化工原理知识点总结复习重点(完美版)

合集下载

化工原理知识点总结复习重点(完美版)复习课程

化工原理知识点总结复习重点(完美版)复习课程

第一章、流体流动一、 流体静力学 二、 流体动力学 三、 流体流动现象四、流动阻力、复杂管路、流量计一、流体静力学:● 压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力,俗称压强。

表压强(力)=绝对压强(力)-大气压强(力) 真空度=大气压强-绝对压大气压力、绝对压力、表压力(或真空度)之间的关系 ● 流体静力学方程式及应用:压力形式 )(2112z z g p p -+=ρ 备注:1)在静止的、连续的同一液体内,处于同一 能量形式g z p g z p 2211+=+ρρ水平面上各点压力都相等。

此方程式只适用于静止的连通着的同一种连续的流体。

应用:U 型压差计 gR p p )(021ρρ-=- 倾斜液柱压差计 微差压差计二、流体动力学● 流量质量流量 m S kg/sm S =V S ρ体积流量 V S m 3/s质量流速 G kg/m 2s(平均)流速 u m/s G=u ρ ● 连续性方程及重要引论:22112)(d d u u = ● 一实际流体的柏努利方程及应用(例题作业题) 以单位质量流体为基准:f e W pu g z W p u g z ∑+++=+++ρρ222212112121 J/kg 以单位重量流体为基准:f e h gp u g z H g p u g z ∑+++=+++ρρ222212112121 J/N=m 输送机械的有效功率: e s e W m N = 输送机械的轴功率: ηeN N =(运算效率进行简单数学变换)应用解题要点:1、 作图与确定衡算范围:指明流体流动方向,定出上、下游界面;2、 截面的选取:两截面均应与流动方向垂直;3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小;4、 两截面上的压力:单位一致、表示方法一致;5、 单位必须一致:有关物理量的单位必须一致相匹配。

三、流体流动现象:流体流动类型及雷诺准数:(1)层流区 Re<2000 (2)过渡区 2000< Re<4000 (3)湍流区 Re>4000本质区别:(质点运动及能量损失区别)层流与端流的区分不仅在于各有不同的Re 值,更重要的是两种流型的质点运动方式有本质区别。

化工原理知识点总结

化工原理知识点总结

化工原理知识点总结一、化工原理的概念和基本原理1. 化工原理的概念化工原理是指研究化工过程中各种物质变化和能量变化规律的科学。

化工原理是化学工程学科的基础,它研究化工过程中的化学反应、物质传递、热力学、流体力学等基本原理和规律。

2. 化工原理的基本原理化工原理的基本原理包括热力学、化学反应动力学、物质传递和流体力学等方面的基本原理。

(1)热力学热力学是研究物质的能量转化规律和能量平衡的科学。

在化工过程中,热力学原理适用于研究热平衡、热力学循环、热力学分析等方面的问题。

(2)化学反应动力学化学反应动力学是研究化学反应速率和影响因素的科学。

化工过程中的化学反应速率、反应机理、反应平衡等问题都需要运用化学反应动力学的原理进行分析和研究。

(3)物质传递物质传递是指物质在不同相之间的传递过程,包括物质的扩散、对流,以及传质设备的设计和运行原理等问题。

(4)流体力学流体力学是研究流体运动规律和流体性质的科学。

在化工过程中,很多问题都需要用到流体力学原理,如管道输送、泵的选择和设计、流体混合等方面的问题。

这些基本原理是化工原理研究的基础,它们为化工过程的设计、优化和运行提供了理论支持和技术指导。

二、化工过程的热力学分析1. 化学平衡在化工过程中,化学反应是一个重要的环节,化学反应的平衡状态对于产品的质量和产率有很大的影响。

因此,分析化学平衡是化工过程设计和运行中的重要内容。

2. 热力学循环热力学循环是指利用热力学原理设计和运行的热力系统,如蒸汽发电系统、制冷系统等。

热力学循环的分析和设计对于提高能量利用率和节能减排具有重要意义。

3. 热力学分析热力学分析是指利用热力学原理对化工过程中的能量转化和热平衡进行分析。

热力学分析通常包括能量平衡、热效率、热损失等方面的内容,它是化工过程优化和节能改造的重要手段。

三、化工过程的化学反应动力学分析1. 反应速率反应速率是指化学反应中物质的转化速率,其大小受到温度、浓度、压力等因素的影响。

化工原理知识点总结复习重点

化工原理知识点总结复习重点

第一章、流体流动一、流体静力学Y二、流体动力学'三、流体流动现象四、流动阻力、复杂管路、流量计一、流体静力学:压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力, 俗称压强。

表压强(力)=绝对压强(力)-大气压强(力)真空度=大气压强-绝对压大气压力、绝对压力、表压力(或真空度)之间的关系流体静力学方程式及应用:压力形式p2p1g(z1 z2)备注:1)在静止的、连续的同一液体内,处于同一能量形式■P1z1g z2g 水平面上各点压力都相等。

此方程式只适用于静止的连通着的同一种连续的流体。

应用:U型压差计p i P2 (0 )gR*倾斜液柱压差计微差压差计、流体动力学流量质量流速G kg/m 2s I 2m s=GAn /4d G体积流量V S m3/s 质量流量m=V S pm s kg/s连续性方程及重要引论:U2 (d i\2()u1d2一实际流体的柏努利方程及应用(例题作业题)以单位质量流体为基准:Z i g 1 22Ui B W e Z2g 122U2P2 WfJ/kg以单位重量流体为基准:Zi 1 2U1 2gP1H e Z2g1 2U2 2gP2 hfJ/N=mg输送机械的有效功率:N e m s W e输送机械的轴功率:N e N e(运算效率进行简单数学变换)应用解题要点:1、作图与确定衡算范围:指明流体流动方向,定出上、下游界面;2、截面的选取:两截面均应与流动方向垂直;3、基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小;4、两截面上的压力:单位一致、表示方法一致;5、单位必须一致:有关物理量的单位必须一致相匹配。

三、流体流动现象:流体流动类型及雷诺准数:(1)层流区Re<2000(2)过渡区2000< Re<4000(3)湍流区Re>4000本质区别:(质点运动及能量损失区别)层流与端流的区分不仅在于各有不同的Re值,更重要的是两种流型的质点运动方式有本质区别。

化工原理知识点总结

化工原理知识点总结

化工原理知识点总结1. 流体力学- 流体静力学:压力的概念、流体静力学平衡、马里奥特原理、流体静压力的测量。

- 流体动力学:连续性方程、伯努利方程、动量守恒、流动类型(层流与湍流)、雷诺数。

- 管道流动:管道摩擦损失、达西-韦斯巴赫方程、摩擦因子的确定、管道网络分析。

2. 传热学- 热传导:傅里叶定律、导热系数、热阻、稳态与非稳态导热。

- 对流热传递:对流热流密度、牛顿冷却定律、对流给热系数。

- 辐射传热:斯特藩-玻尔兹曼定律、黑体辐射、角系数、有效辐射面积。

- 热交换器:热交换器类型、效能-NTU方法、传热强化技术。

3. 物质分离- 蒸馏:基本原理、平衡曲线、麦卡布-锡尔比法、塔板理论、塔内设备。

- 萃取:液-液萃取、固-液萃取、溶剂萃取、萃取平衡、萃取过程设计。

- 过滤与沉降:沉降原理、过滤操作、离心分离、膜分离技术。

- 色谱与电泳:色谱原理、色谱柱、电泳分离、毛细管电泳。

4. 化学反应工程- 化学反应动力学:反应速率、速率方程、活化能、催化剂。

- 反应器设计:批式反应器、半连续反应器、连续搅拌槽式反应器(CSTR)、管式反应器。

- 反应器分析:稳态操作、非稳态操作、反应器的稳定性分析。

- 催化反应工程:催化剂特性、催化剂制备、催化剂失活与再生。

5. 质量传递- 扩散现象:菲克定律、扩散系数、分子扩散与对流扩散。

- 质量传递原理:质量守恒、质量传递微分方程、边界条件。

- 吸收与解吸:气液平衡、吸收塔操作、解吸过程。

- 干燥过程:湿空气系统、干燥过程分析、干燥器设计。

6. 过程控制- 控制系统基础:控制系统组成、开环与闭环系统、控制器类型。

- 控制器设计:PID控制器、串级控制系统、比值控制系统。

- 过程动态分析:拉普拉斯变换、传递函数、系统稳定性分析。

- 先进控制策略:模糊控制、自适应控制、预测控制。

7. 化工热力学- 热力学第一定律:能量守恒、热力学过程、热力学循环。

- 热力学第二定律:熵的概念、熵增原理、卡诺循环。

化工原理知识点总结复习重点(完美版)

化工原理知识点总结复习重点(完美版)

化工原理知识点总结复习重点(完美版) 嘿,伙计们!今天我们来聊聊化工原理这个话题,让大家对这个专业有个更深入的了解。

别着急,我会尽量用简单的语言和有趣的方式来讲解,让我们一起来复习一下化工原理的重点吧!我们来聊聊化工原理的基本概念。

化工原理是研究化学反应过程中物质变化规律的科学。

它主要包括传质、传热、流体力学等方面的知识。

在化工生产过程中,我们需要掌握这些基本原理,以便更好地控制反应过程,提高生产效率。

我们来看看化工原理中的一些重要概念。

第一个概念是摩尔质量。

摩尔质量是指一个物质的质量与一个摩尔该物质的物质的量之比。

这个概念很重要,因为它可以帮助我们计算出不同物质之间的质量关系。

比如说,如果我们知道两种物质的摩尔质量,就可以算出它们混合后的总质量。

第二个概念是浓度。

浓度是指单位体积或单位面积内所含物质的质量。

浓度可以用来表示溶液中溶质的质量分数。

在化工生产过程中,我们需要控制溶液的浓度,以保证产品质量和生产效率。

第三个概念是热力学第一定律。

热力学第一定律告诉我们,能量守恒,即能量不会凭空产生也不会凭空消失。

在化工生产过程中,我们需要利用这一定律来设计高效的反应过程,提高能源利用率。

第四个概念是传质速率。

传质速率是指单位时间内通过某一截面的物质质量。

传质速率受到多种因素的影响,如流体的性质、流速、管道形状等。

在化工过程中,我们需要控制传质速率,以保证产品的质量和生产效率。

现在我们来说说化工原理中的一些实际应用。

首先是石油加工。

石油加工是一个复杂的过程,涉及到多个步骤,如蒸馏、催化裂化、重整等。

在这个过程中,我们需要运用化工原理的知识,如传热、传质等原理,来设计合理的反应条件,提高石油的加工效率和产品质量。

其次是化肥生产。

化肥生产是一个重要的农业生产环节。

在这个过程中,我们需要利用化工原理的知识,如化学反应原理、浓度控制等原理,来生产高效、环保的化肥产品,满足农业生产的需求。

最后是废水处理。

随着工业化的发展,废水排放成为一个严重的环境问题。

(完整版)化工原理知识点总结整理

(完整版)化工原理知识点总结整理

一、流体力学及其输送1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。

2.四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。

3.牛顿粘性定律:F=±τA=±μAdu/dy ,(F :剪应力;A :面积;μ:粘度;du/dy :速度梯度)。

4.两种流动形态:层流和湍流。

流动形态的判据雷诺数Re=duρ/μ;层流—2000—过渡—4000—湍流。

当流体层流时,其平均速度是最大流速的1/2。

5.连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C 。

6.流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d ,沿程阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re ,湍流时λ=F(Re ,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g ,(ξ:局部阻力系数,情况不同计算方法不同)7.流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。

孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。

其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。

转子流量计的特点——恒压差、变截面。

8.离心泵主要参数:流量、压头、效率(容积效率ηv :考虑流量泄漏所造成的能量损失;水力效率ηH :考虑流动阻力所造成的能量损失;机械效率ηm :考虑轴承、密封填料和轮盘的摩擦损失。

)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。

9. 常温下水的密度1000kg/m3,标准状态下空气密度1.29 kg/m31atm =101325Pa=101.3kPa=0.1013MPa=10.33mH2O=760mmHg(1)被测流体的压力 > 大气压 表压 = 绝压-大气压(2)被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压10. 管路总阻力损失的计算 11. 离心泵的构件: 叶轮、泵壳(蜗壳形)和 轴封装置离心泵的叶轮闭式效率最高,适用于输送洁净的液体。

化工原理上 知识点总结

化工原理上 知识点总结

化工原理上知识点总结一、化工原理的基本概念1. 化工原理的概念化工原理是研究化工生产过程中的物理、化学、工程等基本原理与规律的学科,是化工工程技术的理论基础。

化工原理的研究对象是化工生产中的物质和能量转化过程,包括化工流程、反应过程、传质过程、能量转换过程等。

化工原理的研究目的是为了揭示化工过程中的相互作用规律,为化工工程技术的设计、控制和优化提供理论支持。

2. 化工原理的基本内容化工原理主要包括物质平衡、能量平衡、动量平衡、传质与反应动力学、流体力学、热力学等内容。

其中,物质平衡研究物质在化工过程中的流动分布和转化规律,能量平衡研究热量在化工过程中的转移和转化规律,动量平衡研究流动介质在化工过程中的运动规律,传质与反应动力学研究物质传输和化学反应的速率规律,流体力学研究流体运动的基本规律,热力学研究能量转换的基本规律。

3. 化工原理的应用领域化工原理是化工技术的理论基础,广泛应用于化工工程技术的设计、计算、控制、优化和改进等方面。

在化工生产中,化工原理被应用于化工过程的优化设计、生产参数的确定、生产过程的控制和调整、产品质量的改进等方面,对化工生产的安全、经济、高效具有重要意义。

二、化工过程中的物质平衡1. 物质平衡的基本概念物质平衡是研究物质在化工过程中的流动分布和转化规律的基本原理。

物质平衡的基本概念包括输入、输出、积累和转化等概念。

输入是物质进入系统的过程,输出是物质离开系统的过程,积累是系统中物质的变化过程,转化是物质在系统内发生变化的过程。

2. 物质平衡的计算方法物质平衡的计算方法包括物质平衡方程的建立和求解。

物质平衡方程是通过对系统内各环节进行物质平衡计算,建立系统物质平衡方程,求解得到系统内各环节的物质平衡量。

物质平衡的求解方法包括代数求解、图解法、矩阵法、数值积分法等。

3. 物质平衡的应用案例物质平衡在化工生产中有着广泛的应用。

例如,化工生产过程中的原料投入和产品产出量的计算、化工设备的负荷计算、化工废水、废气治理的效果评估等都需要进行物质平衡计算,以确保化工生产过程的稳定和经济效益。

化工原理知识点总结pdf

化工原理知识点总结pdf

化工原理知识点总结pdf第一章:化工原理基础化工原理是化工学科的一门基础课程,主要研究化工过程的基本原理和基本规律。

本章将针对化工原理的基础知识进行总结。

1.1 化工过程基本概念化工过程是指将原材料通过化学反应、分离、精制等一系列工艺操作,转化成符合特定需求的产品的过程。

化工过程一般包括原料处理、反应、分离、精制和产品收率等环节。

1.2 热力学基础热力学是研究物质能量转化规律的科学,它主要包括热力学系统、热力学第一、二、三定律,熵增原理等内容。

在化工过程中,热力学原理对于理解和分析热力学系统的能量变化、效率提高和过程优化具有重要的意义。

1.3 物质平衡原理物质平衡是指在化工过程中,针对物质流量、组分和质量进行的平衡分析。

物质平衡原理是化工过程中不可或缺的理论基础,它体现了化工过程中原料转化成产品,各种物质在环境中传输和转化的基本规律。

1.4 动量平衡原理在流体力学和传递过程中,动量平衡原理是通过对流体流动、传输和转动的分析,确定系统内部及其与外界的动量交换关系。

动量平衡原理在化工过程中的应用十分广泛,对于管道流体、设备运转和动力传递等方面起着重要作用。

1.5 质量平衡原理质量平衡原理是指在化工过程中,对于物质的组分、浓度、流量等进行质量平衡的原理分析。

质量平衡原理是化工过程中最基本的原理之一,对于产品质量控制、环境保护和过程优化具有重要的指导意义。

1.6 界面传递原理界面传递原理是指在化工过程中,各种界面过程发生物质传递、热量传递、动量传递的基本规律。

界面传递原理的研究对于化工过程中的分离、精制、传质、传热等方面具有重要的意义。

第二章:化工反应原理化工反应原理是化工学科的重要分支之一,主要研究化工原料通过化学反应,转化成特定产品的原理和规律。

本章将总结化工反应原理的基本知识。

2.1 化学反应的基本概念化学反应是指化学物质在一定条件下,由原有的化学键断裂再组合成新的化学物质的过程。

化学反应包括各种离子反应、氧化还原反应、配位反应、配位反应、离子化合物的生成等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章、流体流动一、 流体静力学 二、 流体动力学 三、 流体流动现象四、流动阻力、复杂管路、流量计一、流体静力学:● 压力得表征:静止流体中,在某一点单位面积上所受得压力,称为静压力,简称压力,俗称压强。

表压强(力)=绝对压强(力)-大气压强(力) 真空度=大气压强-绝对压大气压力、绝对压力、表压力(或真空度)之间得关系 ● 流体静力学方程式及应用:压力形式 )(2112z z g p p -+=ρ 备注:1)在静止得、连续得同一液体内,处于同一 能量形式g z p g z p 2211+=+ρρ水平面上各点压力都相等。

此方程式只适用于静止得连通着得同一种连续得流体。

应用:U 型压差计 gR p p )(021ρρ-=- 倾斜液柱压差计 微差压差计二、流体动力学● 流量质量流量 m S kg/sm S =V S ρ体积流量 V S m 3/s质量流速 G kg/m 2s(平均)流速 u m/s G=u ρ ● 连续性方程及重要引论:22112)(d d u u = ● 一实际流体得柏努利方程及应用(例题作业题) 以单位质量流体为基准:f e W pu g z W p u g z ∑+++=+++ρρ222212112121 J/kg 以单位重量流体为基准:f e h gp u g z H g p u g z ∑+++=+++ρρ222212112121 J/N=m 输送机械得有效功率: e s e W m N = 输送机械得轴功率: ηeN N =(运算效率进行简单数学变换)应用解题要点:1、 作图与确定衡算范围:指明流体流动方向,定出上、下游界面;2、 截面得选取:两截面均应与流动方向垂直;3、 基准水平面得选取:任意选取,必须与地面平行,用于确定流体位能得大小;4、 两截面上得压力:单位一致、表示方法一致;5、 单位必须一致:有关物理量得单位必须一致相匹配。

三、流体流动现象:流体流动类型及雷诺准数:(1)层流区 Re<2000 (2)过渡区 2000< Re<4000 (3)湍流区 Re>4000本质区别:(质点运动及能量损失区别)层流与端流得区分不仅在于各有不同得Re 值,更重要得就是两种流型得质点运动方式有本质区别。

流体在管内作层流流动时,其质点沿管轴作有规则得平行运动,各质点互不碰撞,互不混合流体在管内作湍流流动时,其质点作不规则得杂乱运动并相互碰撞,产生大大小小得旋涡。

由于质点碰撞而产生得附加阻力较自黏性所产生得阻力大得多,所以碰撞将使流体前进阻力急剧加大。

管截面速度大小分布:无论就是层流或揣流,在管道任意截面上,流体质点得速度均沿管径而变化,管壁处速度为零,离开管壁以后速度渐增,到管中心处速度最大。

层流:1、呈抛物线分布;2、管中心最大速度为平均速度得2倍。

湍流:1、层流内层;2、过渡区或缓冲区;3、湍流主体湍流时管壁处得速度也等于零,靠近管壁得流体仍作层流流动,这-作层流流动得流体薄层称为层流内层或层流底层。

自层流内层往管中心推移,速度逐渐增大,出现了既非层流流动亦非完全端流流动得区域,这区域称为缓冲层或过渡层,再往中心才就是揣流主体。

层流内层得厚度随Re 值得增加而减小。

层流时得速度分布 max 21u u =湍流时得速度分布 max 8.0u u ≈四、流动阻力、复杂管路、流量计:● 计算管道阻力得通式:(伯努利方程损失能)范宁公式得几种形式: 圆直管道 22u d l h f λ=非圆直管道 22u d l W p f f ρλρ==∆运算时,关键就是找出λ值,一般题目会告诉,仅用于期末考试,考研需扩充 ● 非圆管当量直径:当量直径:e d e d =4H r (4倍水力半径) 水力半径:H r =ΠA (流体在通道里得流通截面积A 与润湿周边长Π之比)●流量计概述:(节流原理)孔板流量计就是利用流体流经孔板前后产生得压力差来实现流量测量。

孔板流量计得特点:恒截面、变压差,为差压式流量计。

文丘里流量计得能量损失远小于孔板流量计。

转子流量计得特点:恒压差、恒环隙流速而变流通面积,属截面式流量计。

● 复杂管路:(了解)并联管路各支路得能量损失相等,主管得流量必等于各支管流量之与。

第二章、流体输送机械一、离心泵得结构与工作原理二、特性参数与特性曲线 三、气蚀现象与安装高度四、工作点及流量调节离心泵:电动机静压能流体(动能)转化−−−−→−→一、离心泵得结构与工作原理:离心泵得主要部件:离心泵得得启动流程:叶轮吸液(管泵,无自吸能力)泵壳液体得汇集与能量得转换转能泵轴排放密封填料密封机械密封(高级)叶轮其作用为将原动机得能量直接传给液体,以提高液体得静压能与动能(主要为静压能)。

泵壳具有汇集液体与能量转化双重功能。

轴封装置其作用就是防止泵壳内高压液体沿轴漏出或外界空气吸入泵得低压区。

常用得轴封装置有填料密封与机械密封两种。

气缚现象:离心泵启动前泵壳与吸入管路中没有充满液体,则泵壳内存有空气,而空气得密度又远小于液体得密度,故产生得离心力很小,因而叶轮中心处所形成得低压不足以将贮槽内液体吸入泵内,此时虽启动离心泵,也不能输送液体,此种现象称为气缚现象,表明离心泵无自吸能力。

因此,离心泵在启动前必须灌泵。

汽蚀现象:汽蚀现象就是指当泵入口处压力等于或小于同温度下液体得饱与蒸汽压时,液体发生汽化,气泡在高压作用下,迅速凝聚或破裂产生压力极大、频率极高得冲击,泵体强烈振动并发出噪音,液体流量、压头(出口压力)及效率明显下降。

这种现象称为离心泵得汽蚀。

二、特性参数与特性曲线:流量Q :离心泵在单位时间内排送到管路系统得液体体积。

压头(扬程)H :离心泵对单位重量(1N )得液体所提供得有效能量。

效率η:总效率η=ηv ηm ηh 轴功率N :泵轴所需得功率ηeN N =η-Q 曲线对应得最高效率点为设计点,对应得Q 、H 、N 值称为最佳工况参数,铭牌所标出得参数就就是此点得性能参数。

(会使用IS 水泵特性曲线表,书P117)三、气蚀现象与安装高度:● 气蚀现象得危害:①离心泵得性能下降,泵得流量、压头与效率均降低。

若生成大量得气泡,则可能出现气缚现象,且使离心泵停止工作。

②产生噪声与振动,影响离心泵得正常运行与工作环境。

③泵壳与叶轮得材料遭受损坏,降低了泵得使用寿命。

解决方案:为避免发生气蚀,就应设法使叶片入口附近得压强高于输送温度下得液体饱与蒸气压。

通常,根据泵得抗气蚀性能,合理地确定泵得安装高度,就是防止发生气蚀现象得有效措施。

● 离心泵得汽蚀余量:为防止气蚀现象发生,在离心泵人口处液体得静压头( p 1/p g ) 与动压头( u 12/2 g ) 之与必须大于操作温度下液体得饱与蒸气压头( p v /p g )某一数值,此数值即为离心泵得气蚀余量。

抗气蚀性能好2211↑↑↓-+=g S vH H NPSHgpg ug p NPSH ρρ必须汽蚀余量:(NPSH)r● 离心泵得允许吸上真空度:●离心泵得允许安装高度H g (低于此高度0、5-1m ):关离心泵先关阀门,后关电机,开离心泵先关出口阀,再启动电机。

四、工作点及流量调节:● 管路特性与离心泵得工作点:由两截面得伯努利方程所得全程化简。

联解既得工作点。

●离心泵得流量调节:1、改变阀门得开度(改变管路特性曲线);2、改变泵得转速(改变泵得特性曲线);减小叶轮直径也可以改变泵得特性曲线,但一般不用。

3、泵串联(压头大)或并联(流速大)●往复泵得流量调节:1、旁路调节;2、改变活塞冲程与往复次数。

第三章、非均相物系得分离(密度不同)一、重力沉降二、离心沉降三、过滤一、重力沉降:●沉降过程:先加速(短),后匀速(长)沉降过程。

● 流型及沉降速度计算:(参考作业及例题)层流区(滞流区)或斯托克斯定律区:(10-4<Re t <1) (K<2、62) 过渡区或艾伦定律区:(1<Re t <103) (2、62<K<69、1) 湍流区或牛顿定律区:(103<Re t <2 105) (K>69、1) 相应沉降速度计算式:(公式不用记,掌握运算方法)● 计算方法:1、 试差法:即先假设沉降属于某一流型(譬如层流区),则可直接选用与该流型相应得沉降速度公式计算t u ,然后按t u 检验Re t 值就是否在原设得流型范围内。

如果与原设一致,则求得得t u 有效。

否则,按算出得Re t 值另选流型,并改用相应得公式求t u 。

2、 摩擦数群法:书p149 3、 K 值法: 书p150● 沉降设备:为满足除尘要求,气体在降尘室内得停留时间至少等于颗粒得沉降时间,所以:单层降尘室生产能力:t s blu V ≤(与高度H 无关,注意判断选择填空题)多层降尘室:t s blu V )1n (+≤(n+1为隔板数,n 层水平隔板,能力为单层得(n+1)倍) 二、离心沉降:● 离心加速度:(惯性离心力场强度)Ru2T ;重力加速度:g● 离心沉降速度u r :R u T s 23)(d 4ρζρρ-;重力沉降速度u T :gs ρζρρ3)(d 4-● 离心分离因数K C : K C RUu T Trg u 2==(离心沉降速度与重力沉降速度得比值,表征离心沉降就是重力沉降得多少倍)● 离心沉降设备:旋风分离器:利用惯性离心力得作用从气流中分离出尘粒得设备性能指标:1、临界粒径d c:理论上在旋风分离器中能被完全分离下来得最小颗粒直径;2、分离效率:总效率η0;分效率ηp(粒级效率);3、分割粒径d50:d50就是粒级效率恰为50%得颗粒直径;4、压力降△p:气体经过旋风分离器时,由于进气管与排气管及主体器壁所引起得摩擦阻力,流动时得局部阻力以及气体旋转运动所产生得动能损失等,造成气体得压力降。

(标准旋风)标准旋风N e=5, =8、0。

三、过滤:过滤方式:1、饼层过滤:饼层过滤时,悬浮液置于过滤介质得一侧,固体物沉积于介质表面而形成滤饼层。

过滤介质中微细孔道得直径可能大于悬浮液中部分颗位得直径,因而,过滤之初会有一些细小颗粒穿过介质而使滤液浑浊,但就是颗粒会在孔道中迅速地发生“架桥”现象(见图),使小子孔道直径得细小颗粒也能被截拦,故当滤饼开始形成,滤液即变清,此后过滤才能有效地进行。

可见,在饼层过滤中,真正发挥截拦颗粒作用得主要就是滤饼层而不就是过滤介质。

饼层过滤适用于处理固体含量较高得悬浮液。

深床过滤:在深床过滤中,固体颗粒并不形成滤饼,而就是沉积于较厚得粒状过滤介质床层内部。

悬浮液中得颗粒尺寸小于床层孔道直径,当颗粒随流体在床层内得曲折孔道中流过时,便附在过滤介质上。

这种过滤适用于生产能力大而悬浮液中颗粒小、含量甚微得场合。

相关文档
最新文档