高中数学必修一知识点总结完整版
高中数学必修一知识点整理

高中数学 必修1知识点总结第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示● 什么是集合集合中的元素具有确定性、互异性和无序性。
● 常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集。
集合的表示法①自然语言法:用文字叙述的形式来描述集合。
②列举法:把集合中的元素一一列举出来,写在大括号内表示集合。
③描述法:{x |x 具有的性质},其中x 为集合的代表元素。
④图示法:用数轴或韦恩图来表示集合。
● 集合的分类①含有有限个元素的集合叫做有限集。
②含有无限个元素的集合叫做无限集。
③不含有任何元素的集合叫做空集(∅)。
【1.1.2】集合间的基本关系● 已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集。
交集、并集、补集 名称 记号 意义性质 示意图交集A B{|,x x A ∈且}x B ∈(1)A A A = (2)A ∅=∅ (3)A B A ⊆ A B B ⊆ BA并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)A A ∅= (3)A B A ⊇ A B B ⊇BA补集UA {|,}x x U x A ∈∉且1()U A A =∅2()U A A U =【补充】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<< ||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-R20(0)ax bx c a ++<>12{|}x x x x <<∅ ∅()()()UU U A B A B =()()()UU U A B A B =〖1.2〗函数及其表示 【1.2.1】函数的概念● 函数、区间的概念及其表示方法:函数:①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.区间及表示法:①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.● 求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. ● 求函数的值域或最值:求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法● 函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. ● 映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值● 函数的单调性①定义及判定方法函数的 性 质定义 图象 判定方法函数的 单调性 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yx ox x 2f(x )f(x )211(1)利用定义 (2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.● 打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数. ● 最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,我们称M是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.yxo【1。
高中数学必修一知识点总结(全)

高中数学必修一知识点总结(全)一、数与式1、常数、变量和运算符号:常数是除变量外的有限定义的数量,变量是可以任意取值的量,而运算符号则是进行数学运算的符号。
2、十进制及其他进制:十进制是分别使用0~9十个数字、以及逢十进一的一种进制制度,而其他进制则有二进制、八进制、十六进制等。
3、有理数的表示及其运算:有理数可以使用两个整数的商和余数的形式来表示,其中余数可以是负数,而有理数的运算则有加减乘除求倒数等。
4、无理数及其后结果:无理数是不能用有理数恒等式表达的数,通常用∞或“无穷不等式”来表示。
结果表明,无理数不是有理数的整数倍。
5、算术表达式的因式分解:分解因式是把一个多项式拆分成几个不同的因式的过程,在因式分解得到的两个因子可以进行乘、除、幂数运算,从而继续分解多项式,直到把多项式分解成几个不可继续分解的因式。
二、等差数列1、等差数列的定义:等差数列是一系列数按照一定规律等间隔排列而成的数列,在其中数字之间的差值成等差数列,可以表示为a1,a2,…, an,an+1,…,其中,a2-a1=a3-a2=…an+1-an=d,可以看出所有数之间都是等差的。
2、等差数列的求和:求和是求等差数列所有数字的和,其求和的公式为Sn=(n)(2a1+d(n-1))/2,在给定等差数列第一项和项数的情况下,即可直接求出等差数列的求和。
三、函数与方程1、定义域和值域:所谓“定义域”是指函数中可以取什么值,而“值域”则是指函数的值能够到达的最小和最大结果。
2、函数的定义及其基本性质:函数是定义域和值域之间的关系,函数的基本性质有单调性、统一性、性质等,其中单调性指函数上升或是下降,统一性指当定义域多于值域时,将多余的值合并为一个值。
3、折线图:折线图是一种表达定义域与值域变化关系的图表,用折线就能清楚地反映函数的变化,而其反映出的变化规律可以帮助我们分析函数的特性。
4、一元一次方程的求解:一元一次方程是一个有一个未知数的一元一次方程,其求解的方法有解析解法和求根解法,在一元一次方程求解得到未知数的值之后,可以利用求根解法把它带回原方程,验算正确性。
高中必修一数学知识点总结

高中必修一数学知识点总结1. 数与代数1.1 实数•实数的定义和性质•实数的十进制表示及其应用•实数的比较与运算1.2 一元一次方程与不等式•一元一次方程的定义和性质•一元一次方程的解的判定及求解•一元一次不等式的定义和性质•一元一次不等式的解的判定及求解1.3 二元一次方程与不等式•二元一次方程的定义和性质•二元一次方程的解的判定及求解•二元一次不等式的定义和性质•二元一次不等式的解的判定及求解1.4 整式与分式•整式的定义和性质•整式的加减乘除•分式的定义和性质•分式的加减乘除2. 平面几何2.1 点、线、面•点的定义和性质•线的定义和性质•面的定义和性质2.2 平面图形的性质•三角形的性质•四边形的性质•多边形的性质2.3 相似与全等•相似和全等的定义和性质•判定两个三角形是否相似或全等的方法2.4 平面向量•平面向量的定义和性质•平面向量的运算•平面向量的内积和外积3. 解析几何3.1 坐标系•直角坐标系的建立和性质•参数方程与极坐标系的建立和性质3.2 直线和圆的方程•直线的方程及其性质•圆的方程及其性质3.3 寻找点和直线的关系•点到直线的距离和方位关系•两直线的夹角和关系3.4 寻找点和圆的关系•点到圆的距离和方位关系•两圆的位置关系4. 数列与三角函数4.1 数列的定义和性质•数列的概念和基本性质•常见数列的特征4.2 三角函数的定义和性质•三角函数的定义•三角函数的性质和关系•三角函数的图像和变换4.3 三角函数的应用•三角函数在几何中的应用•三角函数在物理中的应用•三角函数在工程中的应用5. 概率与统计5.1 随机事件与概率•随机事件的概念和性质•概率的定义和性质•概率计算的方法5.2 统计与统计图•数据的收集和整理•统计指标的计算和分析•统计图的绘制和解读5.3 两个随机变量的关系•协方差的定义和性质•相关系数的定义和性质•线性回归与拟合以上是高中必修一数学知识点的总结,希望能对您的学习有所帮助。
高中数学必修一知识点总结归纳

高中数学必修一知识点总结归纳
高中数学必修一的知识点总结归纳如下:
1. 数与代数
- 自然数、整数、有理数、实数、复数的概念与性质
- 约分、化简、绝对值、相反数、倒数的计算
- 代数式的概念与计算,包括加减乘除、合并同类项、展开与因式分解等
- 一次方程与一元一次方程组的解法
- 二次根式的性质与运算
- 二次方程与一元二次方程组的解法
2. 几何
- 直线与平面的性质,包括共线、平行、垂直等概念
- 角的概念与性质,包括余弦定理、正弦定理以及同角对应定理等
- 三角形的性质与判定,包括勾股定理、相似三角形等
- 圆的性质与计算,包括圆心角、弧长、扇形面积、圆柱、圆锥等
- 勾股定理的应用,如解决直角三角形中的问题
- 空间图形的认识与计算,如长方体、棱柱、棱锥等
3. 函数
- 函数的概念、定义域、值域与可视化
- 一次函数、二次函数、绝对值函数、指数函数、对数函数等基本函数的性质与图像- 函数的运算,如函数的加减、乘除与复合等
- 函数的应用,如最大最小值、函数求解等
- 一元一次不等式的解法与应用
4. 统计与概率
- 数据的收集、整理与呈现方式,包括统计表、直方图、折线图、散点图等- 描述统计量的计算,如平均数、中位数、众数等
- 概率的概念与计算,包括概率的基本性质、事件的互斥与独立等
- 事件的计算,包括并、交、差与补等
- 排列与组合的计算,如排列、组合、二项式定理等
以上是高中数学必修一的知识点总结归纳,希望能对你有所帮助!。
高中数学必修一知识点总结完整版

高中数学必修一知识点总结完整版高中数学必修一是整个高中数学学习的基础,涵盖了集合、函数的概念与性质、基本初等函数等重要内容。
以下是对这些知识点的详细总结。
一、集合1、集合的概念集合是由某些确定的对象所组成的整体。
这些对象称为集合的元素。
2、集合的表示方法(1)列举法:将集合中的元素一一列举出来,用花括号括起来。
(2)描述法:用确定的条件表示某些对象是否属于这个集合。
3、集合间的关系(1)子集:如果集合 A 中的所有元素都属于集合 B,那么称 A 是B 的子集,记作 A⊆B。
(2)真子集:如果 A 是 B 的子集,且 B 中至少有一个元素不属于A,那么称 A 是 B 的真子集,记作 A⊂B。
(3)集合相等:如果 A⊆B 且 B⊆A,则 A = B。
4、集合的运算(1)交集:由属于集合 A 且属于集合 B 的所有元素组成的集合,记作A∩B。
(2)并集:由属于集合 A 或属于集合 B 的所有元素组成的集合,记作 A∪B。
(3)补集:设 U 是一个全集,A 是 U 的子集,由 U 中不属于 A 的所有元素组成的集合称为 A 在 U 中的补集,记作∁UA。
二、函数的概念1、函数的定义设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数,记作 y =f(x),x∈A。
2、函数的三要素(1)定义域:函数中自变量 x 的取值范围。
(2)值域:函数值的集合。
(3)对应关系:函数的表达式或法则。
3、函数的表示方法(1)解析法:用数学表达式表示两个变量之间的对应关系。
(2)图象法:用图象表示函数关系。
(3)列表法:列出表格来表示两个变量之间的对应关系。
三、函数的基本性质1、单调性(1)增函数:设函数 f(x)的定义域为 I,如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x1,x2,当 x1 < x2 时,都有 f(x1) < f(x2),那么就说函数 f(x)在区间 D 上是增函数。
人教版高中数学必修一知识点归纳总结

人教版高中数学必修一知识点归纳总结
本文档总结了人教版高中数学必修一的重要知识点,旨在帮助学生复和梳理相关内容。
第一章:集合与常用数集
- 集合的表示和运算
- 常用数集:自然数集、整数集、有理数集、实数集
- 数集的划分和分类
第二章:集合的运算与应用
- 集合的运算:交集、并集、差集、补集
- 集合间关系的判定和表示
- 集合的应用:概率、分类、调查统计等
第三章:函数基本概念与性质
- 函数的定义和表示
- 函数的自变量、因变量和值域
- 函数的性质:奇偶性、周期性等
第四章:一元一次方程与不等式
- 一元一次方程的解法
- 一元一次不等式的解法
- 一次方程和一次不等式的应用
第五章:平面坐标系与直线的基本性质
- 平面直角坐标系的建立和使用
- 直线方程的表示和性质
- 直线的斜率和截距
第六章:平面向量的基本概念
- 向量的定义和表示
- 向量的运算:加法、数乘
- 向量的模、方向和单位向量
第七章:平面向量的数量积
- 向量的数量积定义和性质
- 向量之间的夹角
- 向量的投影和垂直
以上是人教版高中数学必修一的知识点归纳总结,希望对学生们进行知识回顾和复有所帮助。
更多详细内容请参考教材。
高中数学必修一知识点总结归纳

高中数学必修一知识点总结归纳引言高中数学必修一通常涵盖了代数、函数、几何等多个基础数学领域,为学生进一步学习数学打下坚实的基础。
一、代数基础1.1 集合论概念:集合的表示、子集、并集、交集、补集。
1.2 逻辑用语逻辑连接词:与、或、非、蕴含、当且仅当。
1.3 不等式解法:一元一次不等式、一元二次不等式的解法。
二、函数2.1 函数的概念定义:函数的定义、定义域、值域。
2.2 函数的性质性质:单调性、奇偶性、周期性、有界性。
2.3 反函数概念:反函数的定义、性质及求法。
2.4 复合函数运算:复合函数的定义、运算法则。
2.5 函数图像绘制:函数图像的绘制方法和变换规律。
三、解析几何3.1 坐标系统介绍:直角坐标系、极坐标系的基本概念。
3.2 直线的方程形式:直线的点斜式、斜截式、一般式。
3.3 圆的方程形式:圆的标准方程、一般方程。
3.4 圆锥曲线类型:椭圆、双曲线、抛物线的方程和性质。
四、算法初步4.1 算法的概念定义:算法的定义、特征。
4.2 程序框图绘制:程序框图的绘制方法,如顺序结构、条件结构、循环结构。
4.3 算法案例分析:常见算法问题的解决步骤,如排序、查找。
五、统计5.1 随机事件与概率概念:随机事件的定义、概率的计算方法。
5.2 概率的性质总结:概率的基本性质,如非负性、规范性、加法法则。
5.3 统计初步指标:均值、中位数、众数、方差、标准差的计算与意义。
5.4 统计图类型:条形图、直方图、饼图的绘制与解读。
六、数列6.1 等差数列公式:等差数列的通项公式、求和公式。
6.2 等比数列公式:等比数列的通项公式、求和公式。
6.3 数列的极限概念:数列极限的定义、无穷等比数列的极限。
6.4 数列的应用案例:数列在实际问题中的应用,如分期付款、人口增长模型。
七、推理与证明7.1 推理的概念定义:推理的定义、日常生活中的推理应用。
7.2 证明的方法步骤:直接证明、间接证明、反证法的一般步骤。
7.3 证明的策略技巧:构造法、归纳法、演绎法在证明中的应用。
高一数学必修知识点总结15篇

高一数学必修知识点总结15篇高一数学必修知识点总结1高一数学集合有关概念集合的含义集合的中元素的三个特性:元素的确定性如:世界上的山元素的互异性如:由HY的字母组成的集合{H,A,P,Y}元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合3。
集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}集合的表示方法:枚举和描述。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N_N+整数集Z有理数集Q实数集R列举法:{a,b,c……}描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x(R|x—3>2},{x|x—3>2}语言描述法:例:{不是直角三角形的三角形}Venn图:4、集合的分类:有限集含有有限个元素的集合无限集含有无限个元素的集合空集不含任何元素的集合例:{x|x2=—5}高一数学必修知识点总结2集合间的基本关系1.子集,A包含于B,记为:,有两种可能(1)A是B的一部分,(2)A与B是同一集合,A=B,A、B两集合中元素都相同。
反之:集合A不包含于集合B,记作。
如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三个集合的关系可以表示为,,B=C。
A是C的子集,同时A也是C 的真子集。
2.真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA)3、不含任何元素的集合叫做空集,记为Φ。
Φ是任何集合的子集。
4、有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-2个非空真子集。
如A={1,2,3,4,5},则集合A有25=32个子集,25-1=31个真子集,25-2=30个非空真子集。
示例:集合中有子集。
(13年高考第4题,简单)练习:A={1,2,3},B={1,2,3,4},请问A集合有多少个子集,并写出子集,B集合有多少个非空真子集,并将其写出来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修1知识点总结集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。
、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。
、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。
真子集:若且(即至少存在但),则是的真子集。
集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A B x x A x B A A A A A A B B A A B A A B B A B A B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩函数,,,A B A x B y f B A B x y x f y y x y →映射定义:设,是两个非空的集合,如果按某一个确定的对应关系,使对于集合中的任意一个元素, 在集合中都有唯一确定的元素与之对应,那么就称对应:为从集合到集合的一个映射传统定义:如果在某变化中有两个变量并且对于在某个范围内的每一个确定的值,定义 按照某个对应关系都有唯一确定的值和它对应。
那么就是的函数。
记作函数及其表示函数{[][][][][],,()()(),,1212()()(),,12a b a x x b f x f x f x a b a b f x f x f x a b a b a ≤<≤<>⎧⎪⎪⎧⎪⎨⎨⎩⎪⎧⎪⎨⎪⎩⎩近代定义:函数是从一个数集到另一个数集的映射。
定义域函数的三要素值域对应法则解析法函数的表示方法列表法图象法单调性函数的基本性质传统定义:在区间上,若如,则在上递增,是 递增区间;如,则在上递减,是的递减区间。
导数定义:在区间[][][][][]()1(2()()00,()0(),,()0(),,y f x I M x I f x x I f x M M y f x b f x f x a b a b f x f x a b a b =∈∈==⎧⎪⎪⎨><⎪⎪⎩最大值:设函数的定义域为,如果存在实数满足:()对于任意的,都有 ()存在,使得。
则称是函数的最最值最上,若,则在上递增,是递增区间;如 则在上递减,是的递减区间。
()1(2()()00(1)()(),()(2)()(),()y f x I N x I f x x I f x N N y f x f x f x x D f x f x f x x D f x =∈∈==-=-∈-=∈⎧⎪⎨⎪⎩小值:设函数的定义域为,如果存在实数满足:()对于任意的,都有 ()存在,使得。
则称是函数的最定义域,则叫做奇函数,其图象关于原点对称。
奇偶性定义域,则叫做偶函数,其图()()()(0)()()1,()112y f x f x T f x T f x T T f x y y x a x y f x a a α+=≠=-=⇒=+⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎧⎪⎪⎪⎨⎪⎪⎩⎪⎪⎩象关于轴对称。
奇偶函数的定义域关于原点对称周期性:在函数的定义域上恒有的常数则叫做周期函数,为周期;的最小正值叫做的最小正周期,简称周期()描点连线法:列表、描点、连线向左平移个单位:向右平移个平移变换函数图象的画法()变换法,()11,()11,()1110111/()11)01)1y y x a x y f x a b x x y b y y b f x b x x y b y y b f x x w w w x wx y f wx y A A =+=⇒=-=+=⇒-==-=⇒+=><<=⇒=><<⎧⎪⎨⎪⎩单位:向上平移个单位:向下平移个单位:横坐标变换:把各点的横坐标缩短(当时)或伸长(当时)到原来的倍(纵坐标不变),即伸缩变换纵坐标变换:把各点的纵坐标伸长(或缩短(到{{{{{{/()1221010(,)2(2)0000221010221010(2)0011112(00221010A y y A y f x x x x x x x x y y y f x x y y y y y yx x x x x x x x y f x x y y y y x x x x y y y y f y y y y y y =⇒=+==-⇒⇒-=-+==-+==-=⇒⇒=-=====⇒⇒-=+==-⎧⎪⎨⎪⎩原来的倍 (横坐标不变), 即关于点对称:关于直线对称:对称变换关于直线对称:{)11()1x x x y x y f x y y =-=⇒==⎧⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎧⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎩⎩⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩关于直线对称:第二章 基本初等函数附:一、函数的定义域的常用求法:1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于1;5、三角函数正切函数tan y x =中()2x k k Z ππ≠+∈;余切函数cot y x =中;6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。
二、函数的解析式的常用求法:1、定义法;2、换元法;3、待定系数法;4、函数方程法;5、参数法;6、配方法 三、函数的值域的常用求法:1、换元法;2、配方法;3、判别式法;4、几何法;5、不等式法;6、单调性法;7、直接法四、函数的最值的常用求法:1、配方法;2、换元法;3、不等式法;4、几何法;5、单调性法 五、函数单调性的常用结论:1、若(),()f x g x 均为某区间上的增(减)函数,则()()f x g x +在这个区间上也为增(减)函数2、若()f x 为增(减)函数,则()f x -为减(增)函数3、若()f x 与()g x 的单调性相同,则[()]y f g x =是增函数;若()f x 与()g x 的单调性不同,则[()]y f g x =是减函数。
4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。
5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。
六、函数奇偶性的常用结论:1、如果一个奇函数在0x =处有定义,则(0)0f =,如果一个函数()y f x =既是奇函数又是偶函数,则()0f x =(反之不成立)2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。
3、一个奇函数与一个偶函数的积(商)为奇函数。
4、两个函数()y f u =和()u g x =复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。
5、若函数()f x 的定义域关于原点对称,则()f x 可以表示为11()[()()][()()]22f x f x f x f x f x =+-+--,该式的特点是:右端为一个奇函数和一个偶函数的和。
,()0()()[,]()()()[,](,),()0,()0()0y f x f x x y f x y f x a b f a f b y f x a b c a b f c c f x f x ====⋅<=∈===零点:对于函数()我们把使的实数叫做函数的零点。
定理:如果函数在区间上的图象是连续不断的一条曲线,并且有零点与根的关系 那么,函数在区间内有零点。
即存在使得这个也是 程的根。
(反之不成立)关系:方程函数与方程函数的应用()()(1)[,],()()0,(2)(,);(3)()()0,()()0,(,)0()()0,0y f x y f x x a b f a f b a b c f c f c c f a f c b c x a b f c f b a c x ε⇔=⇔=⋅<=⋅<=∈⋅<=⎧⎪⎨⎪⎩有实数根函数有零点函数的图象与轴有交点确定区间验证给定精确度;求区间的中点计算;二分法求方程的近似解 ①若则就是函数的零点;②若则令(此时零点); ③若则令(此时零点(,)(4)-,();24c b a b a b εε∈<~⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎨⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎨⎪⎩⎩);判断是否达到精确度:即若则得到零点的近似值或否则重复几类不同的增长函数模型函数模型及其应用用已知函数模型解决问题建立实际问题的函数模型(0,,)()(0,,)()(0,0,)(01)1lo m n a n a r s r s a a a a r s Q r s rs a a a r s Q r r s ab a b a b r Q x y a a a x =+=>∈=>∈=>>∈=>≠=⎧⎧⎪⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎨⎪⎩⎩为根指数,为被开方数分数指数幂指数的运算指数函数性质定义:一般地把函数且叫做指数函数指数函数性质:见表对数:基本初等函数对数的运算对数函数g ,log ()log log ;log log log ;log log ;(0,1,0,0)log log (01)1log (,0,1,log c a c N a N a M N M N a a a M M N a a a N n M n M a a M N a a y x a a a b b a c a c b a ⋅=+=-=>≠>>=>≠⎧⎧⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪=>≠>⎪⎪⎩⎩⎧⎨⎩⎩为底数,为真数性质换底公式:定义:一般地把函数且叫做对数函对数函数性质:见表且y x x αα⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧=⎪⎨⎪⎩⎩幂函数定义:一般地,函数叫做幂函数,是自变量,是常数。