第6章陀螺仪漂移及测试
陀螺仪技术测试用题

测试用题,请勿“题字”。
用后收回。
谢谢!一、(20分)以下每题各有四个答案,选择正确的答案,每题5分。
(1) 设自由陀螺的角动量为H ,已知进动角速度ω,陀螺力矩为M,下列表示三者之间关系的表达式正确的是( ) (A )HM ω=⨯ ;(B )M H ω=⨯; (C )H M ω=⨯ ;(D )M H ω=⨯(2) 采用伺服跟踪法进行单自由度陀螺测漂,转台轴沿当地垂线方向,地球自转角速度15/ie h ω=︒,当地纬度为30︒,测得转台转速为43.0210-⨯转/分,则陀螺漂移速度约为(传动比是1∶1)( ) (A )0.067/h ;(B )0.55/h ;(C )1.57/h ;(D )(A )、(B)、(C)均错; (3) 干涉式光纤陀螺光纤长1500m ,成环半径4cm ,光纤环法向角速度1.5/h Ω=︒,光波长为1580nm 。
则由Sagnac 效应引起的相位差近似为( )(A )47.9510-⨯() ;(B )0.114();(C )43.1410-⨯();(D )(A)、(B)、(C)均错;(4) 动量矩定理的向量表达式为( ) (A )n b nb d R d RR dt dtω=+⨯ ;(B )bib d HM H dtω=⨯+ ;(C )b n nb d R d R R dt dt ω=+⨯;(D )i oo d H M dt= 二、(10分)说明运动地理坐标系相对惯性空间旋转的原因,给出该旋转角速度在地理坐标系上的分量。
三、(20分)已知坐标系b b b ox y z (b 系)与n n n ox y z (n 系)初始时重合,b 系是n 系以转动顺序x y z →→,转角分别为α、β、γ得到的。
试:(1)求方向余弦矩阵nI C ,bn C 和nb C ;(2)写出b 系相对n 系的瞬时角速度在b 系上的投影表达式;(3)若向量ω在b 系中的表示为Tbx y z ωωωω⎡⎤=⎣⎦,求该向量在I I I ox y z 中的表示Iω和n n n ox y z 中的表示nω。
陀螺仪理论及应用

第二节 自由陀螺的视运动及其应用
一、 自由陀螺的视运动
将自由陀螺放在地球的北极,并使转子轴水平, 将自由陀螺放在地球的北极,并使转子轴水平,这时转子轴与 地球极轴互相垂直。 地球极轴互相垂直。站在地球北极上的观察者就会看到陀螺的 自转轴自东向西转动(从上方看H轴顺时针方向旋转),并且 自转轴自东向西转动(从上方看H轴顺时针方向旋转),并且 ), 转动周期与地球自转周期相同,即每24小时旋转一周。 24小时旋转一周 转动周期与地球自转周期相同,即每24小时旋转一周。
陀螺相对动参考系的运动
哈尔滨工程大学自动化学院
刘繁明
前面,我们都是假定陀螺直接安装在惯性基座上,建 前面,我们都是假定陀螺直接安装在惯性基座上, 立了以绕内、外环的转角为广义坐标的运动微分方程, 立了以绕内、外环的转角为广义坐标的运动微分方程,讨 论陀螺在外力矩作用下相对惯性空间的运动规律,但是, 论陀螺在外力矩作用下相对惯性空间的运动规律,但是, 如果计及地球的自转, 如果计及地球的自转,并且考虑实际的陀螺仪总是安装在 运动物体如飞机、舰船上, 运动物体如飞机、舰船上,那么绝对静止的基座是不存在 在这种情况下, 的。在这种情况下,我们就不仅要了解陀螺相对惯性空间 的运动规律, 的运动规律,更重要的是要了解陀螺相对运动基座的运动 规律,进而掌握飞行器、舰船运动的各种参数。 规律,进而掌握飞行器、舰船运动的各种参数。 根据一般运动学原理, 根据一般运动学原理,我们把陀螺相对惯性空间的运 动看成两种运动, 动看成两种运动,即运动基座相对惯性空间的牵连运动和 陀螺相对运动基座的相对运动的合成, 陀螺相对运动基座的相对运动的合成,所以在讨论实际陀 螺的运动时,不仅要考虑陀螺本身的运动情况, 螺的运动时,不仅要考虑陀螺本身的运动情况,还必须要 考虑基座的运动。例如, 考虑基座的运动。例如,当利用安装在载体内的陀螺仪来 测量载体的航向和姿态时, 测量载体的航向和姿态时,就必须考虑载体相对地球的运 以及地球相对惯性空间的运动。 动,以及地球相对惯性空间的运动。
陀螺仪芯片漂移误差-概述说明以及解释

陀螺仪芯片漂移误差-概述说明以及解释1.引言1.1 概述概述陀螺仪芯片是一种常用的传感器,在许多电子设备和导航系统中被广泛应用。
它可以测量物体的角速度,并提供重要的姿态信息。
然而,由于各种因素的干扰和不完美的设计,陀螺仪芯片会存在漂移误差问题。
这种误差会导致陀螺仪芯片输出的姿态信息与实际姿态有一定的偏差,严重影响了其测量精度和可靠性。
本文将对陀螺仪芯片漂移误差进行深入研究,并探讨其对陀螺仪芯片性能的影响。
首先,我们将介绍陀螺仪芯片的工作原理,解释其如何测量角速度和提供姿态信息。
然后,我们将详细定义陀螺仪芯片漂移误差,并分析其产生原因和影响因素。
在正文的第二部分,我们将讨论影响陀螺仪芯片漂移误差的因素。
这些因素包括温度变化、机械振动、电磁干扰等,它们会扰乱陀螺仪芯片的精确测量。
我们将分析每个因素的影响程度和可能的解决方法,以期降低漂移误差并提高陀螺仪芯片的性能。
最后,在结论部分,我们将总结陀螺仪芯片漂移误差的影响和解决方法。
我们将指出陀螺仪芯片漂移误差对导航系统、无人机等应用领域的重要性,并提出一些可能的改进方向,以进一步减少漂移误差,提高其测量精度和可靠性。
通过对陀螺仪芯片漂移误差的深入研究和讨论,本文旨在增加人们对陀螺仪芯片性能的认识,并对相关领域的研究和实践工作提供有益的指导。
我们相信,通过更好地理解和解决陀螺仪芯片漂移误差问题,我们将能够推动相关技术的发展并取得更好的应用效果。
文章结构部分可以简要介绍整篇文章的组织结构和各个章节的主要内容。
具体内容如下:1.2 文章结构本文将主要围绕陀螺仪芯片漂移误差展开讨论,并按以下章节进行组织和阐述:2.1 陀螺仪芯片的工作原理本节将介绍陀螺仪芯片的基本工作原理,包括其内部构造和运作方式等。
通过对陀螺仪芯片工作原理的介绍,读者可以更好地理解漂移误差的产生机制和影响因素。
2.2 陀螺仪芯片漂移误差的定义在本节中,将详细介绍陀螺仪芯片漂移误差的概念和定义。
陀螺仪实验报告

university of science and technology of china 96 jinzhai road, hefei anhui 230026,the people's republic of china陀螺仪实验实验报告李方勇 pb05210284 sist-05010 周五下午第29组2号2006.10.22 实验题目陀螺仪实验(演示实验)实验目的1、通过测量角加速度确定陀螺仪的转动惯量;2、通过测量陀螺仪的回转频率和进动频率确定陀螺仪的转动惯量;3、观察和研究陀螺仪的进动频率与回转频率与外力矩的关系。
实验仪器①三轴回转仪;②计数光电门;③光电门用直流稳压电源(5伏);④陀螺仪平衡物;⑤数字秒表(1/100秒);⑥底座(2个);⑦支杆(2个);⑧砝码50克+10克(4个);⑨卷尺或直尺。
实验原理1、如图2用重物(砝码)落下的方法来使陀螺仪盘转动,这时陀螺仪盘的角加速度?为:?=d?r/dt=m/ip (1) 式中?r为陀螺仪盘的角速度,ip为陀螺仪盘的转动惯量。
m=f.r为使陀螺仪盘转动的力矩。
由作用和反作用定律,作用力为:f=m(g-a) (2) 式中g为重力加速度,a为轨道加速度(或线加速度)轨道加速度与角加速度的关系为:a=2h/tf2; ?=a/r (3) 式中h为砝码下降的高度,r如图1所示为转轴的半径,tf为下落的时间。
将(2)(3)代入(1)2ip?2mr2t?h2mgr可得: (4)2f测量多组tf和h的值用作图法或最小二乘法拟合数据求出陀螺仪盘的转动惯量。
2、如图3所示安装好陀螺仪,移动平衡物w使陀螺仪ab轴(x轴)在水平位置平衡,用拉线的方法使陀螺仪盘绕x轴转动(尽可能提高转速),此时陀螺仪具有常数的角动量l:l=ip.?r (5) 当在陀螺仪的另一端挂上砝码m(50g)时就会产生一个附加的力矩m*,这将使原来的角动量发生改变:dl/dt=m*=m*gr* (6) 由于附加的力矩m*的方向垂直于原来的角动量的方向,将使角动量l变化dl,由图1可见: dl=ld?这时陀螺仪不会倾倒,在附加的力矩m*的作用下将会发生进动。
现代导航技术第八章(陀螺仪的测试、标定与补偿)

§8.1 陀螺仪误差测试的基本方法
2、陀螺仪误差测试的种类和方法 (2)速率传递试验 测试方法
在典型的测试中,速率转台的转动速率从零开始,逐级分成 一系列角速率值,同时记录每一级的数据。 旋转速度对于每一级设定的周期上保持常量,使得敏感器的 输出在记录前已处于稳定状态。 施加的角速率在最大和最小的期望值之间递增变化。
23
§8.1 陀螺仪误差测试的基本方法
2、陀螺仪误差测试的种类和方法 (3)温度试验
如:全温范围 下的某型号光 纤陀螺标度因 数漂移特性
24
§8.1 陀螺仪误差测试的基本方法
2、陀螺仪误差测试的种类和方法 (4)摇摆速率转台试验
此类试验的目的是确定陀螺仪及其相关电子控制电路对施加 于敏感器输入轴的振荡旋转的频率响应特性 测试设备与速率变换测试中所述的速率转台非常类似。 在该情况下,转台同样安装在合适的基座上以提供稳定性, 并施加各种预先设定频率的角运动。
28
§8.1 陀螺仪误差测试的基本方法
2、陀螺仪误差测试的种类和方法 (7)冲击试验
试验的目的是测量陀螺仪对于施加的冲击 的响应,并确定该敏感器对于施加的极短 周期(一般为毫秒级)的加速度的恢复能力。 敏感器要安装到金属台上,并将该台从给 定的距离上落到一合适形状的铅块上。 在施加冲击过程中且同样在冲击后的一定 时间内记录输出信号。陀螺仪在冲击前后 漂移均值的对比能够表明该陀螺仪特性的 瞬态或永久性变化。
20
§8.1 陀螺仪误差测试的基本方法
2、陀螺仪误差测试的种类和方法 (2)速率传递试验
输出角速率偏差(deg/s)
数据分析
与实际相比的输出偏差曲线
IFOG标度因数测试情况(10℃)
第6章-陀螺仪漂移及测试

陀螺仪的测试与标定
2018/2/25
1
§6.1 陀螺漂移的基本概念
一 自由陀螺的漂移 由于各种原因,在陀螺上往往作用有人们所不 希望的各种干扰力矩,在这些可能是很小的干扰力 矩的作用下,陀螺将产生进动,从而使角动量向量 慢慢偏离原来的方向,我们把这种现象称为陀螺的 漂移。把在干扰力矩作用下陀螺产生的进动角速度 称为陀螺的 陀螺漂移的数学模型
陀螺漂移的物理模型
ωd D0 D y a y Dz a z D yy a Dzz a
2 y 2 z
ax a ay az
Dxy a x a y D yz a y a z Dxz a x a z
一 伺服跟踪法的基本原理
双自由度陀螺的单轴转台测漂
2018/2/25 13
§6.3 陀螺测试的伺服跟踪法
二 伺服跟踪法的测速方法
d ey p
精确定位定向,即陀螺输入轴与转台轴平行,并且要使 转台在地理坐标系中精确定向。 精确地测出转台的转速。
2018/2/25
14
§6.3 陀螺测试的伺服跟踪法
2018/2/25
26
§6.5 陀螺漂移的数学模型
普遍采用的陀螺误差模型
ax a a y az
2 d D0 Dx a x D y a y Dz a z D yy a y Dzz a z2
Dxy a x a y D yz a y a z D xz a x a z (ip ) y
二 伺服跟踪法的测速方法
首先在一段时间间隔内,观测转台相对地球的转角,然后根 据地球自转角速度沿转台方向的分量通过计算求得在这段时 间内地球相对惯性空间的转角
光纤陀螺仪测试规范

光纤陀螺仪测试规范1范围本方案规范了光纤陀螺的技术要求、质量保证和交货准备等方面的要求,以及相应的测试条件、测试项目、测试方法、测试程序,适用于在航海、航空、航天及陆用等惯性技术领域中应用的陀螺仪的设计、制造及检验。
2 测试条件与测试设备2.1测试条件2.1.1 环境条件2.1.1.1 大气条件标准大气条件如下:环境温度:23℃±2℃相对湿度:20%~80%大气压力:86KPa ~ 106KPa5 测试主要项目5.1.1 光纤陀螺在室温环境下性能a) 标度因数;b) 标度因数非线性度;c) 标度因数不对称度;d) 标度因数重复性。
5.1.2 零偏a) 零偏;b) 零偏稳定性;c) 零偏重复性(逐次、逐日)。
5.1.3 阈值5.1.4 随机游走系数5.2 振动环境性能5.3 冲击试验5.4 标度因数、零偏、零偏稳定性与环境温度项目综合测试a) 标度因数温度灵敏度;b) 零偏温度零敏度; c) 陀螺启动时间;d) 温度梯度对陀螺零偏的影响。
6 测试方法 6.1 标度因数 6.1.1 标度因数数值 6.1..1.1 测试设备a) 具有角度输出的速率位置转台(速率平稳度优于5×10-3,测量范围大于±0.001°/s ~ ±500°/s );b) 陀螺输出测试和记录装置; c) 陀螺测试专用工装夹具。
6.1.1.2 测试程序陀螺仪通过安装夹具固定在速率转台上。
在输入角速率范围内,按GB321规定的R5系列,适当圆整,均匀删除后选取输入角速率,在正转、反转方向输入角速率范围内,分别不能小于11个角速率档,包括最大输入角速率。
当速率平稳时进行测试。
程序如下:a) 转台加电,设定转台的转动角速度、速率值和转动方向,接通陀螺仪电源,预热一定时间。
转台输入角速率按从小到大的顺序改变,转台正转测试陀螺仪输出,停转;转台反转,测试陀螺仪输出停转;b) 设定采样间隔时间为1S 及采样次数,测试陀螺仪测试陀螺仪输出量,求得该输入角速率下陀螺仪输出的平均值; 6.1.1.3 计算方法设j F 为第j 个输入角速度时光纤陀螺仪输出的平均值,标度因数绝对值计算方法见公式:j F =1N1Njpp F=∑ (1)式中: j F —陀螺仪第P 个输出值,N —采样次数。
陀螺仪随机漂移的测取和数学模型的确立

⑼
该式表明陀螺随机漂移的均值随时间呈线性变化, 在陀螺随机漂 ⑽
如果有较大的潜周期分量 Bt, 就要从陀螺随机漂移非平稳数据序 ⑾
如果残差序列{xt}还是非平稳数据序列 (主要是随机游动造成的) , 一般采取差分的方法来处理,只需经过一阶差分,即可化为平稳时间 序列,对时间序列{xt}作一阶差分, Δxt=xt-xt-1(t≥2) ⑿ 对于含有趋势项的非平稳时间序列,也可直接利用差分处理,如果趋 势项中只含常数项和一次项,经过一阶差分即可使之平稳化;如果趋 势项中还含有二次项,则经过二阶差分就可使之平稳化。 3.3 利用时间序列分析法对平稳化的残差序列建立数学模型 时间序列分析是一种时域分析法,它不仅仅研究过程的确定性 变化,而且更着重于研究过程的随机性变化,它直接利用随机时间序 列来建立差分方程, 把一个高度相关的平稳随机时间序列表示成一种 数字递推的形式 (即看作是由各时刻相关的随机时间序列和各时刻出 现的白噪声组成) ,按照尤尔概念,有色噪声序列可以看作是白噪声 序列经过成形滤波器变换得到的。 设{xt}表示观测到的时间序列,{ωt}表示白噪声序列,对时间序 列{xt}构造数学模型就是以白噪声{ωt}为输入,经过一个实时变换的 滤波器之后, 得出时间序列{xt}的输出三者之间的关系。 实际工程中, 平稳时间序列{xt}的线性模型通常可以表示成以下三种形式:滑动平 均模型 MA 模型, 自回归模型 AR 模型, 自回归滑动平均模型 ARMA 模型。 本文着重讨论自回归模型 AR 模型 (自回归模型, p 代表 AR 模型 的阶数),适用于动力调谐陀螺仪,以一阶自回归模型 AR(1)为例,其
b1 = e − β∆t
⒄
则,AR(1)模型的表达式:
X t = e − β∆t X t −1 + ω t