反光镜移动时,光电接收器会输出信号,如果信号超过了计数器的触发电平则就会被记录下来,而如果激光束强度发生变化,就有可能使光电信号低于计数器的触发电平而使计数器停止计数,使激光器强度或干涉信号强度变化的主要原因是空气湍流,机床油雾,切削屑对光束的影响,结果光束发生偏移或波面扭曲。这种无规则的变化较难通过触发电平的自动调整来补偿,因而限制了单频干涉仪的应用范围,只有设法用交流测量系统代替直流测量系统才能从根本上克服单频激光干涉仪的这一弱点。 而双频激光干涉仪正好克服了这一弱点,它是在单频激光干涉仪的基础上发展的一种外差式干涉仪。和单频激光干涉仪一样,双频激光干涉仪也是一种以波长作为标准对被测长度进行度量的仪器,所不同者,一方面是当可动棱镜不动时,前者的干涉信号是介于最亮和最暗之间的某个直流光平,而后者的干涉信号是一个频率约为1.5MHz的交流信号;另一方面,当可动棱镜移动时,前者的干涉信号是在最亮和最暗之间缓慢变化的信号,而后者的干涉信号是使原有的交流信号频率增加或减少了△f,结果依然是一个交流信号。因而对于双频激光干涉仪来说,可用放大倍数较大的交流放大器对干涉信号进行放大,这样,即使光强衰减90%,依然可以得到合适的电信号。由于这一特点,双频激光干涉仪可以在恒温,恒湿,防震的计量室内检定量块,量杆,刻尺和坐标测量机等,也可以在普通车间内为大型机床的刻度进行标定,既可以对几十米的大量程进行精密测量,也可以对手表零件等微小运动进行精密测量,既可以对几何量如长度、角度.直线度、平行度、平面度、垂直度等进行测量,也可以用于特殊场合,诸如半导体光刻技术的微定位和计算机存储器上记录槽间距的测量等等。总之,双频激光干涉仪的优越性主要有以下几点: 1. 精度高双频激光干涉仪以波长作为标准对被测长度进行度量的仪器。即使不做细分也可达到μm 量级,细分后更可达到n m量级。(安捷伦5530激光干涉仪线性精度能达到0.4PPM) 2. 应用范围广双频激光干涉仪除了可用于长度的精密测量外,测量角度、直线度、平面度、振动距离及速度等等,还可以分光进行多路测量。 3. 环境适应力强即使光强衰减90%,仍然可以得到有效的干涉信号。由于这一特点,双频激光干涉仪既可在恒温、恒湿、防震的计量室内检定量块、量杆、刻尺、微分校准器和坐标测量机,也可以在普通的车间内为大型的机床的刻度进行标定。

激光干涉仪用途【详细】

激光干涉仪的作用 内容来源网络,由深圳机械展收集整理 更多激光设备,就在深圳机械展 (1)CO2激光干涉仪 CO2激光器是一种非常适合无导轨激光测量的光源,它在10.6μm波段具有丰富的谱线,相邻谱线的波长差分布也比较均匀,构成的“合成波长链”的波长可从10.6μm到25m,因此,CO2激光干涉仪一直是无导轨激光干涉仪的研究重点。从1979年开始,由直流干涉系统到各种形式的光外差系统,CO2激光干涉仪历经多次改进,其中一种典型方案是上世纪九十年代澳大利亚研制的外差干涉仪,它通过激光器的腔长控制,顺序输出6种波长,用声光调制器的零级衍射作为本振光,构成外差系统,测量精度可达4×10-8。 (2)Ne-Xe激光干涉仪 Ne-Xe激光器可以输出3.53μm和3.37μm两个波长,合成波长为84.2μm。从“合成波长链”的角度考虑,波长过短难以保证测量结果的唯一性,为此,系统加入了He-Ne激光器的3.39μm谱线,将“合成波长链”延伸到464μm。Ne-Xe激光干涉仪的最大优点是结构简单,测量精度可达1.8×10-7。 (3)He-Ne激光干涉仪 中国计量科学研究院研制的纵向塞曼He-Ne激光干涉仪,与成都工具研究所开发的双频激光干涉仪不同,其稳频点选在两条激光增益曲线之间,产生一对频差为1080MHz的左、右旋偏振光(这两个偏振光不在同一增益曲线上),合成波长为278mm。利用光栅测量干涉的剩余相位。系统测量长度可达100m,测量精度为±(40+1.5×10-6)。 He-Ne激光器在3.39μm处谱线丰富,但其中3.3922μm谱线的自发辐射系数比其它谱线大很多,抑制了其它谱线的发射。清华大学利用甲烷在3.3922μm附近的一条吸收谱线,抑制了He-Ne激光这条谱线的强度,成功研制出了3.39μm波段双波长激光干涉仪,其“合成波长链”从3.39μm到1m,单波稳定性为1×10-8。 (4)变波长激光干涉仪 变波长激光干涉仪采用两个激光器,利用谐振腔长与输出频率的关系,构成“无级”的波长

激光干涉测量

激光干涉测量技术的发展及现状调研报告 一、激光干涉基本原理 激光输出可被视为正弦光波 波长 从激光头射出的光波有三个关键特性: ? 波长精确已知,能够实现精确测量 ? 波长很短,能够实现精密测量或高分辨率测量 ? 所有光波均为同相,能够实现干涉条纹 干涉测量是基于光波叠加原理,在干涉场中产生亮暗交替的干涉条纹,通过分析处理干涉条纹来获取被测量的有关信息。 当两束光满足频率相同、振动方向相同以及初相位差恒定的条件时,两支光会发生干涉现象。在干涉场中任一点的合成光强为: ?++=λπ 2c o s I I 2I I I 2121 式中,?为两束光到达某点的光程差;1I 、2I 分别为两束光的光强;λ为光波长。 干涉条纹是光程差相同点的轨迹,以下两式分别为亮纹和暗纹方程 ? =m λ ?=(m+1/2)λ 式中,m 为干涉条纹的干涉级 干涉仪中两支光路的光程差?可表示为 ?=j j j i i l n l n ∑∑-i 式中,i n 、j n 分别为干涉仪两支光路的介质折射率;i l 、j l 分别为干涉仪两支光路的几何路程。

当把被测量引入干涉仪的一支光路中,干涉仪的光程差则发生变化,干涉条纹也随之变化。通过测量干涉条纹的变化量,可以获得与介质折射率n和几何路程l有关的各种物理量和几何量。 二、发展历史、现状及趋势 早在十九世纪八十年代,人们第一次证实了光干涉原理可以作为测量工具使用。尽管该技术多年来不断发展,但是使用极小、稳定、准确定义的光波长作为测量单位的基本原理仍然没有改变。 干涉测量技术是以光波干涉原理为基础进行测量的一门技术。20世纪60年代以来,由于激光的出现、隔振条件的改善及电子与计算机技术的成熟,使干涉测量技术得到长足发展。 干涉测量技术大都是非接触测量,具有很高的测量灵敏度和精度。干涉测量应用范围十分广泛,可用于位移、长度、角度、面形、介质折射率的变化及振动等方面的测量。在测量技术中,常用的干涉仪有迈克尔逊干涉仪、马赫-泽德干涉仪、菲索干涉仪、泰曼-格林干涉仪等;70年代以后,抗环境干扰的外差干涉仪(交流干涉仪)发展迅速,如双频激光干涉仪等;近年来,光纤干涉仪的出现使干涉仪结构更加简单、紧凑,干涉仪性能也更加稳定。 激光检测学科发展现状在光电检测领域,利用光的干涉、衍射和散射进行检测已经有很长的历史。由泰曼干涉仪到莫尔条纹,然后到散斑,再到全息干涉,出现了一个个干涉场,物理量(如位移、温度、压力、速度、折射率等)的测量不再需要单独测量,而是整个物理量场一起进行测量。自从激光出现以后,电子学领域的许多探测方法(如外差、相关、取样平均、光子计数等)被引入,使测量灵敏度和测量精度得到大大提高。用激光检测关键技术(激光干涉测量技术、激光共焦测量技术、激光三角测量技术)实现的激光干涉仪、激光位移传感器等,可以完成纳米级非接触测量。可以说,超精密加工技术将随着高精密激光检测技术的发展而发展;在此基础上,提出了激光测量需解决的关键技术及今后的发展方向。 三、主要应用 1、激光干涉在长度测量中的应用 高精度7m万能测长机是一种由激光干涉系统、光学高精度系统、精密机械、电气驱动、微机控制和计量管理相结合的大型长度计量仪器,其结构如图2-10所示。光学测量原理在前面已经论述,测量原理图所示。如图

激光干涉仪进行角度测量

SJ6000激光干涉仪产品采用美国进口高稳频氦氖激光器、激光双纵模热稳频技术、高精度环境补偿模块、几何参量干涉光路设计、高精度激光干涉信号处理系统、高性能计算机控制系统技术,实现各种参数的高精度测量。通过激光热稳频控制技术,实现快速(约6分钟)、高精度(0.05ppm)、抗干扰能力强、长期稳定性好的激光频率输出,采用不同的光学镜组可以测量出线性、角度、直线度、平面度和垂直度等几何量,并且可以进行动态分析。 SJ6000激光干涉仪产品具有测量精度高、测量速度快、最高测速下分辨率高、测量范围大等优点。通过与不同的光学组件结合,可以实现对直线度、垂直度、角度、平面度、平行度等多种几何精度的测量。在相关软件的配合下,还可以对数控机床进行动态性能检测,可以进行机床振动测试与分析,滚珠丝杆的动态特性分析,驱动系统的响应特性分析,导轨的动态特性分析等,具有极高的精度和效率,为机床误差修正提供依据。 激光干涉仪角度测量方法

1.1.1. 角度测量构建 与线性测量原理一样,角度测量需要角度干涉镜和角度反射镜,并且角度反射镜和角度干涉镜必须有一个相对旋转。相对旋转后,会导致角度测量的两束光的光程差发生变化,而光程差的变化会被SJ6000激光干涉仪探测器探测出来,由软件将线性位置的变化转换为角度的变化显示出来。 图 16-角度测量原理及测量构建 图 17-1水平轴俯仰角度测量样图图 17-2水平轴偏摆角度测量样图1.1.2. 角度测量的应用 1.1. 2.1. 小角度精密测量 激光干涉仪角度镜能实现±10°以内的角度精密测量。

图 18-小角度测量实例 1.1. 2.2. 准直平台/倾斜工作台的测量 由于角度镜组的不同安装方式,其测量结果代表不同方向的角度值。您可以结合实际需要进行安装、测量。 图 19-水平方向角度测量 图 20-垂直方向角度测量 在垂直方向的角度测量中,角度反射镜记录下导轨在不同位置时的角度值,可由软件分析导轨的直线度信息,实现角度镜组测量直线度功能。

激光干涉位移测量技术

激光干涉位移测量技术 摘要:为了实现纳米级以上分辨力位移的测量研究,利用激光干涉位移测量技术可以达到纳米级分辨力,其具有可溯源、分辨力高、测量速度快等特点,是目前位移测量领域的主流技术。本文对目前主要的激光干涉位移测量技术进行了分类介绍,并对各种干涉仪的特点进行了分析,最后介绍了激光干涉位移测量技术的国内外发展现状和趋势。 关键词:纳米级;激光干涉;位移测量; 1 引言 干涉测量技术( interferometry ) 是基于电磁波干涉理论,通过检测相干电磁波的图样,频率、振幅、相位等属性,将其应用于各种相关的测量技术的统称。用于实现干涉测量技术的仪器被称为干涉仪。在当今多个科研领域,干涉测量技术都发挥着重要的作用,包括天文学,光纤光学,以及各种工程测量学。其中由于上个世纪60年代激光的研制成功,使得激光干涉测量技术在各种精密工程领域得到了广泛的应用。它的基本功能是将机械位移信息变成干涉条纹的电信号,再对干涉条纹进行调理和细分,进而获得所需要的测量信息。整个激光干涉测量系统中主要的组成部分有光电转换、信号调理、信号细分处理。 1.1激光干涉仪分类 激光干涉仪是以干涉测量为原理,利用激光作为长度基准,对数控设备(加工中心、三坐标测量机等)的位置精度(定位精度、重复定位精度等)、几何精度(抚养扭摆角度、直线度、垂直度)进行精密测量的精密测量技术。由于激光具有波长稳定、波长短、具有干涉性,使得激光在现代光电测量系统中占据了重要的地位,尤其是在激光干涉测量系统中。下面介绍激光干涉仪测量原理以及激光干涉仪。 光的相长干涉和相消干涉: 图1.光的相长以及相消干涉 如果两束光相位相同,光波会叠加增强,表现为亮条纹,如果两束光相位相反,光波会相互抵消,表

激光干涉仪应用介绍(三)——高速长距离位移测量

基于FPS3010长行程高速位移测量 Long distance and high-speed displacement measurements using the FPS3010 基于光学法珀腔传感器FPS3010干涉仪可以测量目标相对位移,测量精度达到亚纳米分辨率,实时位置输出带宽达10MHz。在工业,科研以及研发等多种应用中需要高速以及长行程精密测量。如下面所示,FPS3010可以测量距离高达3m,并且速度达2m/s。 在这些测试中,FPS3010干涉仪采用的是M12探测头,并且在被测目标安装了反射器。图1中为整体设备,包括探测头和反射器。采用商用线性电机平台,可实现目标位置多次重复测量。另外,通过采用反射器取代平面镜,安装过程更为简易快捷:反射器相对于探测方向角度4度内都可以测出信号。反射器内部采用了3个正交式反射镜组成的几何结构。信号的高稳定性保证了FPS3010可以在全行程任意位置下进行标定,整套设备的使用方法非常友好,简易。 第一次测试,目标距离传感器头1m。包含振动目标的0.9m振动幅度以及达1.0m/s 速度。图2(a)显示的是在振动过程中,目标位置测量和速度。 图2(b)描述了在高速运动中的测量,距离为0.5m,速度为2.0m/s。从红色曲线中可见,平台最大加速度是一个限制:在到达位置B之前,需要10毫秒才能达到2m/s速度,同时也需要10ms减速。在图2(b)中,当运动到B点位置时,FPS3010也可以记录线性位移平台的位置误差,从图中可以看到超调值为5微米。 这个应用证明了FPS3010干涉仪测量位移3m,测量速度达2.0m/s时,可以达到亚纳米的重复精度。如果需要更多的资料,请联系我们! 图1:测量旋转物体运动误差机构。当轴旋转是,采用两个干涉传感器探头测量垂直于其转轴的两个方向上的运动误差。不同的被测物体采用不同尺寸的传感器探头。

激光干涉仪应用原理(五)——长行程高速位移测量

Precise Manufacturing Application | 精密加工应用 基于FPS3010长行程高速位移测量 Long distance and high-speed displacement measurements using the FPS3010 图1:测量旋转物体运动误差机构。当轴旋转是,采用两个干涉传感器探头测量垂直于其转轴的两个方向上的运动误差。不同的被测物体采用不同尺寸的传感器探头。 动智精密设备科技(上海)有限公司一直致力于为装备行业和科研领域提供尖端运动和测量解决方案,产品范围从超精密压电纳米扫描台,到高精度六自由度并联定位系统、皮米分辨激光干涉位移传感器,以及为工业应用设计的高精度运动模块和运动系统等。我们的产品大量应用在光电子、半导体设备、生物设备、精密、同步辐射和高端科研领域。希望通过我们的努力,帮助国内的用户在装备技术方面取得成功,并为我国产业升级和科技发展做出自己的贡献。 基于光学法珀腔传感器FPS3010干涉仪可以测量目标相对位移,测量精度达到亚纳米分辨率,实时位置输出带宽达10MHz。在工业,科研以及研发等多种应用中需要高速以及长行程精密测量。如下面所示,FPS3010可以测量距离高达3m,并且速度达2m/s。 在这些测试中,FPS3010干涉仪采用的是M12探测头,并且在被测目标安装了反射器。图1中为整体设备,包括探测头和反射器。采用商用线性电机平台,可实现目标位置多次重复测量。另外,通过采用反射器取代平面镜,安装过程更为简

易快捷:反射器相对于探测方向角度4度内都可以测出信号。反射器内部采用了3个正交式反射镜组成的几何结构。信号的高稳定性保证了FPS3010可以在全行程任意位置下进行标定,整套设备的使用方法非常友好,简易。 图2:当旋转圆柱体是测得的运动误差(黑线),结果显示为行程达微米级,分辨率可达亚纳米。中央红色线显示平均值位置(校正偏心),而每根点划线显示误差值为5微米。 第一次测试,目标距离传感器头1m。包含振动目标的0.9m振动幅度以及达1.0m/s 速度。图2(a)显示的是在振动过程中,目标位置测量和速度。 图2(b)描述了在高速运动中的测量,距离为0.5m,速度为2.0m/s。从红色曲线中可见,平台最大加速度是一个限制:在到达位置B之前,需要10毫秒才能达到2m/s速度,同时也需要10ms减速。在图2(b)中,当运动到B点位置时,FPS3010也可以记录线性位移平台的位置误差,从图中可以看到超调值为5微米。 这个应用证明了FPS3010干涉仪测量位移3m,测量速度达2.0m/s时,可以达到亚纳米的重复精度。如果需要更多的资料,请联系我们! 更多应用文章及应用视频见官方网站!

相关文档
最新文档