中考数学知识点总结

合集下载

中考数学复习知识点归纳总结7篇

中考数学复习知识点归纳总结7篇

中考数学复习知识点归纳总结7篇篇1一、数与代数(一)数的认识1. 自然数的认识:自然数是指用以计量事物的件数或表示事物次序的数。

即用数码0,1,2,3,4……所表示的数。

中考中可能会涉及自然数的连续性及自然数的个数等问题。

复习时需要注意对自然数概念的理解及运用。

2. 整数的认识:整数包括正整数、零和负整数。

在中考复习中,需要掌握整数的性质、运算规则以及与分数的区别等知识点。

(二)代数式与方程1. 代数式的认识:代数式是由数字、字母和数学符号组成的一种数学表达式。

在中考复习中,需要掌握代数式的简化、代入计算等知识点。

同时还需要加强对代数式在实际问题中应用的能力培养。

如与面积计算、路程问题等结合出题的情况很常见。

例如“给出多边形的一条边长为a米,与其相邻的两边之差的代数式是:______________”。

因此类题目较为灵活,需要考生具备一定的数学思维和解题技巧。

(三)数的运算与性质篇2一、数与代数(一)数的认识1. 自然数的认识:自然数是指用以计量事物的件数或表示事物次序的数。

即用数码0,1,2,3,4……所表示的数。

2. 整数的认识:整数是自然数中的一部分,包括正整数和负整数。

它们在日常生活中的应用非常广泛。

3. 小数、分数与百分数的认识:熟练掌握小数、分数与百分数的概念及其相互转化,对于数学计算和应用题的解答至关重要。

(二)代数知识1. 代数式的认识与运算:掌握代数式的概念、性质及运算规则,能够熟练进行代数式的化简、求值等。

2. 方程与不等式的应用:掌握一元一次方程、不等式及其解法,能够灵活运用方程与不等式解决实际问题。

二、几何知识(一)平面几何1. 图形的认识:熟练掌握各种基本图形的性质、分类及相互之间的关系。

2. 图形的测量:掌握各种图形的周长、面积等测量方法,能够熟练计算图形的面积和周长。

3. 图形的变换:了解图形的平移、旋转、翻折等变换方式,掌握其性质和应用。

(二)立体几何1. 长方体与正方体的认识:掌握长方体与正方体的性质、体积和表面积的计算方法。

中考数学必考知识点大全

中考数学必考知识点大全

中考数学必考知识点大全1.整数的加减乘除运算:掌握整数的加减乘除运算法则,包括加法、减法、乘法和除法。

2.分数的加减乘除运算:掌握分数的加减乘除运算法则,包括分数的加法、减法、乘法和除法。

3.百分数的计算:掌握百分数的计算方法,包括百分数的转化和百分数之间的比较。

4.小数的加减乘除运算:掌握小数的加减乘除运算法则,包括小数的加法、减法、乘法和除法。

5.整式的加减乘除运算:掌握整式的加减乘除运算法则,包括整式的加法、减法、乘法和除法。

6.一元一次方程与一元一次不等式:掌握一元一次方程和一元一次不等式的解法和问题的应用。

7.二次根式:掌握二次根式的定义和性质,包括二次根式的化简和运算。

8.平方根与立方根:掌握平方根和立方根的计算方法和性质,包括平方根和立方根的开放计算和化简。

9.平面图形的面积和周长:掌握各种平面图形的面积和周长的计算方法,包括矩形、正方形、三角形、梯形、圆等。

10.空间图形的体积和表面积:掌握各种空间图形的体积和表面积的计算方法,包括长方体、正方体、三棱锥、四棱锥、棱柱、棱台、球等。

11.初等概率与统计:掌握初等概率和统计的基本概念和计算方法,包括样本空间、事件、概率、频率、直方图等。

12.等比数列与等差数列:掌握等比数列和等差数列的定义和性质,包括等比数列和等差数列的通项公式和求和公式。

13.直角三角形的性质与应用:掌握直角三角形的性质和定理,包括勾股定理、正弦定理、余弦定理等。

14.平行线与相交线:掌握平行线和相交线的基本性质和判定方法,包括平行线的性质、相交线的性质和相交线的角度关系。

15.二次函数与二次方程:掌握二次函数和二次方程的定义和性质,包括二次函数的图像、二次方程的解法和二次函数和二次方程在实际问题中的应用。

中考数学知识点归纳总结

中考数学知识点归纳总结

中考数学知识点归纳总结一、数与代数。

(一)有理数。

1. 有理数的概念。

- 整数和分数统称为有理数。

整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。

- 例如:3是正整数, - 5是负整数,0.25(可化为(1)/(4))是有限小数属于分数,0.3̇(可化为(1)/(3))是无限循环小数属于分数。

2. 有理数的运算。

- 加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数。

- 例如:3 + 5=8;-3+(-5)= - 8;3+(-5)= - 2;5+(-5)=0。

- 减法:减去一个数,等于加上这个数的相反数。

即a - b=a+(-b)。

- 例如:5 - 3 = 5+(-3)=2;3 - 5=3+(-5)= - 2。

- 乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0;几个不为0的数相乘,负因数的个数为偶数时,积为正,负因数的个数为奇数时,积为负。

- 例如:3×5 = 15;-3×(-5)=15;3×(-5)= - 15;0×5 = 0;(-2)×(-3)×(-4)= - 24(3个负因数,积为负)。

- 除法:除以一个不等于0的数,等于乘这个数的倒数。

即a÷b=a×(1)/(b)(b≠0)。

两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。

- 例如:15÷3 = 5;-15÷(-3)=5;15÷(-3)= - 5;0÷5 = 0。

- 乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

a^n 中,a叫做底数,n叫做指数。

- 例如:2^3 = 2×2×2 = 8;(-2)^3=-2× - 2× - 2=-8。

2024初中数学知识点中考总复习总结归纳

2024初中数学知识点中考总复习总结归纳

2024初中数学知识点中考总复习总结归纳一、整数和分数运算1.整数的四则运算:加法、减法、乘法、除法2.分数的四则运算:分数的加减法、乘法、除法3.整数与分数的混合运算:转化为同种形式进行运算二、多项式的运算1.单项式与多项式的加减法:同类项的合并2.多项式的乘法:使用分配律展开式相乘,并合并同类项3.多项式的除法:使用长除法进行整除或整除后的简化三、方程与不等式1.一元一次方程:基本概念、解方程的基本方法(逆运算、倒数、代入等)2.一元一次方程的应用:问题转化为方程、代入解的检验等3.一元二次方程的解:配方法、求根公式4.一元二次方程的应用:问题转化为方程、代入解的检验等5.一元一次不等式:基本概念、解不等式的基本方法(逆运算、倒数、代入等)6.一元一次不等式的应用:问题转化为不等式、代入解的检验等四、数形结合与图形的性质1.平面图形的拓展:几何图形的基本概念、性质和判定方法(例如多边形、平行四边形、正方形等)2.三角形与四边形的面积:基本公式的推导和应用3.三角形的相似与全等:判断相似与全等的条件及应用4.圆的性质与关系:圆心角、弧长、扇形和面积的计算5.空间几何体的计算:体积和表面积的计算五、几何与运动的关系1.几何与坐标系:点的坐标及其在平面直角坐标系中的性质2.直线与圆的方程:点斜式、斜截式和截距式的互相转换及应用3.运动方程:速度、时间、距离之间的关系及其应用六、数据与概率1.数据的整理与处理:频数、频率、中位数、众数、范围等的计算和应用2.统计图的绘制与分析:条形图、折线图、扇形图等的绘制和分析3.概率的计算:事件的排列组合、概率的计算公式以上是2024初中数学中考的一些重要知识点的总结归纳,希望对您的复习有帮助。

中考数学知识点总结(最全)

中考数学知识点总结(最全)

中考数学知识点总结第一章实数考点一、实数的概念及分类(有理数、无理数)考点二、实数的倒数、相反数和绝对值考点三、平方根、算数平方根和立方根考点四、近似数、有效数字和科学记数法考点五、实数大小的比较考点六、实数的运算(做题的基础,分值相当大)考点七、实数的综合与创新第二章代数式考点一、整式的概念与运算考点二、分式考点三、多项式考点四、求代数式的值考点五、因式分解考点六、二次根式考点七、代数式的综合与创新第三章不等式与不等式组考点一、不等式的概念考点二、不等式基本性质考点三、一元一次不等式考点四、一元一次不等式组考点五、列不等式(组)解应用题考点六、不等式的综合与创新第四章方程与方程组考点一、一元一次方程的概念考点二、一元二次方程考点三、一元二次方程的解法考点四、一元二次方程根的判别式考点五、一元二次方程根与系数的关系考点六、分式方程考点七、二元一次方程组考点八、方程的综合与创新第五章函数及其图像考点一、平面直角坐标系考点二、不同位置的点的坐标的特征考点三、函数及其相关概念考点四、正比例函数和一次函数考点五、反比例函数考点六、二次函数的概念和图像考点七、二次函数的解析式考点八、二次函数的最值考点九、二次函数的性质考点十、函数的综合与创新第六章统计与概率考点一、平均数、众数、中位数考点二、统计学中的几个基本概念考点四、方差与极差考点五、频率分布考点六、确定事件和随机事件考点七、随机事件发生的可能性考点八、确定事件和随机事件的概率之间的关系考点九、古典概型考点十、列表法求概率考点十一、树状图法求概率考点十二、利用频率估计概率考点十三、统计图考点十四、调查方式与随机事件考点十五、概率的计算与实际应用考点十六、统计与概率的综合与创新第七章图形的初步认识与三角形考点一、角与线考点二、三角形的概念与全等三角形考点三、等腰三角形与直角三角形考点四、命题、定理、证明考点五、投影与视图考点六、三角形的综合与创新第八章全等与相似考点一、比例线段考点二、平行线分线段成比例定理考点三、相似三角形考点四、全等与相似的综合与创新第九章四边形考点一、四边形的相关概念考点二、平行四边形考点三、矩形考点四、菱形考点五、正方形考点六、梯形考点七、四边形的综合与创新第十章解直角三角形考点一、直角三角形的性质与判定考点二、勾股定理考点三、锐角三角函数的概念与解直角三角形考点四、解直角三角形的实际应用考点五、解直角三角形的综合与创新第十一章圆考点一、圆的概念与性质考点二、过三点的圆考点三、直线与圆的位置关系考点四、圆和圆的位置关系考点五、三角形的内切圆考点六、正多边形和圆考点七、与正多边形有关的概念(对称性)考点八、圆的弧长及扇形面积考点九、圆的综合与创新第十二章图形的变换考点一、对称考点二、平移与旋转考点三、中心对称考点四、位似的概念、性质、画法、判定考点五、图形变换的综合创新、。

中考数学必考知识点及总结

中考数学必考知识点及总结

中考数学必考知识点及总结一、代数1.整数运算:加减乘除,整数的乘方、乘方根、分式等的运算。

2.一元一次方程:解一元一次方程的方法,如用等式的性质、加减消元法、加法逆元素法、代入法等。

3.一元一次方程组:联立一元一次方程组的解法,如代入法、消元法等。

4.二元一次方程:通过解方程组方法以及用递推法。

5.实数的性质:包括有理数和无理数的性质、实数的数轴表示、实数的大小比较、实数的运算律等。

6.整式运算:包括多项式的加减乘除、综合运算等。

7.分式运算:包括分式的加减乘除、分式的化简、分式方程的解等。

8.二次根式:二次根式的概念、性质以及二次根式的加减乘除、化简等相关运算。

9.二次根式方程:涉及到解二次根式方程以及二次根式的应用等。

10.不等式:包括一元一次不等式、一元一次绝对值不等式、一元一次分式不等式、二元一次不等式等的解法。

11.初步函数:包括函数的概念、函数的表示、函数的对应法则、函数的性质等。

12.函数的图像:初步了解一元一次函数、一元二次函数的图像以及通过解题的方法掌握一元一次函数、一元二次函数的图像。

13.数列与等差数列:了解数列的概念、等差数列的概念、等差数列的通项公式、前n项和公式等。

二、平面几何1.线段的中点:中点的性质,中点的坐标,中点的应用。

2.线段的分点:分点的概念,分点的坐标,分点的共线性等相关知识。

3.三角形:三角形的性质、三角形的分类、三角形的周长、面积等相关知识。

4.多边形:包括正多边形的边数、对角、内角和外角等相关知识。

5.圆的相关性质:包括圆周率π、圆的面积、周长、内切外切相切线等相关知识。

6.平行线与相交线:包括平行线的性质、相交线的性质、平行线的判定等相关知识。

7.三角形的相似:了解相似三角形的性质、相似三角形的判定等相关知识。

8.勾股定理:了解勾股定理的概念、勾股定理的应用等相关知识。

9.平面直角坐标系:了解平面直角坐标系的概念、直角坐标系的应用等相关知识。

10.直角三角形:包括直角三角形的性质、勾股定理及其应用等相关知识。

中考数学知识点归纳总结

中考数学知识点归纳总结

中考数学知识点归纳总结一、代数与函数1.代数运算:四则运算及其混合运算,带分数的运算,分数的运算等。

2.代数式的计算:展开与因式分解、配方法进行提公因式、合并同类项等。

3.一次函数与二次函数:通过图像与函数式子之间的转化,解一元一次方程与一元二次方程。

4.等式与方程:含有未知数的等式,一元一次方程组,解方程组的方法,解一次方程,解带括号等。

5.函数关系:表达式、函数的定义域、值域、幂函数的性质。

6.值域以函数为规律的数列与函数的概念及表示法。

7.平面直角坐标系表示,直线的斜截式、截距等表示方式。

二、图形的认识与计算1.图形的位置与方位:平行线、直线、三角形的判定等。

2.直角三角形的性质:勾股定理、正弦定理、余弦定理等。

3.图形的面积与体积:长方体、正方体、圆锥等的面积、体积计算,物体表面积及物体表面积的计算。

4.图形的对称:轴对称与中心对称,最简单的拓扑关系。

5.平面直角坐标系下直线方程、两点间距离与平面图形的方程表示。

三、数据与统计1.统计指标与绘制:算术平均数,众数,中位数,极差,计算3种指标。

数据调查、讨论、记录、整理回答问题的能力,频率,百分数等。

2.抽样调查和反比例函数:抽样调查中的抽样方法,分析和处理已经抽今了的总体数据。

3.概率的计算:顺序与循环事件,相互独立与互斥,随机问题的计算等。

四、数与计算1.约数和倍数:整数的除法,能整除等概念,一般式。

2.数的性质:中位数、众数、四舍五入、求平方根、解具体应用问题等。

3.填表与运算:运算式的简化与计算、改写问题中的语句为计算式。

4.分数:分数间的大小比较,分数的加减乘除,容量单位和国际单位之间的换算。

5.数的应用:速度的计算、比与比例的应用、物体的相对布局以及市价等的计算等。

五、几何与证明1.分类与性质:图形的名称与分类、角的名称与分类、直线的名称与分类、线段的名称、划分区域。

2.相似与全等图形:相似三角形的基本比例式、相似四边形的判定条件、图形的平移、旋转、翻折、镜像与轴对称。

数学中考的知识点

数学中考的知识点

数学中考的知识点数学中考的知识点集合15篇在我们平凡的学生生涯里,大家都背过各种知识点吧?知识点是指某个模块知识的重点、核心内容、关键部分。

相信很多人都在为知识点发愁,以下是店铺为大家收集的数学中考的知识点,希望能够帮助到大家。

数学中考的知识点11.有理数的加法运算:同号相加一边倒;异号相加大减小,符号跟着大的跑;绝对值相等零正好。

【注】大减小是指绝对值的大小。

2.合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。

3.去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。

4.一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。

5.恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。

(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n6.平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。

7.完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。

8.因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。

9.代入口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小-中-大)10.单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。

11.一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。

数学中考的知识点21、加法:(1)同号两数相加,取原来的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学知识点总结一、常用数学公式公式分类公式表达式乘法与因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a 注:韦达定理判别式b2-4ac=0 注:方程有两个相等的实根b2-4ac>0 注:方程有两个不等的实根b2-4ac<0 注:方程没有实根,有共轭复数根某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角二、基本方法1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决数学问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

它是中学数学中常用的方法之一。

6、构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。

运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

7、反证法反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。

反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。

用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一个、一个也没有;至少有n个、至多有(n一1)个;至多有一个、至少有两个;唯一、至少有两个。

归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。

推理必须严谨。

导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

8、面积法平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。

运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。

用归纳法或分析法证明平面几何题,其困难在添置辅助线。

面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。

所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

9、几何变换法在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。

所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。

中学数学中所涉及的变换主要是初等变换。

有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。

另一方面,也可将变换的观点渗透到中学数学教学中。

将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

几何变换包括:(1)平移;(2)旋转;(3)对称。

10、客观性题的解题方法选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。

选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。

填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。

要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。

下面通过实例介绍常用方法。

(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。

(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。

当遇到定量命题时,常用此法。

(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。

这种方法叫特殊元素法。

(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。

(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。

图解法是解选择题常用方法之一。

(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,为分析法。

三、基本知识㈠、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。

②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的一个点来表示。

3、代数式代数式:单独一个数或者一个字母也是代数式。

合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

②把同类项合并成一项就叫做合并同类项。

③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

4、整式与分式整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

②一个单项式中,所有字母的指数和叫做这个单项式的次数。

③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

幂的运算:AM+AN=A(M+N)(AM)N=AMN(A/B)N=AN/BN 除法一样。

整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。

②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

相关文档
最新文档