激光干涉测量技术

合集下载

激光干涉测量技术的应用与发展

激光干涉测量技术的应用与发展

激光干涉测量技术的应用与发展激光干涉测量技术是一种利用两束或多束激光干涉的方法来获得被测量物件的形状、尺寸、形变、表面粗糙度等参数的非接触式测量技术。

因其具有精度高、速度快、非接触、非损伤等优点,近年来被广泛应用于各个领域,如空间结构、微加工、医学、汽车制造、半导体加工、航空航天等。

本文将重点探讨激光干涉测量技术的应用和发展。

一、应用领域1.空间结构测量激光干涉测量技术可以通过在空间结构表面扫描多个测量点来获取结构的形状和姿态等信息,用于结构的定位、配合和校正。

例如,在卫星发射前,需要准确测量各个部件的尺寸和相对位置,确保卫星能够正确地组装在一起。

2.微加工测量在微加工过程中,激光干涉测量技术可以测量微米级别的形变和表面质量,用于控制产品质量和优化加工过程。

例如,在制造微纳米光学器件时,需要测量器件的形变和表面质量,以确保其性能优异。

3.医学应用激光干涉测量技术可以应用于医学领域,用于测量人体器官和组织的形状和尺寸等参数。

例如,在牙齿修复中,激光干涉测量可以帮助医生准确测量牙齿的大小和形状,制作出合适的假牙。

4.汽车制造在汽车制造领域,激光干涉测量技术可以用于检测车身结构的尺寸和形状是否符合设计要求,以及车身表面的平整度和几何精度。

例如,在汽车制造中,需要使用激光干涉测量技术来检测车门、车窗的尺寸和形状是否正确,以确保车门、车窗能够完全密合。

5.半导体加工在半导体制造过程中,激光干涉测量技术可以用于测量芯片表面的平整度和精度,以及芯片上电路元器件的尺寸和形状等参数。

例如,在制造集成电路时,需要使用激光干涉测量技术来确保芯片表面的平整度和精度符合要求,以确保芯片的电子性能。

二、技术发展近年来,随着激光技术和计算机技术的发展,激光干涉测量技术也取得了一系列的进展。

1.高频率测量高频率测量是近年来激光干涉测量技术的一个新发展方向。

高频率测量可以在非常短的时间内获得目标结构的形状和位移信息,适用于快速运动或频繁变化的物体测量。

激光干涉技术在精密测量中的应用研究

激光干涉技术在精密测量中的应用研究

激光干涉技术在精密测量中的应用研究激光干涉技术是目前应用最广泛的一种精密测量方法,它利用激光的准直性、相干性和波长稳定性,在测量物体的形状、表面形貌、位移、振动、变形等方面具有很高的精度和分辨率,被广泛应用于制造、科研及医疗等领域。

本文将会详细探讨激光干涉技术在精密测量中的应用研究,包括激光干涉技术的基本原理及分类、激光干涉计的结构和工作原理、激光干涉技术在表面形貌测量、位移测量和振动测量中的应用、激光干涉技术在工业生产中的应用以及其在医疗领域中的应用。

一、激光干涉技术的基本原理和分类激光干涉技术是利用激光的准直性和相干性,在将两束或多束激光引导到相同的测量点或目标区域时,由于激光的相干性,相干的激光将会产生干涉条纹,通过对这些干涉条纹的分析,可以得到被测量物体的精密信息。

激光干涉技术主要有多普勒激光干涉技术、白光干涉技术、涡流激光干涉技术等。

二、激光干涉计的结构和工作原理激光干涉计主要由光路、干涉仪、检测器以及信号处理系统等组成,其中干涉仪是实现干涉效果的核心装置。

干涉仪主要有两种类型,一种是Michelson干涉仪,另一种是Fizeau干涉仪。

Michelson干涉仪采用一个半透镜和两个反射镜对激光进行分束、反射、再合并,从而产生干涉条纹;而Fizeau干涉仪使用一个反射镜和一个折射平面对激光分别进行反射和透射,产生干涉条纹。

信号处理系统主要用于对干涉条纹进行处理和分析。

三、激光干涉技术在表面形貌测量中的应用激光干涉技术具有高分辨率、高灵敏度、非接触等特点,广泛应用于表面形貌测量。

通过测量被测量物体表面与基准表面之间的距离差,可以得出被测物体的表面形貌信息。

激光干涉技术在表面形貌测量中已取得了显著的进展,应用广泛,如金属表面粗糙度测量,光学元件的制作等。

四、激光干涉技术在位移测量中的应用激光干涉技术可对微小的位移进行测量,精度高、实时性好,被广泛应用于工程应用中,如机械工程、土木工程、电子工业等。

工程类第二章激光干涉测量技术上

工程类第二章激光干涉测量技术上

智能化测量将提高测量精度和效 率,降低人为误差和操作成本。
添加标题
添加标题展趋势包括实时数据处理、 自动校准和自我诊断功能。
激光干涉测量技术将进一步拓展 应用领域,如智能制造、医疗和 航空航天等。
01
激光干涉测量技术的实际应用案例
激光干涉仪在长度测量中的应用
测量原理:基于激光干涉原理,通过测量干涉条纹的数量来确定长度 应用场景:生产线上的长度测量、精密加工中的定位和测量、科学研究中的长度测量等 优势特点:高精度、高稳定性、非接触式测量等 未来发展:随着激光干涉测量技术的不断进步,其在长度测量领域的应用将更加广泛和精确
XX
感谢观看
汇报人:XX
激光干涉仪在振动测量中的应用
激光干涉仪的原理 振动测量中的应用场景 实验结果及分析 未来发展方向
激光干涉仪在光学元件检测中的应用
光学元件检测的必要性 激光干涉仪的工作原理 激光干涉仪在光学元件检测中的应用案例 激光干涉仪在光学元件检测中的优势与局限性
激光干涉仪在表面粗糙度测量中的应用
激光干涉仪的工作原理 表面粗糙度测量的重要性 激光干涉仪在表面粗糙度测量中的应用案例 激光干涉仪在表面粗糙度测量中的优势与局限性
远程测量:激光干涉测量技术可以实现远程测量,无需直接接触被测物体,具有广泛的应用前景。
抗干扰能力强:激光干涉测量技术具有较强的抗干扰能力,能够在复杂的环境下实现稳定的测量。
缺点
设备成本高昂 对环境条件要求较高 测量精度易受干扰影响 需要专业操作人员和维护
01
激光干涉测量技术的发展趋势
高精度测量
XX
激光干涉测量技术
单击此处添加副标题
汇报人:XX
目录
单击添加目录项标题

激光干涉测量技术

激光干涉测量技术

式中,λ0为激光光波中心波长
4
2019/10/14
测得干涉条纹的变化次数K之后,即可由上式求得被测 长度L。在实际测量中,采用干涉条纹计数法,测量开始 时使计数器置零,测量结束时计数器的示值即为与被测长 度L相对应的条纹数K。可把上式改写为
式中, λ=λ0/n, λ是激光光波在空气中的波长。
激光干涉测长仪的主要结构
18光强接近一致以提高对比度。
2019/10/14
金属膜移相光路图
机械法移相原理图
19
2019/10/14
(4)分偏振法移相 右图是分 偏振法移相的光路图。输入光 束是与垂直入射面成45◦角的 平面偏振光,由分光器和活动 反射器反射后,信号光束的输 出还是45◦的平面偏振光,因 此,它的垂直和水平分量位相 相同。在参考光路中加入1/4 波片后使参考光变成圆偏振光, 它的垂直和水平分量位相差为 90◦光束会合后用一个渥拉斯 顿棱镜使垂直分量和水平分量 分开,给出两个干涉条纹,它 们的位相差为90◦
• 激光光源:它一般是采用单模的He-Ne(同位素)气体激光器, 输出的是波长为0.6328微米的红光。为提高光源的单色性, 对激光器要采取稳频措施;
• 迈克尔逊干涉仪:由它来产生干涉条纹;(核心部件) • 可移动平台:它携带着迈克尔逊干涉仪的一块反射镜和待测
物体一起沿入射光方向平移。由于它的平移,使干涉仪中的 干涉条纹移动; • 光电计数器:其作用是对干涉条纹的移动进行计数; • 显示和记录装置:其作用是显示和记录光电计数器中记下的 干涉条纹移动的个数或与之对应的长度;
1.立方体分光器;2.移动反射镜
13
2019/10/14
(3)光学倍频布局 为提高干涉仪的灵敏度,可使用光学倍频 (也称光程差放大器)的棱镜系统,如下图所示。角锥棱镜Ml每移 动kλ/2干涉条纹便发生一次明暗交替变化,k为倍频系数,图中k =6。利用光学倍频的干涉系统能用简单的脉冲计数做精密测量, 而无需进行条纹细分,这种技术还可使干涉仪结构紧凑,减小 温度、空气及机械干扰的影响。

第三章、激光干涉测量

第三章、激光干涉测量

第三章、激光干涉测量干涉测量技术是以光波干涉原理为基础进行高精密测量的一门技术。

20世纪60年代激光的出现,才使干涉测量技术得到了长足的发展。

因为激光出现以前,所用以光源单色灯经过滤光片滤光作为单色光源,其相干长度只有几mm ,且干涉条纹比较模糊,只能微小变化的测量。

激光的出现,由于激光束的高亮度和很长的相干长度(He-Ne 激光器,相干长度几十Km ),使得干涉测量的测量精度、可测量长度都有了质的提高。

激光干涉测量的应用范围很广,可用于长度、位移、角度、形状、介质折射率(通过折射率的变化还可以测量压力、温度等)变化。

激光干涉测量的原理就是将入射激光束分成两束,一束为参考光束,一束为测量光束,测量两束光的光程差的信息或n l kl n l n M j j j N i i i ⇒=-=∆∑∑==211λ。

本章主要介绍激光干涉长度测量、激光干涉微小间隙测量以及光纤干涉传感器所构成的温度、压力测量。

首先介绍激光干涉长度测量。

§3.1 激光干涉长度测量一、 激光干涉测长的基本原理干涉测长仪是一种利用“增量法”的测长仪器。

最基本的测长仪光路采用Michelson(迈克尔逊)干涉仪,参考反射镜M 1固定不动,目标反射镜M 2与被测对象固联,当目标反射镜随被测对象移动时,两路光束的光程差发生变化,因为两光束来自于同一相干光源(同一台激光器),两光束产生的干涉条纹也将发生明暗交替的变化(因为两反射镜M 1、M 2不可能完全垂直,故应为等厚干涉)。

假设目标反射镜从M 2移至'2M ,则二光束的光程差变化量为:nL l l n l L l n c m c m 2)(2)(2=---+=∆ (3-1-1) 当用光电探测器接收干涉条纹的明暗变化时,两光束的光程差每变化一个波长(λ),干涉条纹就明暗变化一次,所测得的干涉条纹变化次数λλ/2/nL k =∆=,n 为介质折射率,在空气中,n~1,故2/λk L =。

机械振动测量的激光干涉技术原理及其应用

机械振动测量的激光干涉技术原理及其应用

机械振动测量的激光干涉技术原理及其应用一、激光干涉技术概述1.1 激光干涉技术简介激光干涉技术是一种基于激光干涉现象的测量技术,通过利用激光光束的干涉效应,可以实现对目标物体的形状、表面特征以及运动状态等参数的测量。

激光干涉技术具有高精度、非接触和实时性等优势,被广泛应用于机械振动测量领域。

1.2 机械振动测量的意义机械振动测量是研究和评估机械系统动态性能的重要手段。

通过对机械振动的测量和分析,可以了解机械系统的结构特性、工作状态以及可能存在的故障或缺陷。

因此,机械振动测量在机械设计、故障诊断和结构动力学研究等领域具有广泛的应用前景。

二、激光干涉技术测量原理2.1 光的干涉原理光的干涉是指两个或多个光波相互叠加时产生的明暗交替的干涉条纹。

干涉条纹的出现是由于光波的相位差引起的,根据相位差的不同,干涉条纹会呈现出不同的明暗程度。

2.2 激光干涉技术测量原理在机械振动测量中,通常使用Michelson干涉仪或Fizeau干涉仪来实现激光干涉测量。

这些干涉仪利用激光光束的相干性和干涉效应来测量目标物体的振动情况。

激光干涉技术的基本原理是:将激光光束分成两束,分别射向目标物体和参考面,经过反射后再次汇合成一束光。

由于目标物体的振动,其表面会引起光程差的变化,从而产生干涉条纹。

通过对干涉条纹的分析和处理,可以得到目标物体的振动参数。

三、激光干涉技术的应用3.1 机械结构振动测试激光干涉技术可以用于对机械结构的振动进行测量。

通过将激光束射向机械结构表面,并利用干涉条纹的变化来获取结构的振动频率、振幅等参数,从而评估结构的稳定性和振动特性。

3.2 高精度位移测量利用激光干涉技术可以实现对物体位移的测量。

通过测量干涉条纹的移动情况,可以获取物体的位移信息,达到亚微米甚至纳米级的测量精度。

这在精密加工和微观物体测量等领域具有重要的应用价值。

3.3 动态应变测量激光干涉技术还可以实现对物体动态应变的测量。

当物体受到外力作用引起应变时,其表面形状会发生变化,从而改变干涉条纹的分布情况。

激光干涉测长技术

激光干涉测长技术
L N
8
辩向干涉系统 如图所示为泰曼——格林型旳偏振干涉系统,其特点是用一偏振分束 器替代常规旳分束板,并在干涉仪旳不同部位安顿了某些不同旳偏振器件 (在照明系统中安顿一1/2波片,在参照光路和测量光路中各安顿一1/4波 片,而在接受部分安顿一检偏振器)。图中由He-Ne激光器输出旳线偏振 光入射到1/2波片上,1/2波片能够绕光轴旋转,以使经它出射旳偏振光振 动方向定位在任何所需旳方向上。偏振分束器旳作用是把输入旳偏振光按 偏振方向分束,使测量光束和参照光束偏振方向相互垂直。
3、2、4 、1 ;反向移动时,脉冲排列顺序为1 、 4、2、3、 1,如
图所示。在逻辑电路上可根据脉冲1旳背面是1或4来鉴别正向加脉冲 或反向减脉冲,并分别逆入加脉冲旳“门”或减脉冲旳“门”中去, 从而可得到总旳加脉冲或减脉冲信号。
判向电路除提升了仪器旳 抗干扰能力外,还把一种周期 旳干涉条纹变化(即亮暗变化 一次)变成四个脉冲输出信号。 所以在测长时,当条纹变一条 时,可逆计数器显示4个脉冲 数,这等于把条纹4细分了, 常称四倍频计数。此时每一脉 冲代表λ/8旳移动量,所测得 旳长度
第六章 激光干涉测长技术
自从1823年杨氏(Thomas Young)首先用试验措施研究光 旳干涉现象以来,对光干涉旳本质及其应用研究已延续近223 年旳历史。激光旳出现和计算机技术,微电子技术旳发展给光 干涉技术注入了新旳活力,并已成为当代光学中一种主要旳分 支。激光干涉测量技术不但被广泛用于对物体长度、角度、形 状、位移等几何量旳测量,还可利用其测量原理对物理量(如 形变、速度、振动等)及光学系统特征(如象差,光学传递函 数)等进行测量。
(2)析光镜上经常产生非期望光线。
析光板产生旳非期望光线
● 动条纹:除了在析光板镀膜面上分裂而成旳两条期望旳相干 光线1、2处,还可能产生光线3和4,其光强虽代于前者,若所形成条 纹旳间隔合适还是足以觉察出来,它和期望旳干涉图样一样,也会伴 随反射镜旳平移而运动。

天文学中的激光干涉测量技术

天文学中的激光干涉测量技术

天文学中的激光干涉测量技术激光干涉测量技术是一种高精度的距离测量方法,被广泛应用于天文学领域。

它是利用激光相干性和干涉现象进行空间距离的测量,可以精确地测量天体间的距离和运动状态,为天文学研究提供了重要的数据支撑。

本文将介绍激光干涉测量技术的基本原理、应用领域以及未来发展方向等内容。

一、基本原理激光干涉测量技术基于光的干涉现象,即两束光线相遇时会产生干涉条纹,通过观察干涉条纹,可以得到精确的距离信息。

在实际应用中,通常使用一种叫做激光干涉仪的仪器来实现距离测量。

激光干涉仪由干涉主体、光学系统和检测系统三部分组成。

干涉主体是指两个反射镜或半透镜,它们之间形成的空间就是激光干涉仪的主要测量空间。

当激光束通过干涉主体时,会被分成两束并分别反射回来,这两束光线在干涉空间中交叉,形成一系列干涉条纹。

检测系统会对干涉条纹进行实时采样和记录,利用条纹的移动情况来确定干涉空间中的物体距离变化。

通常情况下,激光干涉仪的精度可以达到亚毫米级别,是一种非常高精度的测量方法。

二、应用领域激光干涉测量技术在天文学领域有着广泛的应用,其中最重要的应用之一是被称为“测地引力波”的一种现象的探测。

测地引力波是由两个质量非常大的天体运动或碰撞而产生的重力波,它们以光速传播,可以被视为宇宙中的声波。

激光干涉测量技术可以精确地测量两个天体之间的距离变化,因此被用来探测这种微小的变化。

除了测地引力波探测之外,激光干涉测量技术还可以应用于天体形态的研究。

例如,天文学家可以使用激光干涉测量技术来测量恒星的直径或者行星的大小。

此外,激光干涉测量技术还可以用于天体运动和位置的研究,例如研究彗星的轨道或太阳系中行星间的相对位置等。

三、未来发展方向随着技术的不断进步,激光干涉测量技术在天文学领域的应用也将进一步扩大和深化。

未来可能会使用更先进的激光干涉仪器来进行更高精度的测量,例如在深空探测任务中使用激光干涉测量仪器探测天体之间的距离变化。

此外,还可以将激光干涉测量技术与其他天文学观测技术相结合,例如利用激光干涉测量技术来测量地球自转的变化和地球的重力变化等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

激光干涉测量技术
南京师范大学中北学院
18112122 谭昌兴
干涉测量技术是以光波干涉原理为基础进行测量的一门技术。

20世纪60年代以来,由于激光的出现、隔振条件的改善及电子与计算机技术的成熟,使干涉测量技术得到长足发展。

干涉测量技术大都是非接触测量,具有很高的测量灵敏度和精度。

干涉测量应用范围十分广泛,可用于位移、长度、角度、面形、介质折射率的变化及振动等方面的测量。

在测量技术中,常用的干涉仪有迈克尔逊干涉仪、马赫-泽德干涉仪、菲索干涉仪、泰曼-格林干涉仪等;70年代以后,抗环境干扰的外差干涉仪(交流干涉仪)发展迅速,如双频激光干涉仪等;近年来,光纤干涉仪的出现使干涉仪结构更加简单、紧凑,干涉仪性能也更加稳定。

干涉测长的基本原理
激光干涉测长的基本光路是一个迈克尔逊干涉仪,用干涉条纹来反映被测量的信息。

干涉条纹是接收面上两路光程差相同的点连成的轨迹。

激光器发出的激光束到达半透半反射镜P 后被分成两束,当两束光的光程相差激光半波长的偶数倍时,它们相互加强形成亮条纹;当两束光的光程相差半波长的奇数倍时,它们相互抵消形成暗条纹。

两束光的光程差可以表为 (1) j M J j N i i
i l n l n ∑∑==-=∆11
式中j i n n ,分别为干涉仪两支光路的介质折射率;j i l l ,分别为干涉仪两支光路的几何路程。

将被测物与其中一支光路联系起来,使反光镜M 2沿光束2方向移动,每移动半波长的长度,光束2的光程就改变了一个波长,于是干涉条纹就产生一个周期的明、暗变化。

通过对干涉条纹变化的测量就可以得到被测长度。

被测长度L 与干涉条纹变化的次数N 和干涉仪所用光源波长λ之间的关系是 2λ
N L = (2)
从测量方程出发可以对激光干涉测长系统进行基本误差分析
δλδδλ
λ+=∆+∆=∆N L N N L L 即
(3) 式中δλδδ和N ,L 分别为被测长度、干涉条纹变化计数和波长的相对误差。

这说明被测长度
的相对误差由两部分组成,一部分是干涉条纹计数的相对误差,另一部分是波长也就是频率的相对误差。

前者是干涉测长系统的设计问题,后者除了激光稳频技术有关之外还与环境控制,即对温度、湿度、气压等的控制有关。

因此激光干涉测长系统测量误差必须根据具体情况进行具体分析。

激光的发明和应用使干涉测长技术提高了精度,扩大了量程并且得到了普及,但是使干 涉测长技术走出实验室进入车间,成为生产过程质量控制设备的是激光外差干涉测长技术, 具体来讲就是双频激光干涉仪。

激光干涉仪产生的干涉条纹变化频率与测量反射镜的运动速度有关,在从静止到运动再 回到静止的过程中对应着频率从零到最大值再返回到零的全过程,因此光强转化出的直流电 信号的频率变化范围也是从零开始的。

这样的信号只能用直流放大器来放大处理。

但是在外 界环境干扰下,干涉条纹的平均光强会有很大的变化,以至于造成计数的错误。

所以一般的 激光干涉仪抗干扰能力差,只能在恒温防振的条件下使用。

为了克服以上缺点,可以在干涉 仪的信号中引入一定频率的载波,使被测信号通过这一载波来传递,使得干涉仪能够采用交 流放大,隔绝外界环境干扰造成的直流电平漂移。

利用这种技术设计的干涉仪称作外差干涉 仪,或交流干涉仪。

产生干涉仪载波信号的方法有两种,一种是使参与干涉的两束光产生一 个频率差,这样的两束光相干的结果会出现光学拍的现象,转化为电信号以后得到差频的载 波,另一种是在干涉仪的参考臂中对参考光束进行调制,与测量臂的光干涉直接生成载波信
迈克尔逊干涉仪
图1 激光干涉测长仪的原理图
号。

前者称为是光外差干涉,而后者常常称作是准外差干涉。

迈克尔逊干涉仪是激光干涉测长系统的核心部分,其分光器件、反射器件和总体布局有若干可能的选择。

干涉仪的分光器件原理可以分为分波阵面法、分振幅法和分偏振法等。

激光干涉测长系统的另一个重要组成部分是干涉条纹计数与测量结果处理系统。

干涉仪在实际测量位移时,由于测量反射镜在测量过程中可能需要正反两个方向的移动,或由于外界振动,导轨误差等干扰,使反射镜在正向移动中,偶然有反向移动,所以干涉仪中需设计方向判别部分,将计数脉冲分为加和减两种脉冲。

当测量镜正向移动时所产生的脉冲为正脉冲,而反向移动时所产生的脉冲为减脉冲。

将这两种脉冲送入可逆计数器进行可逆计算就可以获得真正的位移值。

如果测量系统没有判向能力,光电接收器接收的信号是测量镜正反两方向移动的总和,就不代表真正的位移值。

另外为了提高仪器分辨力,还要对干涉条纹进行细分。

为达到这些目的,干涉仪必须有两个位相差为90度的电信号输出,一个按光程的正弦变化,一个按余弦变化。

所以,移相器也是干涉仪测量系统的重要组成部分。

常用的移相方法有机械移相,翼形板移相,金属膜移相和偏振法移相。

存在的问题:
1、稳定激光的工作环境。

保证系统有一个好的工作环境,特别是从保证激光频率稳定角度出发,要保证系统的工作环境相对稳定。

2、比较国内外开展激光检测研究与应用的现状:
(1)技术上——在高精度、自动化方面尚与国外有一定差距。

国内开展的工作面不如国外广泛,但所做工作也不少,而且技术上尚比较先进,有些方面还是可比的。

(2)应用上——周内应用类别不少。

但由于产品化程度不高,影响使用面。

3、研究新的测量方法,研究多种技术的综合应用,降低成本,实现仪器化系统,开拓新的应用领域。

参考文献:
《激光干涉测量技术及应用》作者:张琢。

相关文档
最新文档