激光干涉测量技术
激光原理与技术--第六章 激光在精密测量中的应用

半波长的奇数倍时----- 出现明纹。
21
我们把k =士1的两个暗点之 间的角距离作为中央明纹的 角宽度.中央明纹的半角宽度
Δθ0≈λ∕a
◆暗纹中心位置公式:
◆明纹中心位置公式:
明纹 暗纹
◆光强分布公式:
单缝衍射测量仪器示意图
4
6.1.2 激光干涉测长系统的组成
除了迈克尔孙干涉仪以外,激光干涉测长系统还包括激光光源、可移 动平台、光电显微镜、光电计数器、显示记录装置
7.干涉条纹计数时,通过移相获得两路相差π/2的干涉条纹的光强信号, 该信号经放大,整形,倒向及微分等处理,可以获得四个相位依次相差π/2 的脉冲信号(图6-5)。
图6-2 反射器
3
6.1.2 激光干涉测长系统的组成
5.激光干涉仪的典型光路布局有使用角锥棱镜反射器的光路布局,如图6-3示。
图6-3 典型光路布局
6. 移相器也是干涉仪测量系统的重要组成部分。常用的移相方法有机械移相(图6-4), 翼形板移相,金属膜移相和偏振法移相。
图6-4 机械法移相原理图
13
基本原理
The Michelson interferometer is shown in Figure 1. The basic optical path of laser interferometer length measurement is a Michelson interferometer, and this makes use of interference fringes ,which are the traces of points owing the same path difference, to reflect the information of measured object. It uses the partially reflecting element P to divide the light from laser source into two mutually coherent beams which are reflected by M1 and M2 .The output intensity of an interferometer is a periodic function of the length difference between the measuring path and the reference path of the interferometer. Typical length measurements with a laser interferometer are performed by moving one reflector of the interferometer along a guideway and counting the periodic interferometer signal, e.g. the interference fringes. These results are unambiguous as long as the length difference between two consecutive measurements is within λ/2. Interpolation of the fringes can lead to a resolution of the length measurement below 1nm. The bright fringes occur when the path difference is kλ and the dark fringes when it is (k+1/2)λ,where k is any integer.
激光干涉测量技术的应用与发展

激光干涉测量技术的应用与发展激光干涉测量技术是一种利用两束或多束激光干涉的方法来获得被测量物件的形状、尺寸、形变、表面粗糙度等参数的非接触式测量技术。
因其具有精度高、速度快、非接触、非损伤等优点,近年来被广泛应用于各个领域,如空间结构、微加工、医学、汽车制造、半导体加工、航空航天等。
本文将重点探讨激光干涉测量技术的应用和发展。
一、应用领域1.空间结构测量激光干涉测量技术可以通过在空间结构表面扫描多个测量点来获取结构的形状和姿态等信息,用于结构的定位、配合和校正。
例如,在卫星发射前,需要准确测量各个部件的尺寸和相对位置,确保卫星能够正确地组装在一起。
2.微加工测量在微加工过程中,激光干涉测量技术可以测量微米级别的形变和表面质量,用于控制产品质量和优化加工过程。
例如,在制造微纳米光学器件时,需要测量器件的形变和表面质量,以确保其性能优异。
3.医学应用激光干涉测量技术可以应用于医学领域,用于测量人体器官和组织的形状和尺寸等参数。
例如,在牙齿修复中,激光干涉测量可以帮助医生准确测量牙齿的大小和形状,制作出合适的假牙。
4.汽车制造在汽车制造领域,激光干涉测量技术可以用于检测车身结构的尺寸和形状是否符合设计要求,以及车身表面的平整度和几何精度。
例如,在汽车制造中,需要使用激光干涉测量技术来检测车门、车窗的尺寸和形状是否正确,以确保车门、车窗能够完全密合。
5.半导体加工在半导体制造过程中,激光干涉测量技术可以用于测量芯片表面的平整度和精度,以及芯片上电路元器件的尺寸和形状等参数。
例如,在制造集成电路时,需要使用激光干涉测量技术来确保芯片表面的平整度和精度符合要求,以确保芯片的电子性能。
二、技术发展近年来,随着激光技术和计算机技术的发展,激光干涉测量技术也取得了一系列的进展。
1.高频率测量高频率测量是近年来激光干涉测量技术的一个新发展方向。
高频率测量可以在非常短的时间内获得目标结构的形状和位移信息,适用于快速运动或频繁变化的物体测量。
激光干涉测量技术

式中,λ0为激光光波中心波长
4
2019/10/14
测得干涉条纹的变化次数K之后,即可由上式求得被测 长度L。在实际测量中,采用干涉条纹计数法,测量开始 时使计数器置零,测量结束时计数器的示值即为与被测长 度L相对应的条纹数K。可把上式改写为
式中, λ=λ0/n, λ是激光光波在空气中的波长。
激光干涉测长仪的主要结构
18光强接近一致以提高对比度。
2019/10/14
金属膜移相光路图
机械法移相原理图
19
2019/10/14
(4)分偏振法移相 右图是分 偏振法移相的光路图。输入光 束是与垂直入射面成45◦角的 平面偏振光,由分光器和活动 反射器反射后,信号光束的输 出还是45◦的平面偏振光,因 此,它的垂直和水平分量位相 相同。在参考光路中加入1/4 波片后使参考光变成圆偏振光, 它的垂直和水平分量位相差为 90◦光束会合后用一个渥拉斯 顿棱镜使垂直分量和水平分量 分开,给出两个干涉条纹,它 们的位相差为90◦
• 激光光源:它一般是采用单模的He-Ne(同位素)气体激光器, 输出的是波长为0.6328微米的红光。为提高光源的单色性, 对激光器要采取稳频措施;
• 迈克尔逊干涉仪:由它来产生干涉条纹;(核心部件) • 可移动平台:它携带着迈克尔逊干涉仪的一块反射镜和待测
物体一起沿入射光方向平移。由于它的平移,使干涉仪中的 干涉条纹移动; • 光电计数器:其作用是对干涉条纹的移动进行计数; • 显示和记录装置:其作用是显示和记录光电计数器中记下的 干涉条纹移动的个数或与之对应的长度;
1.立方体分光器;2.移动反射镜
13
2019/10/14
(3)光学倍频布局 为提高干涉仪的灵敏度,可使用光学倍频 (也称光程差放大器)的棱镜系统,如下图所示。角锥棱镜Ml每移 动kλ/2干涉条纹便发生一次明暗交替变化,k为倍频系数,图中k =6。利用光学倍频的干涉系统能用简单的脉冲计数做精密测量, 而无需进行条纹细分,这种技术还可使干涉仪结构紧凑,减小 温度、空气及机械干扰的影响。
激光干涉仪测量方法

或 =∑
某一目标位置的反向偏差为 ,即
= ↑- ↓
沿轴线或绕轴线的各目标位置的反
在某一目标位置的单向定位标准不确定度的估算值为 ↑ 或 ↓即
↑=
∑(
)
()
或
=
(
∑
)
(
)
某一目标位置的单向重复定位精度为 ↑或 ↓,即
↑ = 4 ↑或 ↓ = 4 ↓
( 3) 确定采集移动方式采集数据方式有两种:一种是线性循环
采集方法,另一种是线性多阶梯循环方法。GB17421 评定标准中采用 线性循环采集方法。测量移动方式: 采用沿着机床轴线快速移动,分 别对每个目标位置从正负两个方向上重复移动五次测量出每个目标 位置偏差,即运动部件达到实际位置减去目标位置之差。
(图2) ( 2) 确定测量目标位置根据GB17421 评定标准中规定,机床规 格小1 000mm 取不少于10 个测量目标位置,大于1 000mm 测量目标 位置点数适当增加,一般目标值取整数,但是我们建议在目标值整数 后面加上三位小数。主要考虑机床滚珠丝杠的导程及编码器的节距所 产生的周期误差,同时也考虑机床全程上各目标位置上得到充分地采 集。
沿轴线或绕轴线的任一位置 的重复定位精度的最大值。即
R↑ = max [ ↑],R↓ = max [ ↓]
R = max [ ] 轴线单向定位精度A↑或A↓,即 A↑ = max [ + 2 ↑] - min [ - 2 ↑] 或 A↓ = max [ ↓ + 2 ↓] - min [ ↓ - 2 ↓] 轴线双向定位精度A,即 A = max [ ↑ + 2 ↑; ↓ + 2 ↓] - min[ ↑ - 2 ↑;
( 4) 评定方法采用双向计算方法进行评定机床的位置精度。目
机械振动测量的激光干涉技术原理及其应用

机械振动测量的激光干涉技术原理及其应用一、引言机械振动测量是工程领域中非常重要的一项技术,其应用范围非常广泛。
在机械工程、航空航天、汽车工业等领域中,机械振动测量技术的应用可以帮助我们更好地了解物体的振动特性,从而为产品设计和生产提供更加精确的数据支持。
而在机械振动测量中,激光干涉技术是一种非常重要的技术手段。
二、什么是机械振动测量机械振动是指物体在受到外力作用时发生的周期性变形或运动。
而机械振动测量则是通过对物体进行观察和测试,来获取其振动特性和参数的过程。
通常情况下,我们使用加速度计、位移传感器等设备来进行机械振动测量。
三、什么是激光干涉技术激光干涉技术是一种基于光学原理的非接触式测量方法。
它通过将一束光分成两束,并使其沿着不同的路径传播,然后再将它们重新合并在一起,从而形成干涉条纹。
通过观察干涉条纹的变化,我们可以测量出物体的形变、位移等参数。
四、激光干涉技术在机械振动测量中的应用在机械振动测量中,激光干涉技术可以帮助我们更加精确地测量物体的振动特性和参数。
具体来说,它可以用于以下方面:1.测量物体的位移在机械振动中,物体的位移是一个非常重要的参数。
通过使用激光干涉技术,我们可以非常精确地测量出物体的位移,并对其进行分析和研究。
2.测量物体的振动频率和振动模态机械振动通常是以一定频率进行的。
通过使用激光干涉技术,我们可以精确地测量出物体的振动频率,并进一步确定其振动模态。
3.检验机械零部件的质量在机械制造过程中,零部件质量是一个非常重要的指标。
通过使用激光干涉技术,我们可以对零部件进行非接触式检验,并获取其质量信息。
4.分析机械结构的动态特性在机械设计过程中,分析机械结构的动态特性是非常重要的。
通过使用激光干涉技术,我们可以对机械结构进行动态分析,并获取其振动特性和参数。
五、激光干涉技术的测量原理在使用激光干涉技术进行测量时,通常需要借助一些设备来实现。
下面是激光干涉技术的测量原理:1.光源发出一束单色、相干、平行的光线。
机械振动测量的激光干涉技术原理及其应用

机械振动测量的激光干涉技术原理及其应用一、激光干涉技术概述1.1 激光干涉技术简介激光干涉技术是一种基于激光干涉现象的测量技术,通过利用激光光束的干涉效应,可以实现对目标物体的形状、表面特征以及运动状态等参数的测量。
激光干涉技术具有高精度、非接触和实时性等优势,被广泛应用于机械振动测量领域。
1.2 机械振动测量的意义机械振动测量是研究和评估机械系统动态性能的重要手段。
通过对机械振动的测量和分析,可以了解机械系统的结构特性、工作状态以及可能存在的故障或缺陷。
因此,机械振动测量在机械设计、故障诊断和结构动力学研究等领域具有广泛的应用前景。
二、激光干涉技术测量原理2.1 光的干涉原理光的干涉是指两个或多个光波相互叠加时产生的明暗交替的干涉条纹。
干涉条纹的出现是由于光波的相位差引起的,根据相位差的不同,干涉条纹会呈现出不同的明暗程度。
2.2 激光干涉技术测量原理在机械振动测量中,通常使用Michelson干涉仪或Fizeau干涉仪来实现激光干涉测量。
这些干涉仪利用激光光束的相干性和干涉效应来测量目标物体的振动情况。
激光干涉技术的基本原理是:将激光光束分成两束,分别射向目标物体和参考面,经过反射后再次汇合成一束光。
由于目标物体的振动,其表面会引起光程差的变化,从而产生干涉条纹。
通过对干涉条纹的分析和处理,可以得到目标物体的振动参数。
三、激光干涉技术的应用3.1 机械结构振动测试激光干涉技术可以用于对机械结构的振动进行测量。
通过将激光束射向机械结构表面,并利用干涉条纹的变化来获取结构的振动频率、振幅等参数,从而评估结构的稳定性和振动特性。
3.2 高精度位移测量利用激光干涉技术可以实现对物体位移的测量。
通过测量干涉条纹的移动情况,可以获取物体的位移信息,达到亚微米甚至纳米级的测量精度。
这在精密加工和微观物体测量等领域具有重要的应用价值。
3.3 动态应变测量激光干涉技术还可以实现对物体动态应变的测量。
当物体受到外力作用引起应变时,其表面形状会发生变化,从而改变干涉条纹的分布情况。
激光干涉测量物体形状与运动的技术要点

激光干涉测量物体形状与运动的技术要点激光干涉测量技术是一种非接触式的测量方法,通过测量激光光束与物体表面的干涉现象,可以实现对物体形状和运动的精确测量。
在工业制造、医学影像、地质勘探等领域中,激光干涉测量技术被广泛应用。
本文将介绍激光干涉测量物体形状与运动的技术要点。
一、激光干涉测量原理激光干涉测量原理基于光的干涉现象,通过测量光程差来计算物体的形状和运动。
当激光光束照射到物体表面时,一部分光被反射回来,与原始光束发生干涉。
干涉产生的光强分布与物体表面的形状和运动状态有关。
通过分析干涉光强分布的变化,可以得到物体的形状和运动信息。
二、激光干涉测量的关键技术1. 激光光源的选择激光光源是激光干涉测量的关键组成部分。
常用的激光光源有氦氖激光器、二极管激光器等。
选择合适的激光光源要考虑到测量的精度、测量距离和成本等因素。
同时,激光光源的波长也会影响测量的精度,需要根据具体应用需求进行选择。
2. 干涉图像的获取干涉图像的获取是激光干涉测量的关键步骤。
传统的方法是使用像素平面干涉仪进行图像的获取,但这种方法需要较长的曝光时间,不适用于快速运动的物体。
近年来,高速相机和图像处理技术的发展使得实时获取干涉图像成为可能,大大提高了测量的效率和精度。
3. 相位解析与计算干涉图像中的光强分布与物体表面的形状和运动状态有关,通过分析图像中的相位信息可以得到物体的形状和运动信息。
相位解析与计算是激光干涉测量的核心技术之一。
常用的相位解析方法有空间相位解析法、频率调制法等。
相位计算的过程中需要考虑到相位的非线性变化和噪声的影响,采用合适的算法可以提高测量的精度。
4. 测量误差的分析与校正激光干涉测量中存在着各种误差,如光源的不稳定性、环境震动等。
对测量误差的分析与校正是保证测量精度的重要环节。
常用的误差分析方法有误差传递法、误差补偿法等。
通过合理的误差校正方法,可以提高测量的准确性和稳定性。
三、激光干涉测量技术的应用激光干涉测量技术在工业制造、医学影像、地质勘探等领域中有着广泛的应用。
基于激光干涉测试技术的表面形貌分析研究

基于激光干涉测试技术的表面形貌分析研究近年来,随着科学技术的不断发展,人们对于表面形貌分析的研究不断深入。
而基于激光干涉测试技术的表面形貌分析技术,因其高精度、高分辨率、高稳定性等特点,已经逐渐成为表面形貌分析方面的一种重要手段。
本文主要讨论如何基于激光干涉测试技术进行表面形貌分析研究。
一、激光干涉测试技术的基本原理激光干涉测试是通过利用激光光学的干涉原理,来对物体表面形貌进行高精度的测量。
首先,将激光光源经过分光器进行分光,形成两束平行的光线。
其中一束经过反射镜反射到物体表面上,另一束则照射到参考镜上。
由于两束光线路径长度差异的存在,使得两束光线到达干涉面时会发生干涉现象。
通过干涉光的强度分布,可以获得物体表面的形貌信息。
一般采用相位移转换技术来提高测量精度。
二、激光干涉测试技术在表面形貌分析中的应用1. 光学元件的表面形貌测量激光干涉测试技术可用于光学元件的表面形貌测量,包括镜片、棱镜、透镜等。
通过不同的反射镜和透镜的组合,可获得物体表面的不同形貌信息,进而用于提高光学元件的制作精度和光学性能。
2. 电子芯片的表面形貌测量激光干涉测试技术可用于电子芯片的表面形貌测量。
电子芯片表面的形貌及粗糙度对芯片性能影响很大,而干涉测量技术可实现对芯片表面的三维测量,包括芯片尺寸、平整度、平坦度等参数。
这些参数的测量结果对于芯片制造和质量控制非常重要。
3. 材料薄膜的表面形貌测量针对材料薄膜的表面形貌测量而言,激光干涉测试技术也有着广泛的应用。
通过测量薄膜表面的波前高度分布和厚度分布,可以得到薄膜材料的质量、粗糙度等重要参数。
4. 机械零件的表面形貌测量除此之外,激光干涉测试技术还可以用于机械零件的表面形貌测量。
这些零件的表面形貌信息直接关系到所使用的机械设备的性能。
因此对于机械零件的形貌信息的快速、准确测量,也成为激光干涉测试技术得以广泛应用的原因之一。
三、激光干涉测试技术的发展与未来趋势随着计算机技术和光电技术的快速发展,激光干涉测试技术的精度、稳定性和测量速度不断提升。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字处理
A O
C
B
O’
D
激光干涉仪应用及跟踪干涉测量技术
3)位置跟踪控制系统
误差分析:
激光干涉测量过程中,由于跟踪转镜的转角不参与对测量值的计算,所以只要在 运动过程中能保证干涉仪能进行干涉测量,不丢光,就能完成测量任务。电气系统 的稳态误差不会对测量精度产生影响。
A O
C
B
O’
D
光电池位置偏差对干涉仪测量精度的影响:光电池位置偏差对激光跟踪干涉仪测距精度影响不大,
新建立4个约束方程,可见存在一个冗余方程。
A B
D 3)只要增加动点数,使得冗余的约束方程个数大于或等于系统
未知参数,就可对系统进行标定。
C
激光干涉仪应用及跟踪干涉测量技术
解决自标定问题 四路激光跟踪干涉测量系统——引入n个动点
1)两点间距离公式,可建立4n个约束方程。 2)同时引入了3n个未知量(每个动点的x、y、z坐标)。 3)系统原有的未知量 共3×(4+1)=15个
激光干涉仪应用及跟踪干涉测量技术
三路激光跟踪干涉测量系统
每一路激光跟踪干涉仪实时跟踪目标镜运动,并测量出目标镜到 跟踪转镜中心的相对长度变动量。
•如果动点到基点的初始长度已知,
P
那么动点移动后,其到基点的距离也就可以确定。
A B
•如果三个基点的相对位置关系也已知, 那么空间种运动目标的位置也就唯一确定。
基点1
基点2
基点3
基点4
基点5
L1 (x0 xb1)2 ( y0 yb1)2 (z0 zb1)2
初 始
L2 (x0 xb2 )2 ( y0 yb2 )2 (z0 zb2 )2
长 度
L3 (x0 xb3)2 ( y0 yb3)2 (z0 zb3)2
激光干涉测量技术
激光干涉仪应用及跟踪干涉测量技术
激光干涉仪应用及跟踪干涉测量技术
激光跟踪干涉测量技术
激光干涉测长仪——微米、纳米级的精密测量(微观)
大型工程对象的整体外形尺寸和形位误差的精密测量、动态测量 成为了急待解决的难题。
激光跟踪干涉测量系统——大范围、柔性、动态、高精度
•
大型几何参数、形位误差的在线测量;
C
0
Δ
1
L
激光干涉仪应用及跟踪干涉测量技术
三路激光跟踪干涉测量系统
A B
P
•自标定:
三个基点的相互位置关系的确定
(现场测量,三个跟踪干涉测量系统需要重新安装,现场
的标定是个困难,高精度标尺几乎不可能)
动点初始位置长度测量的问题
C •挡光的自恢复:
干涉仪的相对测量,测量过程的挡光将中断测量过程。
激光干涉仪应用及跟踪干涉测量技术
激光干涉仪应用及跟踪干涉测量技术
3)位置跟踪控制系统
K(s)
M(s)
T(s)
R(s)
前放
PID调节
功放
电机
跟踪转镜
I/V转换
光电池 P(s)
光斑偏差
四象限光电池
四象限探测要求:光斑理想几何圆形
光斑能量分布均匀
A
B
O
C
D
跟踪转镜
激光干涉仪应用及跟踪干涉测量技术
3)位置跟踪控制系统
光斑的水平位移
x K (A C) (B D) A B C D
美国API激光跟踪仪(三代) 产品型号:3D/6D激光跟踪仪
TrackerIII具有目前较先进 的激光跟踪技术。
广泛应用于尺寸测量、逆 向工程、动态装配、机器人空 间姿态标定等领域。
主要技术指标:
1. 最大跟踪速度:>4.0米/秒 2. 最大加速度:>2g 3. 跟踪头重量:8.5kg 4. 控制箱重量:3.2kg 5. 系统总重量:23kg 6. 测量距离(直径):大于120米 7. 水平:±320度 8. 垂直:+80度,-60度 9. 角度分辨力:0.05角秒 10.长度分辨力:0.1um 11.采样速率:256点/秒(可选3000点/秒) 12.三维空间测量精度: 静态:5ppm(2sigma)
在三路激光跟踪干涉测量系统的基础上,再增加一路跟踪干涉仪,
构成冗余系统,可以:
四路激光跟踪干涉测量系统
•完成系统自标定
P
•实现挡光后信息自恢复
A B
D C
激光干涉仪应用及跟踪干涉测量技术
解决自标定问题
四路激光跟踪干涉测量系统 1)每个动点与4个基点按两点间距离公式,可建立4个约束方程。
P
2)引入一个动点,只增加了3个未知量(x、y、z坐标),但可
方位角——
目标靶坐标P(x,y,z)
L
θ
长度的测量:激光干涉仪,提供精密的长度值;
(需要一套激光干涉测量系统)
角度测量:激光束经过安装在高精度万向节上的反射镜出射 ;
(需要两套测角系统)
激光干涉仪应用及跟踪干涉测量技术
激光跟踪干涉测量系统的发展
2)三角法 被测点三维坐标的确定:多个角度值。
•
运动目标(机器人手臂)空间轨迹、姿态监测和标定;
激光干涉仪应用及跟踪干涉测量技术
激光跟踪仪的基本组成
距离测量 角度测量 跟踪部分 控制部分 结构支撑
激光跟踪仪座标测量原理图
激光干涉仪应用及跟踪干涉测量技术
激光跟踪干涉测量系统
常规激光干涉仪:
测量光束方向固定不变,一维的固定方向,根据 测量反射镜在测量光束方向的运动,只能测量该方 向上的位移
2
1
0
P
A B
D C
0
Δ
1
L
激光干涉仪应用及跟踪干涉测量技术
解决自标定问题
三路激光跟踪干涉测量系统
一旦某路干涉仪发生故障或挡光现象,那么测量将无法继续进行,必须重新开始
四路激光跟踪干涉测量系统
系统标定后,当某路干涉仪发生故障或挡光现象,只要其它三路跟踪干涉仪工作正常, 仍可测量目标坐标。
当故障光路恢复后,由于其它三路跟踪干涉仪一直跟踪测量目标坐标,就可按目标坐标 驱动转镜使恢复工作的跟踪干涉仪瞄准目标,恢复跟踪。
光斑的垂直位移
y K (A B) (C D) A B C D
x 模拟处理方法:
B C
A D
A
I/V
B
I/V I/V C
A+C
加法
B+D
加法
A+B
加法
减法
除法
I/V D
加法 C+D
加法
x 数字处理方法:
B C
A D
A
I/V
B
I/V
多
路
开
I/V C
关
I/V D
时序控制 AD
测量光: 由激光器发出,经偏振分光镜透射后,经过1/4波片,反射镜反射后,再次经过1/4波片,此时
偏振态旋转了90º; 到达偏振分光镜后形成反射光,经过角锥棱镜获得横向位移,到达偏振分光镜后,反射; 经过1/4波片,到达测量系统,返回光再次经过1/4波片,偏振态旋转了90º, 在偏振分光镜上
形成透射光通过,到达激光器
激光干涉仪应用及跟踪干涉测量技术
4)猫眼逆反射镜
材料 n 大球半径r2
小球半径r1
r2
r1 n 1
理想状态:
激光跟踪控制总是使得入射光线经过球心,使得光线原路返回。
激光干涉仪应用及跟踪干涉测量技术
激光跟踪干涉测量系统的发展
1) 球坐标法
被测点三维坐标的确定:
一个长度值,两个角度值 长度值—— L 俯仰角——θ
二维平面内
有一个确定标尺长度的L时, 需要两个角度确定动点位置;
三维空间中
需要四个角度确定动点位置;
α
β
θ
L
激光干涉仪应用及跟踪干涉测量技术
激光跟踪干涉测量系统的发展
3)多边法 被测点三维坐标的确定:被测点到多个参考点之间的长度
二维平面内
为确定被测点坐标,需要两个长度
(由平面内两点之间距离公式列方程)
实现对三维空间目标点的动态实时跟踪测量。
激光干涉仪应用及跟踪干涉测量技术
激光跟踪干涉仪 瑞士徕卡公司、美国SMX(FARO)、API公司
徕卡LTD500
SMXTracker4500
API Tracker Ⅱ
激光干涉仪应用及跟踪干涉测量技术
激光跟踪干涉仪(非测角型) 激光干涉测长仪+跟踪系统
目标靶镜
目标靶镜
但对系统能否可靠工作影响较大
分光镜 探测器
跟踪转镜
• 通过微调机构,调整光电池位置 • 加电压偏确位置时,当光斑位置出现偏差,反馈控制转镜使得光斑回到光电池中心。
光电池位置偏差时,1)可以通过反馈控制转镜使得光斑始终处于o’点;(但牺牲了跟踪 范围);2)可以加偏置电压,使得光斑始终控制在o点;(利用跟踪)
HP5528A干涉仪,通过测量直线度的功能实现对位移测量
要求返回光与出射光处于同一直线上
激光干涉仪应用及跟踪干涉测量技术
2)跟踪转镜机构
双转镜原理:两套独立的转镜,光束经过二次反射,达到空间任意位置
光束入射角度不同,对第二反射镜面上有不同反射点,
带了附加光程。
跟踪转镜
单转镜原理:一个转镜,通过两个独立电机进行驱动。
同时将目标位置给恢复工作的干涉仪置数,使测量继续,如同未发生故障一样。
激光干涉仪应用及跟踪干涉测量技术
解决挡光自恢复问题
四路激光跟踪干涉测量系统——引入n个动点
系统未知向量 S=[xb1,yb1,zb1, xb2,yb2,zb2, xb3,yb3,zb3, xb4,yb4,zb4, x0,y0,z0]